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Abstract. The paper is devoted to the propagation of smoothness (more precisely L∞-moments of the
derivatives) of the solutions to the spatially homogeneous Boltzmann equation with polynomially growing
collision kernels.

1. Introduction

The paper is devoted to the spatially homogeneous d-dimensional Boltzmann equation

(1.1)
∂f

∂t
= Q(f, f),

where t ≥ 0, v ∈ Rd, d ≥ 3, and the collision operator Q is given by the standard formula

(1.2) Q(f, g)(v) =
∫

Rd

dw

∫

Sd−1
w−v,+

dnB(|v − w|, θ)[f(v′)g(w′)− f(v)g(w)].

Here n denotes the unit vector in the direction v′ − v, Sd−1
w−v,+ = {n ∈ Sd−1 : (n,w − v) ≥ 0}, dn

denotes the Lebesgue measure on Sd−1, θ is the (necessarily acute) angle between w − v and n (or
v′ − v),

(1.3)
{

v′ = v + (w − v, n)n
w′ = w − (w − v, n)n

⇔
{

v = v′ + (w′ − v′, n)n
w = w′ − (w′ − v′, n)n

and the collision kernel B(|z|, θ) is a given measurable non-negative function on R+ × [0, π/2] of
polynomial growth, i.e.

(1.4)
∫

Sd−1
w−v,+

B(|z|, θ) dn ≤ C(1 + |z|β)

with some constants C > 0 and β ≥ 0 (and with some additional assumptions discussed below).

Key words and phrases. Boltzmann equation with polynomially growing collision kernel, L∞-bounds, propagation
of smoothness.
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The aim of the paper is to show that if initial conditions are smooth with derivative having a power
decay as |v| → ∞, then the same holds for the energy preserving solutions. In passing we give explicit
L∞- bounds for the solutions and prove a seemingly new existence and uniqueness result for β > 2.
Some of the results obtained can be extended to more general kinetic equations discussed in [Ko1],
[Ko2]. The property of propagation of smoothness is important both theoretically, as it forbids a
spontaneous creation of shocks, and practically, say, for error estimates of interpolation schemes used
for numerical calculations. For the latter, the explicit bounds for derivatives are, of course, relevant.
Our estimates are uniform in time for all positive β. For β = 0 (maxwellian gas) our estimates for
L∞-moments depend on time, but on the other hand they are much simpler (they are monotone in the
corresponding norms of initial data without a ”pathological” blow up, as the mass goes to zero, like
in case of positive β) and they can be obtained without any reference to the corresponding integral
moments.

Our paper is close in spirit to the recent work [MV] devoted to the propagation of the integral
moments of the derivatives of the solutions to the Boltzmann equation in case β ∈ (0, 2), but it is
quite different by its results and technique used. The paper [MV] is based on the regularity of the gain
term in the sense discovered by Lions in [Li] (and further developed in [W],[Lu1],[BD]) and deals with
integral moments of the derivatives. Our method of deducing the L∞-bounds for the derivatives from
the integral ones is an extension of the methods from [Ca],[Ar2],[Gu1] on the analysis of the solutions
of the Boltzmann equation to the analysis of the derivatives of these solutions.

The paper is organized as follows. Further in this introductory section we recall basic represen-
tations of the collision kernel which we need for our analysis. The details of the deduction of these
representations are widely presented in the literature, see e.g. [Gu1], [Gu2] for d = 3. For the general
background on the Boltzmann equation we refer to the monographs [Ce], [CIP], [Ma], see also some
recent results and references in [MW] and [Vi]. Section 2 is devoted to the analysis of maxwellian gas,
i.e. to the case β = 0 in (1.4). This case deserves a special treatment, because (i) it requires special
methods, (ii) is not included in usual treatments of L∞-bounds (see [Gu1], [Gu2]), (iii) is often required
as an intermediate approximation to the case of growing kernels. Section 3 deals with L∞-bounds of
the solutions in case of arbitrary β > 0. The novelty here is two-folds. Firstly we extend the results of
[Ca], [Ar2], [Gu1] (devoted to the case d = 3 and β ∈ (0, 1]) to arbitrary d and β > 0, and secondly we
give explicit dependence of the bounds on the initial functions (not just a vague statement that they
depend on a lower bound of the mass). This progress is achieved by simplification and modification of
the methods from [Ca], [Ar2], [Gu1] in several directions. However, the main objective of this section
is to extend the whole technique in a way suitable for estimating derivatives of the solutions. In
Section 4 our main results on the propagation of L∞-bounds for the derivatives are obtained in case
of arbitrary β > 0. As we mentioned above, the propagation of the corresponding integral moments
was analysed in [MV]. Of course, the knowledge of integral moments for higher derivatives can be
used to get uniform bounds for lower derivatives, but our method allows to obtain uniform bounds to
derivatives of arbitrary given order without any references to higher derivatives. Moreover, we also
analyse the smoothness with respect to the initial data, which could be instructive for the analyis of
the full (spatially non-trivial) Boltzmann equation. In Appendix, some auxiliary results are collected.

Recall first that (1.3) describes the general transformation of the pairs of vectors that preserve
momentum and energy, i.e. for arbitrary v, w ∈ Rd and n ∈ Sd−1

w−v,+ the vectors v′, w′ given by (1.3)
satisfy

(1.5) v′ + w′ = v + w, |v′|2 + |w′|2 = |v|2 + |w|2,

and vice versa any pair v′, w′ satisfying (1.5) is given by (1.3) with some (uniquely defined) n ∈ Sd−1
w−v,+.

In the kinetic theory of gases a non-negative measurable function f on Rd describes the density of a
gas and hence the state of a system, the integrals

∫
f(v) dv and

∫ |v|2f(v) dv describe the total mass
and the energy of the state f and are denoted by M(f) and E(f) respectively, the integral

∫
vf(v) dv

denotes the total momentum of the state f , and the vectors v, w (respectively v′, w′) are interpreted
as the velocities of two particles just before (respectively, just after) a collision.
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Extending B to the angles θ ∈ [π/2, π] by B(|z|, θ) = B(|z|, π − θ) yields

(1.6) Q(f, g)(v) =
1
2

∫

Rd

dw

∫

Sd−1
dnB(|v − w|, θ)[f(v′)g(w′)− f(v)g(w)].

On the other hand, writing

(1.7) n =
w − v

|w − v| cos θ + m sin θ, dn = sind−2 θ dθ dm

with m ∈ Sd−2 and dm being the Lebesgue measure on Sd−2 yields

(1.8) Q(f, g)(v) =
∫

Rd

dw

∫ π/2

0

dθ

∫

Sd−2
dm sind−2 θB(|v − w|, θ)[f(v′)g(w′)− f(v)g(w)].

Clearly one can write

(1.9) Q(f, f) = G(f, f)− fL(f),

where L is the linear operator

(1.10) Lf(v) =
∫

Rd

dw

∫

Sd−1
w−v,+

B(|v − w|, θ)f(w) dn

and G(f, f) is called the gain term and is the quadratic form of the bilinear functional

(1.11) G(f, g)(v) =
∫

Rd

dw

∫

Sd−1
w−v,+

B(|v − w|, θ)f(v′)g(w′) dn.

Multiplying Q(f, g) by an appropriate test function ψ, integrating, and changing the variables of
integration in the gain term yields the following weak form of the collision operator

∫
ψ(v)Q(f, g)(v) dv =

1
2

∫

R2d

dvdw

∫

Sd−1
dnB(|v − w|, θ)(ψ(v′)− ψ(v))f(v)g(w).

By symmetry, one may as well write w′ and w as the arguments for ψ in this integral. Consequently,
∫

ψ(v)
1
2
(Q(f, g) + Q(g, f))(v) dv

(1.12) =
1
8

∫

R2d

dvdw

∫

Sd−1
dnB(|v − w|, θ)(ψ(v′) + ψ(w′)− ψ(v)− ψ(w))(f(v)g(w) + g(v)f(w)).

Changing the variables of integration θ 7→ π/2 − θ, m 7→ −m (and hence v′ 7→ w′, w′ 7→ v′) in
(1.11) implies that if B(|z|, θ) dn is invariant under this transformation, or, more explicitly, if

(1.13) sind−2 θB(|z|, θ) = sind−2(π/2− θ)B(|z|, π/2− θ)

for all |z| and θ, then the bilinear form G is symmetric, i.e. G(f, g) = G(g, f) for all f, g ∈ L1(Rd).
Next, noting that there is a one-to-one correspondence between the pairs v′w′ satisfying (1.5) and

the vectors ω ∈ Sd−1 such that

(1.14) v′ =
v + w

2
+
|v − w|

2
ω, w′ =

v + w

2
− |v − w|

2
ω, ω ∈ Sd−1,
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one gets the following centered representation of the collision operator (1.2):

(1.15) Q(f, g)(v) =
∫

Rd

dw

∫

Sd−1
S(|v − w|, θ)[f(v′)g(w′)− f(v)g(w)] dω

with

(1.16) B(|v − w|, θ) = 2d−1 cosd−2 θS(|v − w|, θ).

Equivalently, denoting by S
|v−w|/2
(v+w)/2 the sphere in Rd centered at (v + w)/2 and with radius |v−w|/2,

and by dσ the Lebesgue measure on this sphere, one can write

Q(f, g)(v) =
∫

Rd

dw

∫

S
|v−w|/2
(v+w)/2

dσ(v′)S(|v − w|, θ)( 2
|v − w| )

d−1[f(v′)g(w′)− f(v)g(w)].

In particular, multiplying by a test function ψ(v), integrating and changing the variables of integration
(v, w, v′) ∈ Rd ×Rd × S

|v−w|/2
(v+w)/2 to (v′, w′, v) ∈ Rd ×Rd × S

|v′−w′|/2
(v′+w′)/2 yields the important alternative

weak representation for the gain term

(1.17)
∫

ψ(v)G(f, g)(v) dv =
∫

R2d

dvdw

∫

S
|v−w|/2
(v+w)/2

dσ(v′)S(|v − w|, θ)( 2
|v − w| )

d−1ψ(v′)f(v)g(w).

In L∞-theory of the Boltzmann equation the crucial role is played by the Carleman representation
of the collision operator

(1.18) Q(f, g)(v) =
∫

Rd

dv′
∫

dEv,v′(w′)
B(|v − w|, θ)
|v′ − v|d−1

[f(v′)g(w′)− f(v)g(w)]

with θ = arctan(|w′ − v|/|v′ − v|), where Ev,z denotes the (d − 1)-dimensional plane in Rd that
passes through v and is perpendicular to z− v and dEv,z denotes the Lebesgue measure on this plane.
This representation is obtained from (1.2) by changing the variables of integration w, n to v′ ∈ Rd,
w′ ∈ Ev,v′ .

We shall need also a modification of Carleman’s representation proposed in [Gu1]. Namely, assuming
for simplicity the symmetry condition (1.13), which in terms of function S given by (1.16) reads as

(1.19) ∀ θ S(|v|, θ) = S(|v|, π/2− θ),

decomposing the integral over n in (1.11) into the sum of two integrals over the sets with 0 ≤ θ < π/4
and π/4 ≤ θ ≤ π/2 and changing the variable of integration n = (v′ − v)/|v′ − v| to the new
n = (w′− v)/|w′− v| (which means changing θ to π/2− θ m to −m, and v′, w′ to w′, v′) in the second
integral (and using the symmetry condition (1.13)) yields

G(f, g)(v) =
∫

Rd

dw

∫

Sd−1
w−v,+∩{θ∈[0,π/4]}

dnB(|v − w|, θ)f(v′)g(w′)

+
∫

Rd

dw

∫

Sd−1
w−v,+∩{θ∈[0,π/4]}

dnB(|v − w|, θ)f(w′)g(v′).

Making in these integrals the same Carleman’s transformation as above leads to the representation

G(f, g)(v) =
∫

Rd

f(v′)|v − v′|−(d−1) dv′
∫

Ev,v′,π/4

B(|v′ − w′|, θ)g(w′) dEv,v′(w′)
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(1.20) +
∫

Rd

g(v′)|v − v′|−(d−1) dv′
∫

Ev,v′,π/4

B(|v′ − w′|, θ)f(w′)dEv,v′(w′)

of the gain term, which we shall call the Carleman-Gustafsson representation. Here Ev,v′,λ is the ball in
Ev,v′ with radius |v′−v| tan λ and centre at v and where θ is the acute angle with tan θ = |w′−v|/|v′−v|.

Another useful transformation of the gain term (also due to Carleman [Ca]) is obtained by the
following trick. For an arbitrary real λ, let χλ denote the indicator of the half-line [λ,∞). For a given
v and a function f one can introduce fv,ext, fv,int by

(1.21) f = fv,ext + fv,int, fv,ext(w) = χ|v|/√2(w)f(w).

A key observation is that G(fv,int, gv,int)(v) = 0 for all f , g, which holds because, for any w and
any pair v′, w′ satisfying (1.5) (and hence forming two opposite points on the sphere with poles v

and w), either |w′| ≥ |v|/√2 or |v′| ≥ |v|/√2. This enables us to write G(f, g)(v) = G(f, gv,ext) +
G(fv,ext, gv,int), which together with (1.18) implies

G(f, g)(v) =
∫

Rd

f(v′)|v − v′|−(d−1)dv′
∫

Ev,v′
B(|v′ − w′|, θ)gv,ext(w′)dEv,v′(w′),

(1.22) +
∫

Rd

gv,int(v′)|v − v′|−(d−1)dv′
∫

Ev,v′
B(|v′ − w′|, θ)fv,ext(w′)dEv,v′(w′),

which we shall call the reduced Carleman representation. The same modification of the Carleman-
Gustafsson representation (1.20) leads to the following reduced Carleman-Gustafsson representation
(that we shall need only for f = g):

G(f, f)(v) =
∫

Rd

(f + fv,int)(v′)
|v − v′|(d−1)

dv′
∫

Ev,v′,π/4

B(|v′ − w′|, θ)fv,ext(w′) dEv,v′(w′)

(1.23) +
∫

Rd

fv,ext(v′)
|v − v′|(d−1)

dv′
∫

Ev,v′,π/4

B(|v′ − w′|, θ)(f + fv,int)(w′)dEv,v′(w′)

To conclude the introduction, we note that the basic norms used for the analysis of the Boltzmann
equation are defined for vector-valued function g = {gi}n

i=1 on Rd as

‖g‖∞,r = sup[max
i
|gi(v)|(1 + |v|r)], ‖g‖1,s =

∫ n∑

i=1

|gi(v)|(1 + |v|k) dv.

The corresponding Banach spaces are denoted respectively L∞,r and L1,s, the notation L1 being
reserved for space L1,0.

By C(a, b, ...) we shall denote various constants depending on parameters a, b, .... By χa we denote
the indicator function of [a,∞), i.e. χa(x) = 1 (respectively 0) for x ≥ 1 (respectively otherwise).

2. Maxwellian gas

We shall consider here the Maxevellian gas with a symmetric kernel, i.e. we shall assume that the
function S(|v|, θ) given by (1.6) satisfies the following condition

(2.1) 2d−1S(|v|, θ) ≤ c0 < ∞, S(|v|, θ) = S(|v|, π/2− θ).
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A rather comprehensive discussion of the known properties of the Boltzmann equation for Maxwelian
molecules can be found in [Bo]. We shall need here only the well known (see e.g. [Ar1]) that under
the above condition, for arbitrary non-negative f0 ∈ L1 there exists a unique non-negative L1-solution
ft of the Boltzmann equation that preserves the mass, i.e. M(ft) = M(f0) for all t ≥ 0. Moreover, if
E(f0) < ∞, then E(ft) = E(f0) for all t, and for other integral norms the estimate

(2.2) ‖ft‖1,s ≤ ‖f0‖1,s exp{C(s, d)c0tM(f0)}

holds (it is easy to get more precise time independent estimates, but we do not need them, as our
L∞-estimates for maxwellian gas are time dependent anyway). On the other hand, for any two such
solutions ft and gt

(2.3) ‖ft − gt‖1,0 ≤ ‖f0 − g0‖1,0 exp{c0tA(d− 2)(M(f0) + M(g0))}.

We start with L∞,s-bounds of the solutions ft.

Proposition 2.1. If f0∈L1,0∩L∞,0, then ft∈L1,0∩L∞,0 and ‖ft‖∞,0≤exp{2c0A(d−2)M0t}‖f0‖∞,0

with M0 = M(f0) for all t > 0.

Proof. (i) Suppose first that ‖ft‖∞,0 < ∞ for all t, and let us obtain the required bounds. From the
Carleman-Gustafsson representation

G(ft, ft) ≤ 2c0

∫

Rd

ft(v′)|v − v′|−(d−1)‖ft‖∞,0A(d− 2)|v − v′|d−1 dv′ ≤ 2c0M0A(d− 2)‖ft‖∞,0.

Hence

‖ft‖∞,0 ≤ ‖f0‖∞,0 +
∫ t

0

2c0A(d− 2)M0‖fs‖∞,0 ds,

which implies the statement of the theorem by Gronwall’s lemma.
(ii) To justify this bound let us approximate the collision kernel B(|v − w|, θ) by a family of cutoff

kernels Bn(v, w, θ) = B(|v−w|, θ)φn(R(v, w)). Here φn is a family of infinitely smooth functions on R+

with uniformly bounded derivatives and with range [0, 1], and such that φn(x) vanishes (respectively
equals one) for x ≥ n (respectively x ≤ n−1), and R(v, w) = max{‖z‖ : z ∈ Sv,w}, where Sv,w denotes
the (d−1)-dimensional sphere with v and w being its north and south poles. As by definition R(v, w) =
R(v′, w′), one has

∫
Qn(f, f)(v) dv = 0 for any f ∈ L1,0, where Qn denotes the corresponding collision

operator. Consequently, the L1-theory of the solutions of the Boltzmann equation with the collision
operator Qn is the same as for the collision operator Q giving a unique mass preserving non-negative
solution for any non-negative initial function with a finite mass. On the other hand, the evolution
defined by Qn preserves the values of an arbitrary initial function in the points v with |v| ≥ n. As
Qn(f, f) depends on f locally Lipshitz continuous in L∞,0, there exists a unique local solution fn in
L∞,0 of the Cauchy problem for the corresponding Boltzmann equation for any initial f0 ∈ L∞,0∩L1,0,
which obviously preserves the L1,0-norm and hence coincides with the unique L1-solutions. Due to the
bounds on ‖ft‖∞,0 obtained above (which are the same for solutions fn), this solution can not explode
in finite times, and hence coincides with the L1-solution for all times and has the required bounds for
‖fn

t ‖∞,0. It remains to observe that the solutions fn
t converge in L1-sense to the solutions ft. This

implies almost sure pointwise convergence and hence the preservation of the common (essential) upper
bound.

Theorem 2.2. Let f0 ∈ L1,s ∩ L∞,k and either k < min(d − 1, s), or min(k, s) > 1. Then ft ∈
L1,s ∩ L∞,k for all t and the corresponding norms are bounded uniformly for t ≤ T with an arbitrary
T . In particular, if either k < min(d− 1, sd/(d + s)) or k > 1 and s ≥ d/(d− 1), then

‖ft‖∞,k ≤ ‖f0‖∞,k exp{C(k, s, d)c0t sup
τ≤t

(‖fτ‖∞,0 + ‖fτ‖1,s)},



REGULARITY OF SOLUTIONS TO BOLTZMANN EQUATION 7

which is bounded by (2.2) and Proposition 2.1.

Proof. (i) We shall only obtain the required uniform bounds for the solutions assuming that all norms
‖ft‖∞,k are finite. A justification is precisely the same as in the previous theorem, because again the
L1-convergence of approximations implies the preservation of a common upper bound.

(ii) Suppose first that k < d − 1 and k ≤ sd/(d + s). Let us divide the integral in Gustafsson-
Carleman into the sum I1 +I2 +I3 of three integrals decomposing the domain of integration into three
parts

D1 = {v′ : |v′| < |v|/2}, D2 = {v′ : |v′| ≥ |v|/2, |v′ − v| ≥ 1}, D3 = {v′ : |v′| ≥ |v|/2, |v′ − v| < 1}.

In D1 one has |w′| ≥ |v|/2, hence f(w′) ≤ 2k‖f‖∞,k/(1 + |v|k) and
∫

Ev,v′,π/4

f(w′)dEv,v′(w′) ≤ 2kA(d− 2)‖f‖∞,k|v′ − v|d−1(1 + |v|k)−1;

in D2

∫

Ev,v′,π/4

f(w′)dEv,v′(w′) ≤ A(d− 2)‖f‖∞,k

∫ |v−v′|

0

rd−2

1 + rk
dr ≤ A(d− 2)

d− 1− k
‖f‖∞,k|v′ − v|d−1−k

(here the condition k < d− 1 was used); and in D3

∫

Ev,v′,π/4

f(w′)dEv,v′(w′) ≤ A(d− 2)‖f‖∞,0|v − v′|d−1.

Hence

G(f, f) ≤ A(d− 2)c0‖f‖∞,k[2k M(f)
1 + |v|k +

1
d− 1− k

∫

|v′|≥|v|/2

|v − v′|−kf(v′)dv′]

+A(d− 2)c0‖f‖∞,0

∫

|v′|≥|v|/2,|v′−v|≤1

f(v′)dv′.

Using Proposition A2 with r = 0, λ = k yields the estimate
∫

|v′|≥|v|/2

|v − v′|−kf(v′)dv′ ≤ C(k, s, d)(‖f‖1,s + ‖f‖∞,0)(1 + |v|)−(s−ks/d)

≤ C(k, s, d)(‖f‖1,s + ‖f‖∞,0)(1 + |v|)−k

for k ≤ sd/(s + d). As clearly
∫

|v′|≥|v|/2,|v′−v|≤1

f(v′)dv′ ≤ A(d− 2)C(k)‖f‖∞,k(1 + |v|k)−1,

it follows that G(f, f) ≤ C(k, s, d)c0‖f‖∞,k(‖f‖1,s + ‖f‖∞,0)(1 + |v|k)−1. Consequently, Gronwall’s
lemma implies the required estimate for ‖ft‖∞,k.

(iii) Consider now the general case with k < d−1. Clearly it is sufficient to prove the statement for
s ≤ d− 1. This assumption implies that sd/(s + d) < d− 1. Then by (i) we conclude that ‖ft‖∞,k1 is
bounded for k1 = sd/(s + d). Repeating the previous arguments we can now use Proposition A2 with
r = k1, which proves that ‖ft‖∞,k1 are bounded whenever s + k(k1 − s)/d ≥ k, in particular, for

k2 =
sd(d + s)

d2 + sd + s2
=

sd(d2 − s2)
d3 − s3

.
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By induction we show that ‖ft‖∞,k1 are bounded for all

kn =
sd(dn − sn)
dn+1 − sn+1

, n = 1, 2, ...,

and hence for all k < s, as limn→∞ kn = s.
(iv) Assume k > 1. Clearly

∫

Ev,v′
fv,ext(w′) cosd−2 θ dEv,v′(w′) ≤ |v − v′|d−2

∫

Ev,v′
fv,ext(w′)

dEv,v′(w′)
|w′ − v|d−2

.

We represent this integral as the sum I1 + I2 of two integrals, where I1 is taken over the domain
D = {w′ : |w′| ≥ 2|v|}. To estimate I1 we use the polar coordinate in Ev,v′ centered at the nearest to
the origin point of Ev,v′ . As |w′ − v| ≥ |v|, and hence |w′ − v| ≥ r/2 in D, this gives

I1 ≤ A(d− 2)2d−2|v − v′|d−2‖f‖∞,k

∫

{r:r2+ρ2≥(|v|/2)2}

dr

1 + (ρ2 + r2)k/2
,

where ρ is the distance from Ev,v′ to the origin. Hence I1 ≤ C(d)‖f‖∞,k|v−v′|d−2(1+|v|)1−k whenever
k > 1. To estimate I2 we use polar coordinate centered at v, which gives

I2 ≤ C(d)|v − v′|d−2‖f‖∞,k(1 + |v|)−k

∫ 3|v|

0

dr,

and hence again the same estimate as for I1. Hence the modified Carleman representation implies

G(f, f)(v) ≤ C(d, k)c0‖f‖∞,k(1 + |v|)1−k

∫
f(v′)|v′ − v|−1dv′.

Suppose first s ≥ d/(d−1). Then s−s/d ≥ 1 and applying Proposition A2 with λ = 1, r = 0 yields

G(f, f)(v) ≤ C(d, s, k)c0‖f‖∞,k(‖f‖1,s + ‖f‖∞,0)(1 + |v|)−k,

which implies the required bound for ‖ft‖∞,k by Gronwall’s lemma.
Suppose now s < d/(d − 1). If k < s, the required boundedness is already shown in (iii) (as then

k < min(s, d− 1)). Assume k ≥ s. Again by the previous results of (ii), (iii), we know that the norms
‖ft‖∞,r are bounded for all r < s, and we can use Proposition A2 with λ = 1 and any such r when
estimating the upper bound for G obtained above. This yields

G(f, f)(v) ≤ C(d, s, k)c0‖f‖∞,k(‖f‖1,s + ‖f‖∞,r)(1 + |v|)−k,

whenever s + min(1, (r − s)/d) ≥ 1. This holds for some r < s whenever s > 1. The proof is then
again completed by Gronwall’s lemma.

Corollary. Suppose f0 ∈ L∞,k with k > d + 1. Then ft ∈ L∞,k for all t. In particular, if k >
d2/(d− 1), then for an arbitrary ε > 0 such that k − d− ε > d/(d− 1)

‖ft‖∞,k ≤ ‖f0‖∞,k exp{C(k, ε, d)c0t sup
τ≤t

(‖fτ‖∞,0 + ‖fτ‖1,k−d−ε)},

and consequently ‖ft‖∞,k ≤ ‖f0‖∞,k(1+O(t‖f0‖∞,k)) uniformly for t ≤ T , ‖f0‖∞,k ≤ A with arbitrary
T > 0, A > 0.

Proof. This follows from Theorem 2.2 and a simple observation that f ∈ L∞,k implies f ∈ L1,s for
any s < k − d.

The next two theorems are devoted to the smooth dependence of the solutions on the initial values.
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Theorem 2.3. Let f0 = f0(x, .) be a bounded family of non-negative functions from L1,0 that depends
smoothly on a real parameter x ∈ R in the sense that

(i) M0 = sups ‖f0(x, .)‖1,0 < ∞,
(ii) supx ‖f0(x, .)‖∞,0 < ∞,
(iii) for each v ∈ Rd the derivative ∇xf0(x, v) exists for almost all x,
(iv) both supx,v |∇xf0(x, v)| and supx ‖∇xf0(x, .)‖1,0 are bounded.
Then for all t > 0 and v ∈ Rd, the derivative ∇xft(x, v) exists for almost all x and

sup
x,v

|∇xft(x, v)| ≤ exp{2c0M0t} sup
x,v

|∇xf0(x, v)|

+C(d)c0t exp{c0C(d)M0t} sup
x
‖f0(x, .)‖∞,0 sup

x
‖∇xf0(x, .)‖1,0,

sup
x
‖∇xft(x, .)‖1,0 ≤ exp{2c0A(d− 2)M0t} sup

x
‖∇xf0(x, .)‖1,0.

Proof. From the Carleman-Gustafsson representation we find that for any two non-negative f and g

|G(f, f)−G(g, g)| ≤ 2c0[max(‖f‖∞,0, ‖g‖∞,0)‖f − g‖1,0 + max(M(f), M(g))‖f − g‖∞,0].

Suppose now that ft and gt are two solutions to the Boltzmann equation. As

ḟ − ġ + (f − g)Lf + g(Lf − Lg) = G(f, f)−G(g, g),

the above inequality and Gronwall’s lemma imply

‖ft − gt‖∞,0 ≤ exp{2c0 max(M(f0), M(g0))t}‖f0 − g0‖∞,0

+C(d)c0t exp{2c0 max(M(f0), M(g0))t}max(sup
s≤t

‖ft‖∞,0, sup
s≤t

‖gt‖∞,0) sup
s≤t

‖fs − gs‖1,0.

Using this inequality, Theorem 2.1 and (2.3) yield

‖ft(x1, .)− ft(x2, .)‖∞,0 ≤ exp{2c0M0t}‖f0(x1, .)− f0(x2, .)‖∞,0

+C(d)c0t exp{c0C(d)M0t} sup
x
‖f0(x, .)‖∞,0‖f0(x1, .)− f0(x2, .)‖1,0.

Dividing by |x1 − x2| we get that

sup
x1,x2,v

|ft(x1, v)− ft(x2, v)|
|x1 − x2| ≤ exp{2c0M0t} sup

x,v
|∇xf0(x, v)|

+C(d)c0t exp{c0C(d)M0t} sup
x
‖f0(x, .)‖∞,0 sup

x
‖∇xf0(x, .)‖1,0.

Hence ∇xf(x, v) exists almost everywhere and has the required uniform bound. From the integral
bound and Lebesgue dominated convergence one obtains the required bound for ‖∇xf(x, .)‖1,0.

Theorem 2.4. Let f0 = f0(x, .) be a bounded family of functions from L1,0 depending on a parameter
x ∈ Rn in such a way that all partial derivatives of f0 with respect to x up to order k exist (almost
everywhere for all v) and have uniformly (with respect to x) bounded norms in L∞,0 and L1,0. Then
the same holds for all ft with uniform bounds as t ∈ [0, T ] for arbitrary T . In particular,

‖∇xi∇xj ft(x, .)‖1,0 ≤ exp{c0C(d)M0t}‖∇xi∇xj f0(x, .)‖1,0 + C1,

‖∇xi∇xj ft(x, .)‖∞,0 ≤ exp{c0C(d)M0t}‖∇xi∇xj f0(x, .)‖∞,0 + C2,

where C1, C2 depend on the bounds of f0 and its first order derivatives with respect to x.

Proof. This is obtained by induction using the same arguments as in the proof of Theorem 1. First
one obtains integral bounds for differences, then point-wise bounds for the corresponding derivatives,
and then integral bounds for these derivatives.

We turn now to the question of the propagation of smoothness. For an arbitrary ω ∈ [0, 1] and a
function f on Rd, let us define the Hölder modulus of continuity as

Ωω(f) = lim sup
δ→0

Ωδ(f)δ−ω, Ωδ(f) = sup
v,w:|v−w|=δ

|f(v)− f(w)|.

Let us say that f belongs to the Hölder class Hω, if Ωω(f) is finite.
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Theorem 2.5. Let f0 ∈ L1,0 ∩ L∞,0, and let ft be the unique mass preserving solution of the corre-
sponding Boltzmann equation. Let S be differentiable with respect to the first variable with S1 < ∞
being the uniform upper bound for the magnitude of this derivative.

(i) If f0 ∈ Hω for some ω ∈ [0, 1], then the same holds for all ft. Moreover,

Ωω(ft) ≤ exp{c0C(d)M(f0)t}Ωω(f0)

for ω < 1 and

Ω1(ft) ≤ exp{c0C(d)M(f0)t}[Ω1(f0) + tC(d)M(f0)S1 sup
τ≤t

‖fτ‖∞,0].

(ii) If f0 is uniformly continuous, then the same holds for all ft, and ft solves the corresponding
Boltzmann equation not only in L1-sense, but also in C(Rd)-sense.

(iii) If ∇f0(v) exists for almost all v and ‖∇f0‖∞,0 = Ω1(f0) < ∞, then ft are almost everywhere
differentiable for all t, and ‖∇ft‖∞,0 = Ω1(ft) < ∞ has the bound from (i).

Proof. (i) Let v1, v2 be two arbitrary points with |v1 − v2| = δ. From the Gustafsson-Carleman
representation

G(f, f)(v1)−G(f, f)(v2) = 2
∫

Rd

f(v′)|v1 − v′|−(d−1)dv′
∫

Ev1,v′,π/4

B(|v′ − w′|, θ)f(w′)dEv1,v′(w′)

− 2
∫

Rd

f(v′)|v2 − v′|−(d−1)dv′
∫

Ev2,v′,π/4

B(|v′ − w′|, θ)f(w′)dEv2,v′(w′)

(recall that B(|v|, θ) = 2d−1S(|v|, θ) cosd−2 θ). Let us represent this expression as the sum I1 + I2,
where I1 (respectively I2) stands for the integration over the domain D = {v′ : |v1 − v′| ≥ |v2 − v′|}
(respectively the complement of D). We shall now estimate I1. For v′ ∈ D let

ṽ = ṽ(v1, v2, v
′) = v′ +

|v2 − v′|
|v1 − v′| (v1 − v′),

i.e. ṽ is placed on the interval connecting v′ and v1 in such a way that |ṽ − v′| = |v2 − v′|. Then we
can write

I1 = 2
∫

D

f(v′)|v1 − v′|−(d−1)dv′
∫

Ev1,v′,π/4

B(|v′ − w′|, θ)f(w′)dEv1,v′(w′)

− 2
∫

D

f(v′)|ṽ − v′|−(d−1)dv′
∫

Ev1,v′,π/4

B(|v′ − w′|, θ)f(w′)dEṽ,v′(w′) + 2
∫

D

f(v′)|v2 − v′|−(d−1)dv′

×
(∫

Eṽ,v′,π/4

B(|v′ − w′|, θ)f(w′)dEṽ,v′(w′)−
∫

Ev2,v′,π/4

B(|v′ − w′|, θ)f(w′)dEv2,v′(w′)

)
.

The balls Eṽ,v′,π/4 and Ev2,v′,π/4 have both radius |v2− v′| and are connected by the obvious rotation
(that does not change the orthogonal compliment to the two-dimensional plane passing through the
points v′, v1, v2) preserving the Lebesgue measure. The largest distance between the corresponding
points of Eṽ,v′,π/4 and Ev2,v′,π/4 is

√
2|ṽ − v2| ≤ 2|v1 − v2|. Hence for any two such points u,w there

exists ũ such that |u− ũ| = |w − ũ| = δ and consequently |f(u)− f(w)| ≤ 2Ωδ(f). Therefore
∣∣∣∣∣
∫

Eṽ,v′,π/4

B(|v′ − w′|, θ)f(w′)dEṽ,v′(w′)−
∫

Ev2,v′,π/4

B(|v′ − w′|, θ)f(w′)dEv2,v′(w′)

∣∣∣∣∣

≤ 4c0
A(d− 2)

d− 1
|v2 − v′|d−1Ωδ(f),
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and consequently the last term in the expression for I1 is bounded byC(d)c0M(f)Ωδ(f). On the other
hand, the first two terms of the expression for I1 can be written as

∫

D

f(v′)dv′
∫ 1

0

rd−2dr

∫

Sd−2
dn[f(v1 + r|v1 − v′|n)B(|v1 − v′|

√
1 + r2, arctan r)

−f(ṽ + r|ṽ − v′|n)S̃(|ṽ − v′|
√

1 + r2, arctan r)].

Again the largest distance between the points v1 + r|v1− v′|n and ṽ + r|ṽ− v′|n does not exceed
√

2δ,
and it follows that the last expression does not exceed in magnitude

∫

D

f(v′)dv′
∫ 1

0

rd−2dr

∫

Sd−2
dn(2c0Ωδ(f) + 2d‖f‖∞,0S1δ) ≤ C(d)M(f)(c0Ωδ(f) + ‖f‖∞,0S1δ).

We conclude (taking into account that I2 can be estimate in the same way as I1) that

Ωδ(G(f, f)) ≤ C(d)M(f)(c0Ωδ(f) + ‖f‖∞,0S1δ).

Now clearly |Lf(v1) − Lf(v2)| ≤ C(d)S1M(f)|v1 − v2|. Hence (d/dt)Ωδ(ft) ≤ C(d)M(f)(c0Ωδ(ft) +
‖ft‖∞,0S1δ). (Of course, it would be more correct to write this inequality in the integral form.)
Consequently, by Gronwall’s lemma

Ωδ(ft) ≤ exp{c0C(d)M(f0)t}Ωδ(f0) + c−1
0 (exp{c0C(d)M(f0)t} − 1)S1 sup

τ≤t
‖fτ‖∞,0δ.

Dividing by δω and passing to lim sup as δ → 0 one gets the required estimates for Ωω(ft) and concludes
that ft ∈ Hω for all t > 0.

(ii) Follows from (i) with ω = 0 and Ω0(f0) = 0, and an observation from the proof of Proposition
2.1 that uniform bounds for ‖ft‖∞,0 imply uniform bounds for ‖G(ft, ft)‖∞,0.

(iii) Follows from (i) with ω = 1, and from the well known fact that uniform Lipshitz continuity
implies the differentiability almost everywhere.

Theorem 2.6. Suppose f0 ∈ L1,0 ∩ L∞,0, f0 is differentiable and ∇f0 ∈ L∞,0. Let S′ (respectively
B′) denotes the partial derivative of S (respectively B) with respect to the first variable. Let S′ exists
everywhere and |S′| is uniformly bounded by a number S1 < ∞.

(i) If ∇f0 is continuous, then the same holds for all ∇ft, and ∇ft is a C(Rd)-solution of the
differentiated Boltzmann equation that can be written in the form

d

dt
(∇f, m)(v) + (∇f(v), m)Lf(v) + f(v)(∇Lf(v),m)

= 2
∫

Rd

f(v′)|v − v′|−(d−1)dv′
∫

Ev1,v′,π/4

B(|v′ − w′|, θ)dEv1,v′(w′)

×
(
∇f(w′), u(w′; v, v′,m))

sin ψ

|v′ − v| − (∇f(w′), w′ − v′)
cos ψ

|v′ − v|
)

−2
∫

Rd

f(v′)|v − v′|−(d−1)dv′
∫

Ev1,v′,π/4

B′(|v′ − w′|, θ)f(w′)
cosψ

|v′ − v| |w
′ − v′|dEv1,v′(w′),

where ψ = ψ(m, v′−v) ∈ [0, π] denotes the angle between v′−v and m, u(w′; v, v′,m) is the vector lying
in the two-dimensional plane P (v, v′,m) passing through the points v, v′, v +m that has the magnitude
of the projection ũ of w′ − v′ on this plane, is perpendicular to ũ and has an acute angle with m.

(ii) If f0 ∈ L∞,k ∩ L1,s and ∇f0 ∈ L∞,k with k < min(d− 1, s), then ∇ft ∈ L∞,k for all t and

‖∇ft‖∞,k ≤ exp{C(k, s, d)t sup
τ≤t

(‖fτ‖∞,k + ‖fτ‖1,s)}
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×[‖∇f0‖∞,k + C(k, s, d)S1 sup
τ≤t

((‖fτ‖∞,0 + ‖fτ‖1,s)‖fτ‖∞,k)].

(iii) If f0 ∈ L∞,k ∩L1,s and ∇f0 ∈ L∞,k with min(k, s) > 2, then ∇ft ∈ L∞,k for all t and it solves
the differentiated Boltzmann equation in L∞,k-sense.

(iv) If ∇f0 ∈ L1, then the same holds for all ∇ft, and ∇ft is a L1-solution of the differentiated
Boltzmann equation that can be written in the form

(2.4)
d

dt
(∇f,m) = Q((∇f,m), f) + Q(f, (∇f,m)).

Remark. The last formula offers another approach to the analysis of the upper bounds ‖∇ft‖∞,k,
which on the one hand does not require any assumptions on the derivatives of S or B, but on the
other hand allows to give bounds on ‖∇ft‖∞,r only when the corresponding integral bounds are
available. We shall follow this approach in Section 4 when analyzing the growing collision kernels.

Proof. (i) Let v1 = v + δm, η be the angle between v − v′ and v1 − v′. Let Rη denote the rotation in
Rd that rotates P (v, v′,m) around the point v′ on the angle η (so that the direction v − v′ turns to
the direction v1 − v′) and does not move the orthogonal complement of P (v, v′,m). At last, let H be
a scaling transformation of Rd defined as

H : w 7→ v′ + (w − v′)
|v1 − v′|
|v − v′| .

From the calculations of the increments of G(f, f) in the proof of Theorem 2.5 it follows that

G(f, f)(v1)−G(f, f)(v) =
∫

f(v′) dv′
∫ 1

0

rd−2 dr

∫

Sd−1
dn

×[f(w̃′)S̃(|w′ − v′| |v1 − v′|
|v − v′| , arctan r)− f(w′)S̃(|w′ − v′|, arctan r)],

where w′ = v + r|v − v′|n, w̃′ = RηHw′ = HRηw′, and where the unit sphere Sd−2 lies in the
hyperplane passing through v perpendicular to v − v′.

By the cosine-rule

|v′ − v1| =
√
|v′ − v|2 + δ2 − 2δ|v′ − v| cos ψ = |v − v′|(1− δ

cos ψ

|v − v′| + O(δ2)),

and by the sine-rule
sin η = δ sin ψ/|v − v′|.

Hence

S̃(|w′ − v′| |v1 − v′|
|v − v′| , arctan r)− S̃(|w′ − v′|, arctan r)

= −δ cos ψ
|w′ − v′|
|v′ − v| S′(|w′ − v′|, arctan r) + o(δ),

w̃′ − w′ = −δ(w′ − v′)
cosψ

|v′ − v| + δu(w′; v, v′,m)
sin ψ

|v − v′| + O(δ2).

These formulas, the (proved above) uniform boundedness of ∇ft and the dominated convergence
theorem imply that ∇G(ft, ft)(v),m) equals the r.h.s. of the differentiated Boltzmann equation as
required.

Also the calculations of the previous theorem show that this non-homogeneous linear (with respect
to ∇f) equation depends continuously on ∇f in L∞,0 and hence has the unique solution. As the space
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of continuous function C(Rd) is closed in L∞,0, the solution belongs to this space whenever the initial
condition does.

(ii) One can either use the differentiated Boltzmann equation written above or work with increments.
Let us choose the latter approach. Let

Ωδ(f ; v) = sup
w:|w−v|=δ

|f(w)− f(v)|.

By Theorem 2.2, ft ∈ L∞,k for all t, and hence the function Ωδ(ft; .) also belongs to L∞,k. In
particular,

Ωδ(ft; w) ≤ 2kδ(1 + |v|k)−1‖Ωδ(ft; .)‖
whenever |v−w| ≤ δ. Consequently, following the arguments of the proof of the previous theorem one
finds that for arbitrary v

Ωδ(G(f, f); v) ≤ C(d)
∫

f(v′)|v − v′|−(d−1)dv′
∫

Ev,v′,π/4

Ωδ(f ; w′)dw′

+C(d)S1δ

∫
f(v′)|v − v′|−(d−1)dv′

∫

Ev,v′,π/4

f(w′)dw′.

Estimating the r.h.s. by the same method as in the proof of Theorem 2.2 (where one chooses r = λ = k
when applying Proposition A2 and takes into account that s+k(k−s)/d ≥ k whenever min(s, d) ≥ k)
yields

Ωδ(G(f, f); v) ≤ C(k, s, d)‖Ωδ(f ; .)‖∞,k(‖f‖1,s + ‖f‖∞,k)(1 + |v|k)−1

+C(k, s, d)δS1‖f‖∞,k(‖f‖1,s + ‖f‖∞,0)(1 + |v|k)−1.

Consequently, Gronwall’s lemma implies

‖Ωδ(ft; .)‖∞,k ≤ exp{C(k, s, d)t sup
τ≤t

(‖fτ‖∞,k + ‖fτ‖1,s)}

×[‖Ωδ(f0; .)‖∞,k + δC(k, s, d)S1 sup
τ≤t

((‖fτ‖∞,0 + ‖fτ‖1,s)‖fτ‖∞,k)].

Dividing by δ and passing to the limit yields the required estimate for ∇ft.
(iii) We shall consider now the differentiated Boltzmann equation on ∇f (with given ft) as a lin-

ear equation in L∞,k. To prove the statement, it is clearly enough to show that the r.h.s. of this
equation depends continuously on ∇f in the norm of L∞,k. To see this, we shall rewrite the r.h.s.
∇G(f, f)(v),m) of this equation using the modified Carleman representation. Using this representa-
tion, following the same arguments as when deducing the equation in (i), and taking into account the
condition k > 2 together with the dominated convergence theorem to justify the limiting procedure
under the integration one finds that

|(∇G(f, f)(v),m)| ≤ C(d)|G(f, f)(v)|

+C(d)
∫

Rd

f(v′)|v − v′|−(d−1)dv′
∫

Ev,v′
S1f(w′)

|w′ − v′|
|v′ − v| cosd−2 θ dEv,v′(w′)

+c0C(d)
∫

Rd

f(v′)|v − v′|−(d−1)dv′
∫

Ev,v′
cosd−2 θ max

i
|(∇if)v,ext(w′)| |w

′ − v′|
|v′ − v| dEv,v′(w′).

Dealing with the last term as in the proof of Theorem 2.2 one estimates it by

c0C(d)
∫

f(v′)|v − v′|−2 dv′‖∇f‖∞,k(1 + |v|)2−k.
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To estimate this by
c0C(d, s, k)‖∇f‖∞,k(‖f‖1,s + ‖f‖∞,k)(1 + |v|)−k

using Proposition A2, one needs s + 2(k − s)/d ≥ 2, which holds for min(s, k) > 2 (and of course,
2 < d). The obtained estimate shows that ∇G(f, f) depends continuously on ∇f in L∞,k-norm, which
implies the existence of the unique L∞,k-bounded solution of the differentiated Boltzmann equation.

(iv) Let v1 = v + m with some unit vector m. Writing

Q(f, g)(v1)−Q(f, g)(v) =
1
2

∫

Rd

dw1

∫

Sd−1
dnB(|v1 − w1|, θ1)[f(v′1)g(w′1)− f(v1)g(w1)]

−1
2

∫

Rd

dw

∫

Sd−1
dnB(|v − w|, θ)[f(v′)g(w′)− f(v)g(w)],

where θ (respectively θ1) is the angle between n and v′ − v (respectively v′1 − v1), and changing the
variable of integration in the first term by w1 = w + m yields

Q(f, g)(v + m)−Q(f, g)(v) =
1
2

∫

Rd

dw

∫

Sd−1
dnB(|v − w|, θ)

×[(f(v′ + m)g(w′ + m)− f(v + m)g(w + m))− (f(v′)g(w′)− f(v)g(w))],
which implies the required form of the differentiated Boltzmann equation. Clearly, this equation is a
non-homogeneous linear equation with respect to ∇f that depends continuously on ∇f in L1,0. Hence
it has the unique solution in this space for any initial ∇f0 ∈ L1,0. As this solution can be obtained by
the same approximation procedure as when working in L∞,0, the solutions in L1 and L∞,0 coincide.

By induction, one can get the following result on higher derivatives.

Theorem 2.7. Suppose S(|v|, θ) is infinitely smooth with bounded derivatives with respect to the first
variable, and f0 ∈ L1 ∩ L∞,0. If f0 has uniformly bounded derivatives up to order l with arbitrary l,
the same holds for all ft. Moreover, if all these derivatives belong to L∞,k and f0 ∈ L1,s ∩ L∞,k with
either k < min(s, d− 1) or min(k, s, d) > l, the same holds for the derivatives of all ft.

3. L∞,r-bounds of the solutions in case β > 0

Generalizing the form of the collision kernels of the cutoff hard potentials (where β ∈ (0, 1)), we
shall assume from now on that

(3.1) S(|v|, θ) = |v|βh(θ)

with β > 0 and h being a non-negative measurable function such that

(3.2) ∀ θ 2d−1h(θ) ≤ c0 < ∞, 2
∫ π/2

0

sind−2(2θ)h(θ) dθ = c1 > 0.

For large β we shall occasionally assume the following additional condition (though this can be essen-
tially relaxed):

(3.3) ∀ θ 2d−1 max(1, cosd−2−β θ)h(θ) ≤ c0 < ∞, if β > d− 2.

Under conditions (1.16), (3.1), the weak representation (1.12) of the collision operator can be written
as ∫

ψ(v)Q(f, f)(v) dv

(3.4) =
∫

R2d

|v − w|βdvdw

∫ π
2

0

sind−2(2θ)h(θ) dθ

∫

Sd−2
(ψ(v′) + ψ(w′)− ψ(v)− ψ(w))f(v)f(w) dm.

Following the long development of the theory, it was shown in [MW] that for arbitrary β > 0 and
a non-negative f0 ∈ L1,2 there exists a solution ft of the Boltzmann equation that preserves the mass
and the energy, i.e. M(f0) = M(ft) and E(f0) = E(ft) for all t, and moreover, ‖ft‖1,s is bounded
uniformly in times whenever f0 ∈ L1,s, where s > 0 is arbitrary. We shall always denote by ft such a
solution. It is also shown in [MW] that such solution is unique if β ≤ 2. We shall give a uniqueness
result for arbitrary β in the next section.

The aim of this Section is to prove the following result.
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Theorem 3.1. Assume (1.16), (1.19), (3.1), (3.2) hold and β > 0. Let s ≥ 2, r ≥ 0, f0 ∈ L1,s∩L∞,r

and is non-negative. Let

(3.5) F = F (s, f0) =
c0

c1σ
sup
t≥0

‖ft‖1,s
‖f0‖1,2

M2
0

,

where σ = σ(β, d, h0,M0, E0) is given by (A4) with h = h0 =
∫

f0(v) ln f0(v) dv. If β < d − 1, let
m = 1, 2, ... be chosen in such a way that (m− 1)β < d− 1− β ≤ mβ, and if β < 1, let n = 1, 2, ... be
chosen in such a way that (n− 1)β < 1− β ≤ nβ.

(i) Suppose r ≤ s and β ≤ s. Then ‖ft‖∞,r are uniformly bounded for all times. Moreover, if
1 ≤ β < d− 1, then

sup
t≥0

‖ft‖∞,r ≤ C(d, s, r, β)
c0‖f0‖1,2

c1σM2
0

[sup
τ≥0

‖fτ‖1,β−1 + ‖f0‖∞,r](Fm+1M0 + Fm‖f0‖∞,r).

If β < 1 (β ≥ d− 1), then the same estimate holds with (FnM0 + Fn−1‖f0‖∞,r) instead of the value
[supτ≥0 ‖fτ‖1,β−1 +‖f0‖∞,r] (with F [supτ≥0 ‖fτ‖1,β−(d−1) +‖f0‖∞,r] instead of the value (Fm+1M0 +
Fm‖f0‖∞,r, respectively).

(ii) Suppose max(d−1, s) < r ≤ d+s, β ≤ s+1, and (3.3) holds. Then again ‖ft‖∞,r are uniformly
bounded for all times and the same estimates as in (i) hold.

(iii) Suppose r > s, r > d− 1 + 2 max(1, 2β−1)c0/c1, β ≤ s + 1, and (3.3) holds. Then

sup
t≥0

‖ft‖∞,r ≤ C(d, s, r, β, c0, c1)ρr−s ‖f0‖1,2

σM2
0

sup
τ
‖fτ‖1,β−1(FmM0 + Fm−1‖f0‖∞,r)

for 1 ≤ β < d−1, where ρ is the maximum of the r.h.s. of (3.24), (3.25), and (3.29) below. The same
holds with (FnM0 + Fn−1‖f0‖∞,r) instead of supτ ‖fτ‖1,β−1, and with supτ ‖fτ‖1,β−(d−1) instead of
(FmM0 + Fm−1‖f0‖∞,r), respectively for β ∈ (0, 1) and β ≥ d− 1.

Remarks.
1. The results of this theorem are essentially known for β ∈ (0, 1] and d = 3 and are dealt with

in several papers, see the statement (iii) (and the basic method) for β = 1 in the seminal book [Ca],
further developments in [MTc], [Gl], [Ar2], and the most general exposition in [Gu1]. However, the
explicit bounds were seemingly never given even for this case. Our proof is obtained by simplifying
and extending the estimates from [Gu1] in several directions. It is also adapted to further extensions
in the next section.

2. All formulae are simplified for s = 2 as F (2, f0) = c0‖f0‖21,2/(σc1M
2
0 ).

Before proving the theorem, we obtain several lemmas that give upper bounds for the convolutions
? of the solutions with the power functions Pλ(v) = |v|λ, for the Radon transform of these solutions,
and for the gain term. We assume everywhere that (1.19), (3.1), (3.2) hold with some β > 0, and that
the initial function f0 is non-negative. To shorten the formulas we shall write M0 and E0 for M(f0)
and E(f0) respectively.

Lemma 3.1. Let 0 ≤ γ < d − 1, s ≥ 2, r ∈ [0, s + d], a ≥ 1/2. Let n = 0, 1, 2, ... be such that
(n− 1)β < γ ≤ nβ, and suppose nβ − γ ≤ s. Let f0 ∈ L1,s ∩ L∞,r. Then

(3.6) sup
t≥0

‖ft ? P−γ‖∞,0 ≤ C(d, γ, β)

[(
c0

c1σ

)n

sup
τ≥0

‖fτ‖1,nβ−γ + χ1(n)
(

c0

c1σ

)n−1

‖f0‖∞,0

]
.

Moreover, for all t

(3.7) (ft ? P−γ)(v) ≤ C(d, γ, β, s, r)(1 + |v|)−min(γ,s+γ(r−s)/d)[FnM0 + χ1(n)Fn−1‖f0‖∞,r],
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(3.8)
∫

χa|v|(|z|)ft(z)|v − z|−γ dz ≤ C(d, γ, β, s, r)
(1 + |v|)s+γ(r−s)/d

[FnM0 + χ1(n)Fn−1‖f0‖∞,r],

where σ = σ(β, d, h0,M0, E0) and F = F (s, f0) are the same as in Theorem 3.1.

Proof. First observe that f0 ∈ Ls,1 ∩ L∞,r with any s > 0, r ≥ 0 implies that f0 ln f0 ∈ L1(Rd),
and consequently h0 is well defined and

∫
ft(v) ln ft(v) dv ≤ ∫

f0(v) ln f0(v) dv = h0 for all t. Next, if
γ = 0, (3.6) and (3.7) follow from the conservation of mass.

Suppose now 0 < γ ≤ β. For an arbitrary j > 0, multiplying the Boltzmann equation by χ1(j|v −
z|)|v − z|−γ and integrating yields

d

dt

∫
ft(z)χ1(j|v − z|)|v − z|−γ dz +

∫
ft(z)Lft(z)χ1(j|v − z|)|v − z|−γ dz

=
∫

G(ft, ft)(z)χ1(j|v − z|)|v − z|−γ dz ≤ C(d, γ)c0M0‖ft‖1,β−γ ,

where for the last inequality we used Proposition A4 (i) and the conservation of mass. As the entropy
is not increasing it follows from Proposition A2 and its Corollary, and also from (1.10), (1.16), (3.1),
(3.2), (3.4) that

(3.9) Lft(z) ≥ A(d− 2)c1σM(ft) = A(d− 2)c1σM0

for all t with A(d) being as always the area of d-dimensional unit sphere. Consequently from Propo-
sition A2 with r = s = 0 it follows that

∫
ft(z)χ1(j|v − z|)|v − z|−γ dz ≤ max

(
C(d, γ)c0

c1σ
sup

τ
‖fτ‖1,β−γ ,

∫
f0(z)|v − z|−γ dz

)

≤ C(d, γ)
(

C(d, γ)c0

c1σ
sup

τ
‖fτ‖1,β−γ + ‖f0‖∞,0

)
,

where we used the fact that both 1/σ and c0/c1 are bounded from below. Consequently, passing to
the limit j →∞ proves (3.6) in this case.

For β < γ ≤ 2β in the same way

d

dt

∫
ft(z)χ1(j|v − z|)|v − z|−γ dz +

∫
ft(z)Lft(z)χ1(j|v − z|)|v − z|−γ dz

≤ C(d, γ)c0M0‖ft ? P−(γ−β)‖∞,0,

which is already shown to be bounded by (3.6) with γ − β instead of β and with n = 1. Hence again
by (3.9) and Proposition A3 (and because 1/σ and c0/c1 are bounded from below) one proves (3.6)
for β < γ ≤ 2β. Simple induction argument yields the proof of (3.6) for all γ < d− 1.

Next, as clearly
∫

{|z|≤|v|/√2}
ft(z)|v − z|−γ dz ≤ 2γM(ft)|v|−γ = 2γM0|v|−γ ,

it follows from (3.6) that the integral on the left-hand side does not exceed the value

C(d, γ, β)

[(
c0

c1σ

)n

sup
τ
‖fτ‖1,nβ−γ + χ1(n)

(
c0

c1σ

)n−1

‖f0‖∞,0

]
(1 + |v|)−γ

for any t. Consequently, (3.7) follows from (3.8), because nβ − γ ≤ s and F is bounded from below
(up to a constant) by c0E0/c1σ.
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To prove (3.8) first observe that it is evident for γ = 0. Suppose 0 < γ ≤ β. As in the proof of (3.6)
above, multiplying the Boltzmann equation by χa|v|(z)|v−z|−γ , integrating and using Proposition A4
(i) yields

d

dt

∫
ft(z)χa|v|(|z|)|v − z|−γ dz +

∫
ft(z)Lft(z)χa|v|(|z|)|v − z|−γ dz

=
∫

G(ft, ft)(z)χa|v|(|z|)|v − z|−γ dz ≤ C(d, γ)c0‖ft‖1,sM0(1 + |v|)−(s+γ−β).

Notice that here we did not need to multiply by χ1(j|v − z|) any more, because the existence of all
integrals involved is already known from (3.6). As by Proposition A1

(3.10) Lft(z)χa|v|(|z|) ≥ C(β)c1A(d− 1)σ
M2

0

‖f0‖1,2
χa|v|(|z|)(1 + |v|β),

we conclude again by Proposition A3 that

∫
ft(z)χa|v|(|z|)|v − z|−γ dz ≤ max

(
C(d, β, γ)FM0(1 + |v|)−(s+γ),

∫
f0(z)χa|v|(|z|)|v − z|−γ dz

)
.

This implies (3.8), because ‖f0‖1,s ≤ FM0 (up to a constant) and by Proposition A2

∫
f0(z)χa|v|(|z|)|v − z|−γ dz ≤ C(d, γ, s, r)(‖f0‖1,s + ‖f0‖∞,r)(1 + |v|)−(s+γ(r−s)/d).

Suppose β < γ ≤ 2β. As above, but using the statement (ii) of Proposition A4 instead of (i), one
gets

d

dt

∫
ft(z)χa|v|(|z|)|v − z|−γ dz +

∫
ft(z)Lft(z)χa|v|(|z|)|v − z|−γ dz

≤ C(d, γ)c0(1 + |v|)−s sup
τ
‖fτ‖1,s sup

|z|≥a|v|/√2

(ft ? P−(γ−β)(z),

which by the previous step, i.e. by (3.7) with γ − β ≤ β instead of γ, is estimated from above by

C(d, γ, s, r)(FM0 + ‖f0‖∞,r)c0 sup
τ
‖fτ‖1,s(1 + |v|)−s−min(γ−β, s+(γ−β)(r−s)/d).

Hence, again by Propositions A2 and A3, the integral
∫

ft(z)χa|v|(|z|)|v− z|−γ dz does not exceed (up
to a constant C(d, γ, s, r)) the maximum of

(FM0 + ‖f0‖∞,r)F (1 + |v|)−s−min(γ, s+β+(γ−β)(r−s)/d)

and
(‖f0‖1,s + ‖f0‖∞,r)(1 + |v|)−(s+γ(r−s)/d),

which implies (3.8), because (as we assumed r ≤ s + d)

γ(r − s)/d ≤ min(γ, s + β + (γ − β)(r − s)/d)

and because FM0 ≥ ‖f0‖1,s (up to a constant).
At last, a simple induction completes the proof of (3.8) for all γ < d− 1.
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Lemma 3.2. Under the assumptions of Lemma 3.1 suppose additionally that β ≤ s + 1, and if
β ∈ (0, 1) let n = 1, 2, ... be such that (n−1)β < (1−β) ≤ nβ. Then for arbitrary λ ∈ [0, π/2], z ∈ Rd

and almost all directions (z̄ − z)/|z̄ − z| one has:
(i) if β ≥ 1, then

(3.11)
∫

Ez,z̄,λ

ft(u) dEz,z̄(u) ≤ max

(
C(d, γ)

c0

c1σ
sup

τ
‖fτ‖1,β−1,

∫

Ez,z̄,λ

f0(u) dEz,z̄(u)

)
,

and if β ∈ (0, 1) the same estimate holds but with
[(

c0

c1σ

)n

sup
τ≥0

‖fτ‖1,nβ−(1−β) + χ1(n)
(

c0

c1σ

)n−1

‖f0‖∞,0

]

instead of supτ≥0 ‖fτ‖1,β−1;
(ii) if β ≥ 1, then ∫

Ez,z̄,λ

χa|v|(|u|)ft(u) dEz,z̄(u)

(3.12) ≤ max

(
C(d, s, β)F sup

τ≥0
‖fτ‖1,β−1(1 + |v|)−(s+1),

∫

Ez,z̄,λ

χa|v|(|u|)f0(u) dEz,z̄(u)

)
,

and if β ∈ (0, 1) the same estimate holds but with [FnM0 + χ1(n)Fn−1‖f0‖∞,r] instead of the value
supτ≥0 ‖fτ‖1,β−1.

Proof. The notation Ez,w,λ and Ez,w is explained in Section 1 after formula (1.20). Let r(u) = rz,z̄(u)
be the distance from u to Ez, z̄ and let

φj(u) = φj(u; z, z̄) = (jπ−1)d/2 exp{−jr(u)2}.

Next, let φj,λ(u) equals φj(u) for u from the cylinder

{v + σ(z̄ − z) : v ∈ Ez,z̄,λ, σ ∈ R}

and vanishes otherwise. Then for an integrable function g and almost all directions (z̄ − z)/|z̄ − z|

(3.13)
∫

Ez,z̄,λ

χa|v|(|u|)g(u) dEz,z̄(u) = lim
j→∞

∫

Rd

φj,λ(u)χa|v|(u)g(u) du.

Multiplying the Boltzmann equation by φj,λχa|v| and integrating yields

d

dt

∫

Rd

φj,λ(u)χa|v|(|u|)ft(u) du +
∫

Rd

φj,λ(u)χa|v|(|u|)Lft(u)ft(u) du

≤
∫

Rd

φj,λ(u)χa|v|(|u|)G(ft, ft)(u) du.

By the last inequality of Proposition A5, the r.h.s. can be estimated by

(3.14) C(d, s)c0‖ft‖1,s(1 + |v|)−s sup
{|u|≥a|v|/√2}

(ft ? P−(1−β))(u).

If β ≥ 1, this is bounded by

C(d, s)c0 sup
τ
‖fτ‖1,β−1 sup

τ
‖fτ‖1,s(1 + |v|)−s−(1−β),
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and by (3.10) and Proposition A3 we obtain (3.12). If β ∈ (0, 1), we use (3.7) with γ = 1−β (and the
obvious observation that 1− β ≤ s + (1− β)(r − s)/d) to estimate (3.14) by

C(d, s)c0 sup
τ
‖fτ‖1,s[FnM0 + χ1(n)Fn−1‖f0‖∞,r](1 + |v|)−s−(1−β),

where (n− 1)β < 1− β ≤ nβ. Hence the required modification of (3.12) follows from Proposition A3
and (3.10).

Similarly to get (3.11) one writes

d

dt

∫

Rd

φj,λ(u)ft(u) du +
∫

Rd

φj,λ(u)Lft(u)ft(u) du ≤
∫

Rd

φj,λ(u)G(ft, ft)(u) du,

and by Proposition A5 the r.h.s. does not exceed C(d)c0M0 supτ ‖fτ‖1,β−1 or

C(d)c0M0‖ft ?P−(1−β)‖∞,0 ≤ C(d, β)c0M0

[(
c0

c1σ

)n

sup
τ
‖fτ‖1,nβ−(1−β) + χ1(n)

(
c0

c1σ

)n−1

‖f0‖∞,0

]

respectively for β ≥ 1 and β < 1 (where we used (3.6) for β ∈ (0, 1)). Using (3.9) and Proposition A3
yields (3.11).

For proving the statement (iii) of Theorem 3.1 we shall need a general estimate of G(f, gv,ext),
where gv,ext is defined in (1.21).

Lemma 3.3. Suppose (3.3) holds. Let s ≥ 2, r ∈ [0, s + d] and let m = 0, 1, 2, ... be such that
(m − 1)β < d − 1 − β ≤ mβ. Let f0 ∈ L1,s ∩ L∞,r and be non-negative. Let gt be another time-
depending family of non-negative functions. Set

(3.15) mq(R) = mq(R; g) = ess sup
t≥0,|v|>R

gt(v)|v|q, m0
q(R) = m0

q(R; g) = ess sup
|v|>R

g0(v)|v|q.

Then for arbitrary ρ > 0, δ ∈ (0, 1/4), q ∈ (d− 1, r), and for all |v| ≥ ρ/δ

G(ft, g
v,ext
t )(v) ≤ 2c0

A(d− 2)
q − (d− 1)

mq(|v|/
√

2)|v|−(q−β)
[
M0(1− δ)−q

(3.16) +2(d−1+q−2β)/2E0ρ
−2 + 2q/2C(d, β, s, r)ρ−κ(FmM0 + Fm−1‖f0‖∞,r)

]

with κ = s+(d− 1−β)((r− s)/d− 1), whenever 0 < β < d− 1. If β ≥ d− 1, the same estimate holds
but with supτ ‖fτ‖1,β−(d−1) instead of (FmM0 + Fm−1‖f0‖∞,r) and with κ = s + d− 1− β.

demoProof For ρ > 0 set f = fρ + f̃ρ, where f̃ρ(v) = χρ(v)f(v). Suppose mq(.) is finite for q < r
(otherwise the estimate is obvious). Applying (1.22) yields

G(ft, g
v,ext
t )(v) ≤ c0

∫

Rd

fρ
t (v′)|v − v′|−(d−1−β) dv′

∫

Ev,v′
gv,ext

t (w)dEv,v′(w)

(3.17) +c0

∫

Rd

f̃ρ
t (v′)|v − v′|−(d−1−β) dv′

∫

Ev,v′
gv,ext

t (w)dEv,v′(w).

By elementary computation

(3.18)
∫

{w∈Ev,v′ :|w|>R}
gt(w)dEv,v′(w) ≤ A(d− 2)

q − (d− 1)
mq(R)Rd−1−q
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for q > d− 1 and consequently,
(3.19)∫

Ev,v′
gv,ext

t (w)dEv,v′(w) =
∫

{w∈Ev,v′ :|w|>|v|/
√

2}
gt(w)dEv,v′(w) ≤ A(d− 2)

q − (d− 1)
mq(|v|/

√
2)2(q−d+1)/2|v|d−1−q.

If |v′| < ρ and |v| > ρ, then |v′ − v|−(d−1−β) ≤ (|v| − ρ)−(d−1−β). By conservation of energy (or
equivalently, because vectors w − v and v′ − v are perpendicular), |w|2 > |v|2 − |v′|2 ≥ (|v| − ρ)2 and
hence |w| > |v| − ρ. Consequently, again using (3.18) we conclude that the first term in (3.17) does
not exceed
(3.20)

c0

∫

Rd

fρ
t (v′)||v| − ρ|−(d−1−β) dv′

∫

Ev,v′
gt(w)dEv,v′(w) ≤ c0

A(d− 2)
q − (d− 1)

M0mq(|v| − ρ)(|v| − ρ)−(q−β)

for |v| > ρ. Next, if |v| > ρ, we conclude by (3.8) and the conservation of energy that

∫

Rd

f̃ρ
t (v′)|v−v′|−(d−1−β) dv′ ≤

∫

{|v′|<|v|/2}
(|v′|/ρ)2f̃ρ

t (v′)|v−v′|−(d−1−β) dv′+
∫

{|v′|≥|v|/2}
f̃ρ

t (v′)|v−v′|−(d−1−β) dv′

(3.21) ≤ (
2d−1−βE0ρ

−2 + C(d, β, s, r)ρ−κ[FmM0 + Fm−1‖f0‖∞,r]
) |v|−(d−1−β)

with κ = s + (d − 1 − β)((r − s)/d − 1), whenever β < d − 1. If β ≥ d − 1, the same estimate holds
but with supτ ‖fτ‖1,β−(d−1) instead of (FmM0 + Fm−1‖f0‖∞,r) and with κ = s + d− 1− β.

Let us consider further only the case β < d − 1. By (3.19) and (3.21), the second term of (3.17)
does not exceed
(3.22)

2c0
A(d− 2)

q − (d− 1)
mq(

|v|√
2
)2(q−d+1)/2|v|−(q−β)

(
2d−1−βE0ρ

−2+C(d, β, s, r)ρ−κ[FmM0+Fm−1‖f0‖∞,r]
)
.

Next, if |v| ≥ ρ/δ with an arbitrary δ ∈ (0, 1/4), then |v|−ρ ≥ (1−δ)|v| > |v|/√2 and (|v|−ρ)−(q−β) ≤
|v|−(q−β)(1− δ)−q. Hence (3.16) follows from (3.17), (3.21) and (3.22).

As a direct consequence of Lemma 3.3 one gets the following estimate.

Corollary. Suppose the assumptions of Lemma 3.3 hold. If 0 < β < d− 1, then

(3.23) G(ft, g
v,ext
t )(v) ≤ 2c0

A(d− 2)
q − (d− 1)

mq(|v|/
√

2)|v|−(q−β)M0
1 + δ

(1− δ)q

whenever |v| ≥ ρ/δ and

2(d−1+r−2β)/2E0ρ
−2 ≤ M0δ/2, 2r/2C(d, β, s, r)ρ−κ(FmM0 + Fm−1‖f0‖∞,r) ≤ M0δ/2,

or equivalently

(3.24) ρ ≥
√

E0/(M0δ)2(d+1+r−2β)/4,

(3.25) ρ ≥ 2r/2κ

(
C(d, β, s, r)

M0δ
(FmM0 + Fm−1‖f0‖∞,r)

)1/κ

.

If β ≥ d− 1, the same holds with the changes indicated above in Lemma 3.3.
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Proof of Theorem 3.1. (i) Consider only the case with β ≥ 1 (the case β ∈ (0, 1) differs only by using a
different constant in Lemma 3.2). The reduced Gustafsson-Carleman representation of the gain term
and Lemma 3.2 imply

G(ft, ft)(v) ≤ c0C(β)
∫

Rd

ft(v′)|v − v′|−(d−1−β) dv′

×max

[
C(d, s, β)F sup

τ≥0
‖fτ‖1,β−1(1 + |v|)−(s+1),

∫

Ev,v′,π/4

fv,ext
0 (w′)dEv,v′(w′)

]

+c0C(β)
∫

Rd

fv,ext
t (v′)|v − v′|−(d−1−β) dv′

×max

[
c0

c1σ
C(d, β) sup

τ≥0
‖fτ‖1,β−1,

∫

Ev,v′,π/4

f0(w′)dEv,v′(w′)

]
.

Suppose 1 ≤ β < d− 1. Noticing that

s + (d− 1− β)(r − s)/d ≤ 1 + s + min(d− 1− β, s + (d− 1− β)(r − s)/d),

that F ≥ c0/c1σ (up to a constant), and changing max to + in the previous estimate, we get by
Lemma 3.1 with γ = d− 1− β that G(ft, ft)(v) does not exceed

C(d, s, r, β) sup
τ≥0

‖fτ‖1,β−1c0(Fm+1M0 + χ1(m)Fm‖f0‖∞,r)(1 + |v|)−[s+(d−1−β)(r−s)/d]

+c0C(β)
∫

Rd

ft(v′)|v − v′|−(d−1−β) dv′
∫

Ev,v′,π/4

fv,ext
0 (w′)dEv,v′(w′)

(3.26) +c0C(β)
∫

Rd

fv,ext
t (v′)|v − v′|−(d−1−β) dv′

∫

Ev,v′,π/4

f0(w′)dEv,v′(w′).

By elementary calculations
∫

Ev,v′,π/4

fv,ext
0 (w′)dEv,v′(w′) ≤ C(r, d)‖f0‖∞,r(1 + |v|)−r|v − v′|d−1,

∫

Ev,v′,π/4

f0(w′)dEv,v′(w′) ≤ C(d)‖f0‖∞,0|v − v′|d−1.

Hence the last two terms in (3.26) can be estimated from above by

C(r, d, β)c0‖f0‖∞,r

[
(1 + |v|)−r

∫

Rd

ft(v′)|v − v′|β dv′ +
∫

Rd

fv,ext
t (v′)|v − v′|β dv′

]

≤ C(r, d, β)c0‖f0‖∞,r

[
sup
τ≥0

‖fτ‖1,β(1 + |v|)−(r−β) sup
τ≥0

‖fτ‖1,s(1 + |v|)−(s−β)

]

≤ C(r, d, β)c0‖f0‖∞,r sup
τ
‖fτ‖1,s(1 + |v|)−(r−β)

(where we used that β ≤ s and r ≤ s). Since r−β ≤ s+(d−1−β)(r−s)/d, this leads to the estimate

G(ft, ft) ≤ c0C(r, d, β)‖f0‖∞,r + sup
τ
‖fτ‖1,s
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+C(d, s, r, β) sup
τ≥0

‖fτ‖1,β−1c0(Fm+1M0 + Fm‖f0‖∞,r)](1 + |v|)−(r−β)

≤ C(d, s, r, β)c0 sup
τ≥0

‖fτ‖1,β−1(Fm+1M0 + Fm‖f0‖∞,r),

because supτ ‖fτ‖1,s ≤ FM0 (up to a constant). Using this estimate and (3.10) one completes the
proof of statement (i) for 1 ≤ β < d − 1 by applying Proposition A3 to the Boltzmann equation. In
case β ≥ d− 1 the first term in (3.26) changes to

C(d, s, r, β) sup
τ≥0

‖fτ‖1,β−1c0F sup
τ≥0

‖fτ‖1,β−(d−1)(1 + |v|)−(s+d−1−β),

and the rest remains the same leading to the corresponding change in a final constant.
(ii) Again consider only β ≥ 1. Using the reduced Carleman representation of the gain term and

Lemma 3.2 gives

G(ft, ft)(v) ≤ c0C(β)
∫

Rd

ft(v′)|v − v′|−(d−1−β) dv′

×max

[
C(d, s, β)F sup

τ≥0
‖fτ‖1,β−1(1 + |v|)−(s+1),

∫

Ev,v′
fv,ext
0 (w′)dEv,v′(w′)

]
.

Suppose β < d− 1. Using (3.7) with γ = d− 1− β yields the estimate

G(ft, ft) ≤ C(d, s, r, β)c0 sup
τ≥0

‖fτ‖1,β−1(Fm+1M0 + Fm‖f0‖∞,r)(1 + |v|)−κ

(3.27) +2c0

∫

Rd

ft(v′)|v − v′|−(d−1−β) dv′
∫

Ev,v′
fv,ext
0 (w′)dEv,v′(w′)

with κ = 1+ s+min(d−1−β, s+(d−1−β)(r− s)/d). (Of course, for β < 1 we would have the same
estimate but with (FnM0 + Fn−1‖f0‖∞,0) instead of supτ≥0 ‖fτ‖1,β−1.) By elementary calculations

∫

Ev,v′
fv,ext
0 (w′)dEv,v′(w′) ≤ C(r, d)

∫

|w′|>a|v|
f0(w′)(1 + |w′|)r(1 + |w′|)−rdEv,v′(w′)

≤ C(r, d)‖f0‖∞,r(1 + |v|)−(r−(d−1)),

as r > d− 1. Hence, again by (3.7) with γ = d− 1− β, the last term in (3.27) does not exceed

(3.28) C(r, d)c0‖f0‖∞,r(FmM0 + Fm−1‖f0‖∞,r)(1 + |v|)−(r−β).

It is easy to see that r − β ≤ κ for s ≤ r ≤ s + d and therefore it follows now from (3.27) that

G(ft, ft) ≤ C(d, s, r, β)c0(FmM0 + Fm−1‖f0‖∞,r)[F sup
τ≥0

‖fτ‖1,β−1 + ‖f0‖∞,r](1 + |v|)−(r−β)

(and it would be the same but with (FnM0+Fn−1‖f0‖∞,r) instead of supτ≥0 ‖fτ‖1,β−1 for β ∈ (0, 1)).
Applying now Proposition A3 to the Boltzmann equation and using (3.10) completes the proof of
statement (ii) for β < d− 1. In case β ≥ d− 1 one gets instead the same estimates (3.27), (3.28) but
with supτ≥0 ‖fτ‖1,β−(d−1) instead of (FmM0 + Fm−1‖f0‖∞,r), which implies the required change in
the final upper bound.

(iii) Since

Lft(v) ≥ A(d− 2)c1

∫
ft(w)|v − w|β dw ≥ A(d− 2)c1(M0 min(1, 21−β)|v|β − E0)
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≥ A(d− 2)c1M0|v|β
(

min(1, 21−β)− E0

ρβM0

)
.

it follows that Lft(v) ≥ A(d− 2)c1M0|v|β
(
min(1, 21−β)− δ

)
whenever

(3.29) ρ ≥ (E0/(M0δ))1/β .

We shall use now Lemma 3.3 and its Corollary with gt = ft. This Lemma, the modified Garleman
representation and Proposition A3 imply that

(3.30) mq

(ρ

δ

)
≤ m0

q

(ρ

δ

)
+

2c0

c1(q − (d− 1))
1 + δ

(1− δ)r(min(1, 21−β)− δ)
mq

(
ρ

δ
√

2

)

for all q < r whenever ρ satisfies (3.29), (3.24), (3.25). Notice that by (ii), mq(.) is finite for all q < r.
Consider further only the case 1 ≤ β < d − 1 (for other β usual modifications do the job). There

are two possibilities: either (1) mq(R) = mq(0) for all R ∈ [0, ρ/δ] or (2) mq(ρ/δ) < mq(0). In the
first case, it follows from (3.30) and the assumption of statement (iii) of the Theorem that one can
choose a small δ = δ(c0, c1, r, d, β) such that mq(0) ≤ m0

q(0) + (1− ε/2)mq(0) with

ε = 1− 2c0

c1(r − (d− 1))
max(1, 2β−1) > 0,

and hence mq(0) ≤ 2m0
q(0)/ε. In the second case one clearly has

mq(0) = ess sup
|v|≤ρ/δ,t≥0

ft(v)|v|q,

and consequently, estimating supτ ‖fτ‖∞,s by (i) with r′ = s, yields

mq(0) ≤ (ρ/δ)r−sC(d, s, β)
c0

c1σ
sup

τ
‖fτ‖1,β−1(Fm+1M0 + Fm‖f0‖∞,r).

As both estimates for mq(0) do not depend on q < r, we conclude that

mr(0) ≤ C(d, s, r, β, c0, c1)ρr−s ‖f0‖1,2

σM2
0

sup
τ
‖fτ‖1,β−1(Fm+1 + Fm‖f0‖∞,r).

Choosing ρ to be the maximum of the r.h.s. of (3.24), (3.25), (3.29), completes the proof of Theorem
3.1.

4. Propagation of smoothness

We make here the same assumptions on the collision kernel as given at the beginning of the previous
section, i.e. assume (1.16), (1.19), (3.1), (3.2). We start with a result on continuous dependence on
initial data.

Theorem 4.1. Let f0, g0 ∈ L1,s+β with s ≥ max(2, 2β). Let ft and gt be the corresponding energy
preserving solutions of the Boltzmann equation. Then

(4.1) ‖ft − gt‖1,s ≤ ‖f0 − g0‖1,s exp{C(d, s)t sup
τ∈[0,T ]

(‖fτ‖1,s+β + ‖gτ‖1,s+β)}

and

(4.2) ‖ft − gt‖∞,0 ≤ ‖f0 − g0‖∞,0 + C([f ], [g]) sup
τ∈[0,T ]

‖fτ − gτ‖1,β
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for all t ≤ T and an arbitrary T , where C([f ], [g]) here and below depends on lower bounds for the
quantities M(f0), M(g0) and on upper bounds to the entropies of f0, g0, and supτ∈[0,T ] ‖fτ + gτ‖∞,β,
supτ∈[0,T ] ‖fτ + gτ‖1,max(2,2β).

Remark. (i) Inequality (4.1) is well known for β ≤ 2, see [Gu1]; in this case it holds even with s = 2.
(ii) We do not make the constant C([f ], [g]) explicit to shorten the formulas, but they can be easily
found from the proof and the estimates of the previous section.

Proof. Using (3.4) yields

d

dt
‖ft − gt‖1,s =

∫
|v − w|β dvdw

∫ π/2

0

sind−2(2θ)h(θ) dθ

×
∫

Sd−2
dm[(σK)(w′) + (σK)(v′)− (σK)(w)− (σK)(v)](ft(v)ft(w)− gt(v)gt(w)),

where K(v) = 1 + |v|s and σ = σt(v) is the sign of the difference ft(v)− gt(v). Consequently

d

dt
‖ft − gt‖1,s =

∫
|v − w|β dvdw

∫ π/2

0

sind−2(2θ)h(θ) dθ

×
∫

Sd−2
dm[(σK)(w′) + (σK)(v′)− (σK)(w)− (σK)(v)](ft(v)− gt(v))ft(w)

+
∫
|v − w|β dvdw

∫ π/2

0

sind−2(2θ)h(θ) dθ

×
∫

Sd−2
dm[(σK)(w′) + (σK)(v′)− (σK)(w)− (σK)(v)](ft(w)− gt(w))gt(v).

Let us estimate the first term I1 in this sum. One has

I1 =
∫
|v − w|β dvdw

∫ π/2

0

sind−2(2θ)h(θ) dθ

×
∫

Sd−2
dm[σ(v)(σK)(w′) + σ(v)(σK)(v′)− σ(v)(σK)(w)−K(v)]|ft(v)− gt(v)|ft(w)

≤
∫
|v − w|β dvdw

∫ π/2

0

sind−2(2θ)h(θ) dθ

×
∫

Sd−2
dm[|w′|s + |v′|s − |w|s − |v|s + 2K(w)]|ft(v)− gt(v)|ft(w).

Using a modified Povzner inequality as obtained e.g. in [MW] or [Lu] (which is valid for any s ≥ 2)
and estimating h by (3.2) yields

I1 ≤ C(d, s)c0

∫
|v − w|β [|v|s/2|w|s/2 + 2K(w)]|ft(v)− gt(v)|ft(w) dvdw,

which does not exceed C(d, s)‖ft − gt‖1,s‖ft‖s+β , because s ≥ 2β. Estimating I2 in the same way
leads to the estimate

d

dt
‖ft − gt‖1,s ≤ C(d, s)‖ft − gt‖1,s(‖ft‖s+β + ‖gt‖s+β).

Gronwall’s lemma completes the proof of (4.1).
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The main ingredient in the proof of (4.2) is the following estimate
∫

Ez,z̄,π/4

|ft − gt|(u) dEz,z̄(u)

(4.3) ≤ max

(∫

Ez,z̄,π/4

|f0 − g0|(u) dEz,z̄(u), C([f ], [g])(1 + |z̄ − z|d−1) sup
τ≤t

‖fτ − gτ‖1,β

)
.

To prove (4.3), we get from the Boltzmann equation

d

dt

∫

Ez,z̄,λ

|ft − gt|(u) dEz,z̄(u) +
∫

Ez,z̄,λ

|ft − gt|(u)Lft(u) dEz,z̄(u)

(4.4) ≤
∫

Ez,z̄,λ

gt(u)|Lft − Lgt|(u) dEz,z̄(u) +
∫

Ez,z̄,λ

(|G(ft − gt, ft)|+ |G(gt, ft − gt)|)(u) dEz,z̄(u).

By Proposition A5 the second term on the r.h.s. does not exceed C([f ], [g])‖ft−gt‖1,β From Proposition
A6 one deduces by the same arguments as in Lemma 3.2 that

∫

Ez,z̄,λ

gt(u)|u|β dEz,z̄(u) ≤ max

(∫

Ez,z̄,λ

g0(u)|u|β dEz,z̄(u), C([f ], [g]) sup
τ≤t

‖fτ − gτ‖1,β

)
.

Consequently, the first term on the r.h.s. of (4.4) does not exceed

‖g0‖∞,β |z̄ − z|d−1 + C([f ], [g]) sup
τ≤t

‖fτ − gτ‖1,β .

Hence, (4.3) follows from Proposition A3.
At last, from the Boltzmann equation we have

(4.5)
d

dt
|ft − gt|(v) + |ft − gt|(v)Lft(v) ≤ gt(v)|Lft − Lgt|(v) + |G(ft − gt, ft) + G(gt, ft − gt)|(v).

The first term on the r.h.s. does not exceed (1 + |v|β)‖ft − gt‖1,β‖gt‖∞,0. The second term can be
estimated (up to a constant) from the Gustafsson-Carleman representation as

∫
|ft − gt|(v′)|v − v′|−(d−1−β)

∫

Ev,v′,π/4

(ft + gt)(w′)dE(w′)

+
∫
|ft + gt|(v′)|v − v′|−(d−1−β)

∫

Ev,v′,π/4

|ft − gt|(w′)dE(w′),

which (by (4.3)) does not exceed
∫
|ft − gt|(v′)|v − v′|βC([f ], [g]) +

∫
(ft + gt)(v′)|v − v′|β |f0 − g0‖∞,0

+C([f ], [g])
∫

(ft + gt)(v′)(|v − v′|β + |v − v′|−(d−1−β)) sup
τ≤t

|fτ − gτ‖1,β ,

and which does not exceed C([f ], [g])(1+ |v|β) supτ≤t |fτ − gτ‖1,β (by Lemma 3.1 if β < d− 1). Hence
(4.2) follows by Proposition A3 and (3.10).
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Corollary. For any f0 ∈ L1,β+s with s ≥ max(2, 2β) there exists a unique solution ft satisfying the
condition supt∈[0,T ] ‖ft‖1,β+s < ∞ for any T > 0.

As a consequence of (4.2) we give the following results on propagation of smoothness of solutions
with respect to initial data and the velocity v.

Theorem 4.2. Let s ≥ max(2, 2β) and f0 = f0(x, .) be a family of non-negative functions from L1,s+β

that depends on a real parameter x ∈ R in such a way that
(i) supx ‖f0(x, .)‖1,s+β < ∞ and infx M(f0(x, .)) > 0,
(ii) f0(x, .) ln f0(x, .) ∈ L1 for all x and H0 = supx

∫
f0(x, v) ln f0(x, v) dv < ∞,

(iii) supx ‖f0(x, .)‖∞,β < ∞,
(iv) for each v ∈ Rd the derivative ∇xf0(x, v) exists for almost all x and both supx,v |∇xf0(x, v)|

and supx ‖∇xf0(x, .)‖1,s are bounded.
Then for all t > 0 and v ∈ Rd, the derivative ∇xft(x, v) exists for almost all x and both the

quantities supt≤T,x,v |∇xft(x, v)| and supt≤T,x ‖∇xf0(x, .)‖1,s are finite for arbitrary T > 0.

Proof. Follows directly from Theorem 3.1 with r = β and Theorem 4.1.
Remark. Of course, one can provide more or less straightforward extension to higher derivatives as

in Theorem 2.4.

Theorem 4.3. Let s ≥ max(2, 2β), a non-negative f0 ∈ L1,s+β be such that
(i) f0 ln f0 ∈ L1 and ‖f0‖∞,β < ∞,
(ii) the derivative ∇f0 = {∇if0}d

i=1 exists for almost all v and both ‖∇f0‖∞,0 and ‖∇f0‖1,s are
finite.

Then for all t ∈ [0, T ] with arbitrary T > 0 and almost all v ∈ Rd, the derivative ∇ft(v) exists and

(4.6) ‖∇ft‖1,s ≤ ‖∇f0‖1,s exp{C(d, s)t sup
τ∈[0,T ]

‖fτ‖1,s+β}

(4.7) ‖∇ft‖∞,0 ≤ ‖∇f0‖∞,0 + C([f ]) sup
τ∈[0,T ]

‖∇fτ‖1,β ,

where C([f ] depends on a low bound to M(f0) and on upper bounds to the entropy of f0, and
supτ∈[0,T ] ‖fτ‖∞,β, supτ∈[0,T ] ‖fτ‖1,max(2,2β). In particular, due to the time independent estimates
for ‖∇ft‖1,β obtained in [MW], inequality (4.7) implies a time independent estimate to ‖∇ft‖∞,0.

Proof. Inequalities (4.6), (4.7) are obtained in the same way as inequalities (4.1), (4.2) of Theorem
4.1.

One can get now various results on the propagation of moments ‖∇ft‖∞,r in the spirit of Theorem
3.1. Let us give a result for large r based on the Carleman method (Lemma 3.3). The main technique
is incorporated in the following

Theorem 4.4. Let (3.3) hold, r > s ≥ max(2, 2β) and r > d − 1 + 4 max(1, 2β−1)c0/c1. Let f0 ∈
L1,s+β ∩ L∞,r and there exist the derivative ∇f0 ∈ L1,s ∩ L∞,r. Then ft is differentiable for all
t and supt≤T ‖∇ft‖∞,r < ∞ for all T > 0 with a bound depending on T through the bound for
supt≤T ‖∇ft‖1,s.

Proof. Step 1. Let us show that for γ ∈ [0, d− 1)

(4.8) ‖|∇ft| ? P−γ‖∞,0 ≤ C(d, β, γ)‖∇f0‖∞,0 + C([f ]) sup
τ≤t

‖∇fτ‖1,β .

The proof is similar to the proof of Lemma 3.1. Multiplying ∇ft(z) by its sign σt(z) and by |v− z|−γ ,
integrating and using the differentiated Boltzmann equation (2.4) yields

d

dt

∫
|∇ft|(z)|v − z|−γ dz +

∫
|∇ft|(z)Lft|v − z|−γ dz
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= −
∫

ft(z)σt(z)L∇ft(z)|v − z|−γ dz +
∫

(G(∇ft, ft) + G(ft,∇ft))(z)σt(z)|v − z|−γ dz.

By Proposition A2, the first term on the r.h.s. can be estimated in magnitude by

‖∇ft‖1,β(‖ft‖1,β + ‖ft‖∞,β),

and by Proposition A4, the second term can be estimated (up to a constant) by ‖∇ft‖1,β−γ‖ft‖1,β−γ

if β ≥ γ and by ‖∇ft‖1,0 supτ≤t(‖fτ‖1,β + ‖fτ‖∞,0) in case β < γ (where Lemma 3.1 was used in the
latter case). By Proposition A3 this implies that

‖|∇ft| ? P−γ‖∞,0 ≤ ‖|∇f0| ? P−γ‖∞,0 + C([f ]) sup
τ≤t

‖∇fτ‖1,β ,

and hence the required estimate by Proposition A2.
Step 2. By a similar modification of the proof of Lemma 3.1 one shows that for r ∈ (0, s + d] and

a ≥ 1/2
(4.9)∫

χa|v|(|z|)∇ft(z)|v − z|−γ dz ≤ (C(d, β, γ)‖∇f0‖∞,r + C([f ]) sup
τ≤t

‖∇fτ‖1,s)(1 + |v|)−(s+γ(r−s)/d).

Like above, one deduces (4.9) from Propositions A3 and A4 and the inequality

d

dt

∫
χa|v|(|z|)|∇ft|(z)|v − z|−γ dz +

∫
χa|v|(|z|)|∇ft|(z)Lft|v − z|−γ dz

≤
∫

ft(z)χa|v|(|z|)L∇ft(z)|v − z|−γ dz + 2
∫

χa|v|(|z|)G(|∇ft|, ft)(z)|v − z|−γ dz

that follows from the Boltzmann equation.
Step 3. From (2.4) and (1.22) one obtains for each i = 1, ..., d

d

dt
∇ift(v) +∇iftLft(v)

(4.10) = −ft(v)L∇ift(v) + 2G(∇if
v,int
t , fv,ext

t )(v) + 2G(ft,∇if
v,ext
t )(v).

We shall follow now the same arguments as in the proof of Theorem 3.1 (iii). Denoting

mT
q (R; g) = ess sup

t∈[0,T ],|v|≥R

|gt||v|q

for a family g = gt of functions depending on t ≥ 0, one deduces from (3.23) that

G(ft, |∇if
v,ext
t |) ≤ 2c0

A(d− 2)
q − (d− 1)

mT
q (|v|/

√
2;∇f)|v|−(q−β)M0

1 + δ

(1− δ)q

for |v| ≥ ρ/δ with ρ large enough. Using the same arguments as in the proof of Lemma 3.3 (where
(4.9) is needed) one deduces similarly that

G(|∇ift|, fv,ext
t ) ≤ 2c0

A(d− 2)
q − (d− 1)

mT
q (|v|/

√
2; ft)|v|−(q−β) sup

τ≤T
‖∇fτ‖1,0

1 + δ

(1− δ)q

for |v| ≥ ρ/δ with ρ = ρ(T ) large enough. The first term on the r.h.s. does not exceed in magnitude

sup
τ≤T

‖∇fτ‖1,β sup
τ≤T

‖fτ‖∞,r|v|−(q−β).

We conclude by Proposition A3 that

mT
q

(ρ

δ
,∇if

)
≤ m0

q

(ρ

δ
,∇if

)
+ (1− ε)mT

q

(
ρ

δ
√

2
,∇if

)
+ C([f ])ρ−q sup

τ≤T
‖∇fτ‖1,β ,

and complete the proof as in Theorem 3.1 (iii) noting that supτ≤T ‖∇fτ‖∞,0 < ∞ by Theorem 4.3.

We can now prove the following result.
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Theorem 4.5. Let (3.3) hold, r > d + β + max(2, 2β), r > d− 1 + 4max(1, 2β−1)c0/c1. Let f0 and
all its derivatives till the order l (with an arbitrary integer l) belong to L∞,r. Then ft is differentiable
for all t and L∞,r-norms of ft and all its derivatives up to order l are uniformly bounded in time.

Proof. Arbitrary l are obtained by induction. Consider just l = 1. By assumptions on r one can
choose s such that max(2, 2β) ≤ s < r − d− β and hence f0 ∈ L1,s+β ∩ L∞,r and ∇f0 ∈ L1,s ∩ L∞,r.
By Proposition 4.4 we get that ∇ft ∈ L∞,r with bounds depending on the bounds for L1,s-norms of
∇ft. Now choosing ω in such a way that 2s+ d < ω < 2r− d, we see from the upper bound for ω that
|∇f0|2 ∈ L1,ω and hence by the results of [MV] |∇ft|2 ∈ L1,ω with uniform bounds in time. Hence (by
Cauchy inequality) ∇ft ∈ L1,s for all t with uniform bounds, which implies, as we mentioned above,
the uniform bounds for L∞,r-norms of ∇ft. The proof is complete.

Remark. Strictly speaking, the results of [MV] we used in the proof of Theorem 4.5 are proved only
for β ∈ (0, 2). However, it seems that when the existence and uniqueness is obtained for arbitrary
positive β (Corollary to Theorem 4.1), it is not difficult to generalise the results of [MV] to this case
as well.

Appendix

We collect here some auxiliary estimates omitting all proofs as they are essentially known (see e.g.
[Ca], [Ar2], [Gu1]). We only make a straightforward extension of the range of validity of some param-
eters (e.g. the dimension), make more precise some constants, and in Proposition A4-A6 we extend
to G(f, g) and G(f, f)(u)|u|l the usual estimates for G(f, f) (that are consequences of representation
(1.17)).

For an arbitrary real λ let Pλ(v) = |v|λ denote the corresponding power function on Rd and χλ

denote the indicator of the half-line [λ,∞), i.e. χλ(x) equals 1 for x ≥ λ and vanishes otherwise.
Convolution is defined as usual by (f ? g)(v) =

∫
f(z)g(v − z) dz, and M(f), E(f) denote the total

mass
∫

f(v) dv and the energy
∫ |v|2f(v) dv of the state f . Our first Proposition makes precise a

trivial observation that the convolution (f ? Pλ)(v) should behave like |v|λ for large λ and for f that
decrease rapidly enough at infinity. By C we shall denote various constants indicating in brackets the
parameters on which they depend.

Proposition A1. If f ∈ L1,λ is non-negative and such that
∫

f(z) ln+ f(z) dz ≤ h+ with some
h+ ≥ 0, then for any λ ≥ 0

(A1) (f ? Pλ)(v) ≥ σM(f)

and

(A2)
1
3

min(1, 21−λ)σ
(M(f))2

‖f‖1,λ
(1 + |v|λ) ≤ (f ? Pλ)(v) ≤ ‖f‖1,λ(1 + |v|λ)

with

(A3) σ = σ(λ, d, h+,M(f)) =
1
2

min

(
1,

(
M(f)
4V (d)

)λ/d

exp
{
− 4h+λ

dM(f)

})
.

The usual characteristics of f related to Boltzmann equation are the mass M(f), the energy E(f),
and the entropy H(f) =

∫
f(z) ln f(z) dz and hence it is desirable to have estimates in terms of H(f)

and not h+ as above.

Corollary. If f ∈ L1,2 is non-negative and such that f ln f ∈ L1,0, H(f) ≤ h, E(f) ≤ E with some
constants E > 0, h, then (A1), (A2) hold for any λ ∈ [0, 2] with

(A4) σ = σ(λ, d, h,M(f), E) =
1
2

min

(
1,

(
M(f)
4V (d)

)λ/d

exp
{
−4(h + E + (d + 1)πd/2)λ

dM(f)

})
,

We shall now estimate the convolutions with P−λ, λ > 0.
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Proposition A2. Let s ≥ 0, r ≥ 0, a ≥ 1/2, λ ∈ (0, d), and let f be a non-negative measurable
function. Then

∫

Rd

f(z)χa|v|(|z|)|v − z|−λ dz ≤ C(d, λ, s, r)(‖f‖1,s + ‖f‖∞,r)(1 + |v|)−s−λ min(1,(r−s)/d)

and
(f ? P−λ)(v) ≤ C(d, λ, s, r)(‖f‖1,s + ‖f‖∞,r)(1 + |v|)−b,

where b = min(λ, s + λ min(1, (r − s)/d)).

The next statement is the main tool for proving the uniform in time boundedness of the norms
‖ft‖∞,r of the solutions to the Boltzmann equation.

Proposition A3. Suppose h1, h2 are continuous functions of t ∈ R+ with h1 > 0. If f(t) ≥ 0 is
differentiable and d

dtf + h1f ≤ h2, then

sup
t≥0

f(t) ≤ max
(

f(0), sup
t>0

h2(t)
h1(t)

)
.

For the next two results assume (3.1), (3.2) hold with some β ≥ 0.

Proposition A4. Suppose a > 1/2, γ ∈ [0, d− 1), and f , g are measurable non-negative functions.
(i) If 0 ≤ γ ≤ β, s ≥ β − γ, then

‖G(f, g) ? P−γ‖∞,0 ≤ C(d, γ)c0(M(f)‖g‖1,β−γ + M(g)‖f‖1,β−γ)
∫

χa|v|(|u|)G(f, g)(u)|v − u|−γ du

≤ 2β−γC(d, γ)c0‖g‖1,sM(f)(1 + |v|)−(s−β+γ) + 2β−γC(d, γ)c0‖f‖1,sM(g)(1 + |v|)−(s−β+γ).

(ii) If β ≤ γ, s ≥ 0, then

‖G(f, g) ? P−γ‖∞,0 ≤ C(d, γ)c0M(g)‖f ? P−(γ−β)‖∞,0,

∫
χa|v|(|u|)G(f, g)(u)|v − u|−γ du ≤ C(d, γ)c0(1 + |v|)−s

×(‖f‖1,s sup
|u|≥a|v|/√2

∫

Rd

|u− w|β−γg(w) dw + ‖g‖1,s sup
|u|≥a|v|/√2

∫

Rd

|u− w|β−γf(w) dw).

Moreover, in all these formulas the coefficients C(d, γ) are non-decreasing in γ (and tend to infinity
as γ → d− 1).

Proposition A5. For arbitrary a > 0, s ≥ 0, z ∈ Rd and for almost all directions (z̄ − z)/|z̄ − z|
(see Carleman’s representation in Section 1 for the notation Ez,z̄)

∫

Ez,z̄

|G(f, g)(u)|dEz,z̄(u) ≤ C(d)c0M(g)‖f ? P−(1−β)‖∞,0, β ≤ 1,

∫

Ez,z̄

|G(f, g)(u)|dEz,z̄(u) ≤ C(d, β)c0(M(g)‖f‖1,β−1 + M(f)‖g‖1,β−1), β ≥ 1,

∫

Ez,z̄

χa|v|(|u|)|G(f, g)(u)|dEz,z̄(u) ≤ C(d, s)c0(1 + |v|)−s

×(‖g‖1,s sup
{|u|≥a|v|/√2}

(f ? P−(1−β))(u) + ‖f‖1,s sup
{|u|≥a|v|/√2}

(g ? P−(1−β))(u)).

The last statement is just a slight modification of the previous one.
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Proposition A6. For arbitrary l ≥ 0, z ∈ Rd and for almost all directions (z̄ − z)/|z̄ − z|∫

Ez,z̄

|G(f, f)|(u)|u|ldEz,z̄(u) ≤ C(d)c0‖f‖1,l(M(f) + ‖f‖∞,0) β < 1,

∫

Ez,z̄

|G(f, f)(u)||u|ldEz,z̄(u) ≤ C(d, β)c0M(f)‖f‖1,l+β−1, β ≥ 1.
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