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Introduction

For problems involving large data sets, it may be convenient or

necessary to distribute the data across multiple processors.

We consider a target probability density function given by

π(z) ∝ µ(z)
b∏
j=1

fj(z)

where fj is computable on processor j , requiring consideration of

yj , the jth subset of the full data set.
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Earlier approaches

Target density: π(z) ∝ µ(z)
b∏
j=1

fj(z)

▶ ‘Embarrassingly parallel’ approaches run b separate MCMC
chains in parallel, followed by some final processing step.
▶ Consensus Monte Carlo (Scott et al., 2016) requires chains
with target densities proportional to µ(z)1/bfj(z). The
samples are combined in a way that implicitly assumes

approximate Gaussianity.

▶ Xu et al. (2014) employ expectation propagation,
approximating each fj by a density belonging to an

exponential family.
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An Instrumental Statistical Model

Z

yj

j = 1, . . . , b

Z λ

Xj

yj

j = 1, . . . , b

Introduce an instrumental hierarchical model (above right):

▶ Maintain the global variable z
▶ Introduce a top-level parameter λ
▶ Associate an instrumental variable xj with each subset of the
data — a local ‘proxy’ for the global variable

▶ Inspiration: (Global variable) Consensus Optimization (not
Consensus Monte Carlo)
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An instrumental model

Target density and Its Proxy

Target density: π(z) ∝µ(z)
b∏
j=1

fj(z)

Proxy: π̃λ(z , x1:b) ∝µ(z)
b∏
j=1

Kλj (z , xj)fj(xj)

We assume that fj is bounded, and assume that this family

satisfies
∫
Kλj (z , x)fj(x)dx → fj(z) pointwise as λ→ 0.

Then the z-marginal of π̃λ converges in total variation to π, and

so for bounded functions ϕ,∫
ϕ(z)π̃λ(z)dz →

∫
ϕ(z)π(z)dz .
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MCMC algorithm

For given λ, a π̃λ-reversible Markov chain is obtained via

Full conditional densities

π̃λ(z | x1:b) ∝ µ(z)
b∏
j=1

Kλj (z , xj),

π̃λ(xj | z) ∝ Kλj (z , xj)fj(xj).

A two-variable Gibbs sampler may be constructed, where the two

variables are z and x1:b: providing approximations of∫
ϕ(z)π̃λ(z)dz .

Same construction proposed for a different purpose in

contemporaneous work by Vono et al. (2019).
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GCMC MCMC Algorithm

Fix λ > 0. Set initial state (Z0,X 01:b); choose chain length N.

For i = 1, . . . ,N:

▶ For j ∈ {1, . . . , b}, sample X ij ∼ P
(λ)

j ,Z i−1
(X i−1j , ·).

▶ Sample Z i ∼ P(λ)

X i1:b
(Z i−1, ·).

Return (Z i ,X i1:b)
N
i=1.

Where:

▶ P(λ)

j ,Z i−1
(X i−1j , ·) is π̃λ(xj |Z i−1)-invariant;

▶ P(λ)

X i1:b
(Z i−1, ·) is π̃λ(z | X i1:b)-invariant.

In practice Metropolis-within-Gibbs may be used: allows for

architecture-based tuning.

8



The regularisation parameter λ

In practice, λ takes the role of a tuning parameter.

▶ λ too large
⇒ π̃λ(z) may form a poor approximation of π(z)
⇒ estimators have a high bias.

▶ λ too small
⇒ Markov chains may have high auto-correlation, poor
mixing

⇒ estimators have a high variance.
Choose λ to balance these, in a bias–variance trade-off.
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An Example: Logistic regression

Data set formed of responses ηi ∈ {−1, 1} and vectors ξi ∈ R20
of centred binary covariates.

▶ d = 211 coefficients:
intercept +20 effect terms +

(
20
2

)
= 190 interaction terms.

▶ The n = 80, 000 data are split into b = 8 subsets;
fj(z) =

∏
i σ(ηiz

Tξi), where the product is taken over those
indices i included in the jth data subset, and σ is the logistic

function.

▶ Prior: µ ∼ N (0, 202I ).

▶ For GCMC, we use normal transition kernels:
Kλj (z , x) = N (x ; z , λI ).

▶ MCMC steps: Z Gibbs Sampler
X 20 iterates of random walk Metropolis.
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Logistic regression MSE
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▶ MSSE over all d components of poterior mean estimates.
▶ Idealised abstraction in which we assume latency is 10×
partial-likelihood evaluation time. Time is relative to the time

taken to compute a single partial likelihood term.
▶ All values computed over 25 replicates.
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SMC sampler (cf. Del Moral et al. (2006))

Instead of using the distribution π̃λ corresponding to a single λ

value, use a sequence of such distributions: πλ0 , πλ1 , . . . , πλn .

To approximate such a sequence, use an SMC sampler:

▶ At time p = 0:
▶ Draw N particles from πλ0

▶ At time p = 1, . . . , n:
▶ Importance weight the particles to target πλp
▶ Resample the particles (if necessary)
▶ Apply a Markov kernel invariant with respect to πλp

Such procedures can result in better approximations of each πλp
than would be obtained by a single πλp -invariant MCMC chain.
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Bias correction

Suppose we wish to estimate
∫
ϕ(z)π(z)dz .

Recall that
∫
ϕ(z)π̃λ(z)dz converges to this integral as λ→ 0.

Using output of SMC sampler, for some decreasing sequence

λ0, λ1, . . . , λn we obtain estimates of∫
ϕ(z)πλ0(z)dz ,

∫
ϕ(z)πλ1(z)dz , . . . ,

∫
ϕ(z)πλn(z)dz .

Idea: regress these estimates on λ, to obtain a bias-corrected

estimate of the desired integral. We suggest local linear

regression using weighted least squares.
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An automated procedure

▶ Initialise the SMC sampler at some large value of λ; use an
adaptive procedure (e.g. Zhou et al. (2016) [in JCGS]) to

determine each successive λ value in a decreasing sequence.

▶ At each stage, compute an estimate of
∫
ϕ(z)π̃λ(z)dz , and

estimate the variance of this estimate (using e.g. Lee and

Whiteley (2018)).

▶ Adaptively determine a subset of these estimates for which λ
is small enough that the dependence on λ is approximately

linear.

▶ Use weighted least squares on this subset, extrapolating to
obtain a bias-corrected estimate at λ = 0.
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A Gaussian toy example

Gaussian prior density, Gaussian likelihood contributions.

We look to estimate
∫
zπ(z)dz ≈ 4.113 (orange square).
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LHS: Estimates and the true value vs. λ (solid grey).

RHS: Estimates used in regression vs. λ. Weighted (solid blue)

and unweighted (dashed red) regression lines.
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Returning to Logistic regression

▶ We look to estimate
∫
zπ(z)dz ∈ R211. We aim to minimise

the sum of the mean squared errors of the posterior mean

estimate of each component.

▶ For the MCMC approach (with a single value of λ), the
smallest such ‘total MSE’ obtained was 0.0478 (for

λ = 10−1.5), though this was sensitive to the choice of λ.

▶ A comparable value of 0.0367 was obtained by the
bias-corrected estimate obtained from SMC, at similar

computational cost, while avoiding the difficulty in specifying

a single λ value.

▶ Further improvements described in paper.
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Conclusion

▶ Framework for sampling in distributed settings.
▶ Pro: few distributional assumptions.
▶ Pro: An automated SMC approach to tuning parameter
specification.

▶ Con: Requires more regular communication between
computing nodes than some competitors.

▶ Pro: Very amenable to incorporation of node-level random
effects (Rendell, 2020, Section 7.5)

▶ Local linear regression suggestion for bias correction is simple;
other approaches are also possible.

▶ Another approach to distributed SMC first proposed by
Lindsten et al. (2017) [in JCGS], with a theoretical analysis

in Kuntz et al. (2021), has been used to unify inferences

exactly with few distributional assumptions (Chan et al.,

2021).
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