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The paper is devoted to the study of Markov processes in finite-dimensional convex cones (especially Rd and Rd
þ)

with a decomposable generator, i.e. with a generator of the form L ¼
PN

n¼1Ancn; where every An acts as a
multiplication operator by a positive, not necessarily bounded, continuous function an(x) and where every cn

generates a Lévy process, i.e. a process with i.i.d. increments in Rd. The following problems are discussed:
(i) existence and uniqueness of Markov or Feller processes with a given generator, (ii) continuous dependence of the
process on the coefficients an and the starting points, (iii) well posedness of the corresponding martingale problem,
(iv) generalized solutions to the Dirichlet problem, (v) regularity of boundary points.
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INTRODUCTION, MAIN RESULTS AND CONTENT OF THE PAPER

Basic Notations

For a subset M , Rd; we shall denote by C(M) (respectively, Cb(M), Cc(M), C1(M)) the

space of continuous functions on M (respectively its subspace consisting of bounded

functions, functions with a compact support, functions tending to zero as x [ M tends to

infinity). All these spaces are equipped with the usual sup-norm k·k: If M is an open set and G

is a subset of the boundary ›M of M, we denote by C sðM < GÞ (respectively, Cs
bðM < GÞÞ the

space of functions having continuous (respectively, continuous and bounded) derivatives in

M up to and including the order s that have a continuous extension to M < G: If M is omitted,

it will be tacitly assumed that M ¼ Rd; i.e. we shall write, say, C1 to denote C1(Rd).

We shall use all three standard notations f 0(x), 7f(x), and ›f=›x ðxÞ to denote the gradient

field of a smooth function. Similarly, f 00(x) denotes the matrix of the second derivatives.
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For a locally compact space M (usually Rd, or its one-point compactification _Rd, or its

subdomains) we shall use the standard notation DM½0;1Þ to denote the Skorokhod space of

càdlàg paths in M.

We shall usually denote by the capital letters E and P the expectation and respectively

the probability defined by a process under consideration.

General Description of Results

Let cn, n ¼ 1; . . .;N; be a finite family of generators of Lévy processes in Rd, i.e. for each n

cn f ðxÞ ¼ tr Gn ›2

›x2

� �
f ðxÞ þ bn;

›

›x

� �
f ðxÞ þ

ð
f ðx þ yÞ2 f ðxÞ2 7f ðxÞy
� �

n nðdyÞ

þ

ð
f ðx þ yÞ2 f ðxÞ
� �

mnðdyÞ; ð1:1Þ

where Gn ¼ ðGn
ijÞ is a non-negative symmetric d £ d-matrix, bn [ Rd, n n and mn are Radon

measures on the ball {jyj # 1} and on Rd, respectively (Lévy measures) such thatð
jyj

2
nnðdyÞ , 1;

ð
min ð1; jyjÞmnðdyÞ , 1; nnð{0}Þ ¼ mnð{0}Þ ¼ 0 ð1:2Þ

(such a partition of the Lévy measure in two parts makes our further assumptions on this

measure more transparent), and where

tr G
›2

›x2

� �
f ¼

Xd

i; j¼ 1

Gij

›2f

›xi ›xj

:

The function

pnðj Þ ¼ ðGnj; j Þ2 iðbn; j Þ þ

ð �
1 2 e ijy þ ijy

�
nnðdyÞ þ

ð �
1 2 e ijy

�
mnðdyÞ ð1:3Þ

is called the symbol of the operator 2cn. This terminology reflects the observation that

cn is in fact a pseudo differential operator of the form

cn ¼ 2pnð2i7Þ; 7 ¼ ð71; . . .;7dÞ ¼
›

›x1

; . . .;
›

›xd

� �

We shall denote by pn
n; pm

n the corresponding integral terms in Eq. (1.3), e.g. pm
n ðj Þ ¼Ð

ð1 2 e ijyÞmnðdyÞ: We also denote p0 ¼
PN

n¼1 pn:

Let an be a family of positive continuous functions on Rd. Denote by An the operator of

multiplication by an. In the extensive literature on the Feller processes with pseudo-

differential generators (see e.g. Ref. [13] for a recent review), special attention was given to

the decomposable generators of the form
PN

n¼1Ancn; because analytically they are simpler to

deal with, but at the same time their properties capture the major qualitative features of the

general case. On the other hand, the decomposable generators appear naturally in connection

with the interacting particle systems (see Refs. [18–21]). In fact, the results of this paper

(mainly the last Theorems 9, 10) supply the corner stones to the proof of the main result of

Ref. [19]. In the context of interacting particle systems, the corresponding functions an are

usually unbounded but smooth.
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This paper addresses all fundamental issues of the theory of processes with decomposable

generators (with possibly unbounded an), namely the problems of the existence and

uniqueness of Markov process with a given generator (Theorems 1 and 3 (i)), the continuous

dependence of the process on the coefficients an and the starting points (Theorems 2–5), the

restriction of such processes to a subdomain of Rd (Theorems 6 and 7) and the corresponding

Dirichlet problem (Theorem 8), and the application of these results to the analysis of

processes in Rd
þ (Theorems 9 and 10). In Appendix we give some general results on the

existence of a solution to the martingale problems with pseudo-differential generator (not

necessarily decomposable) and on the classification of the boundary points.

We use a variety of techniques both analytic (perturbation theory, chronological or

T-products, Sobolev spaces) and probabilistic (martingale problem characterization of

Markov semigroups, stopping times, coupling, etc).

Existence and Uniqueness of Processes in Rd (Perturbation Theory, the T-product

Method and the Martingale Problem Approach)

After a large amount of work done by using different deep techniques, the results obtained on

the existence of Markov processes with decomposable generators are still far from being

complete. The two basic assumptions under which it was proved that to a decomposable

operator there corresponds a unique Markov process (see Ref. [8]) are the following:

(a1) reality of symbols: all pn(j ) are real;

(a2) non-degeneracy:
PN

n¼1pnðj Þ $ cjj j
a

with some positive c, a.

Moreover, it was always supposed that an [ Cs
bðR

dÞ for all n and some s (depending on the

dimension d). As indicated in Ref. [12], using the methods from Refs. [8,11] condition (a1)

can be relaxed to the following one:

(a1 0) jIm pnðj Þj # cjRe pnðj Þj for all n with some c . 0:

Clearly these conditions are very restrictive. For example, they do not include even

degenerate diffusions. Notice however, that one-dimensional theory is fairly complete by

now (see e.g. the pioneering paper [1] and also [18] for more recent developments). Some

other related results can be found in Ref. [25].

In the present paper, we start by proving the existence and uniqueness of the Markov

process with generator
PN

n¼1Ancn under the following assumptions on the symbols pn: there

exists c . 0 and constants an . 0; bn , an such that for each n ¼ 1; . . .;N

(A1) jIm pm
n ðj Þ þ Im pn

nðj Þj # cjp0ðj Þj;

(A2) Re pn
nðj Þ $ c21jprn n ðj Þj

an and jðpn
nÞ

0ðj Þj # cjprn nðj Þj
bn ; where prn n is the

orthogonal projection on the minimal subspace containing the support of the

measure n n.

Remarks (1) Clearly the condition jIm pnj # c Re pn (of type (a1 0) above) implies

jIm pnj # cjp0j; but is not equivalent to it. (2) Condition (A2) is practically not very

restrictive. It allows, in particular, any a-stable measures n (whatever degenerate) with a $1

(the case a , 1 can be included in mn). Moreover, if
Ð
jjj

1þbnnnðdj Þ , 1; then the second
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condition in (A2) holds, because je ixy 2 1j # cjxyj
b

for any b # 1 and some c . 0:

In particular, the second inequality in (A2) always holds with bn ¼ 1: Hence, in order that

(A2) holds it is enough to have the first inequality in (A2) with an . 1. (3) As no restrictions

on the differential part of pn are imposed, all (possibly degenerate) diffusion processes with

symbols are covered by our assumptions.

To formulate our results on existence that include possibly unbounded coefficients

we shall also use the following conditions:

(A3) anðxÞ ¼ Oðjxj
2
Þ as x !1 for those n where Gn – 0 or nn – 0; anðxÞ ¼ OðjxjÞ as

x !1 for those n where bn – 0;

(A3 0) there exists a positive function f [ C 2ðRdÞ with bounded first derivatives such

that f ðxÞ!1 and

j f 00ðxÞj ¼
›2f

›x2

				
				 ¼ Oð1Þ ð1 þ jxjÞ21

as jxj!1; and anðxÞcn f ðxÞ # c for some constant c $ 0 and all n,

(A4) an(x) is bounded whenever mn – 0;

(A4 0)
Ð
jyjmnðdyÞ , 1 for all n,

(A4 00) anðxÞ ¼ OðjxjÞ whenever mn – 0:

Theorem 1 Suppose (A1), (A2) hold for the family of operators cn, and suppose that all an

are positive functions taken from C s(Rd) for s . 2 þ d=2:

(i) If (A3) and (A4) hold, then there exists a unique extension of the operator L ¼PN
n¼1Ancn (with the initial domain being C 2ðRdÞ> CcðR

dÞ) that generates a Feller

semigroup in C1ðR
dÞ:

(ii) If (A3 0) and (A4 0) hold, then there exists a unique strong Markov process whose

generator coincides with the operator L ¼
PN

n¼1Ancn on C 2ðRdÞ> CcðR
dÞ: Moreover,

its semigroup preserves the set Cb(Rd), the process f ðXx
t Þ2

Ð t

0
L f ðXx

sÞ ds is a martingale

and

E f ðXx
t Þ # f ðxÞ þ Nct ð1:4Þ

for all t and x, where Xx
t denotes the process with the initial point x.

Remarks

1. Some information on the domain of the generators of the Markov processes obtained

is given in the corollary to Theorem A1 of Appendix 1 for case (A3) and at the end of

“Martingale problem approach” section for case (A3 0).

2. Clearly, condition (A3 0) allows examples with coefficients increasing arbitrary fast

(see “Processes in Rd
þ” section).

3. Statement (ii) still holds if instead of condition anðxÞcn f ðxÞ # c for all n, one assumes

the more cumbersome but more general condition that
PN

n¼1 ~anðxÞcn f ðxÞ # c for all

~an such that 0 # ~an # an:

4. Statement (i) of Theorem 1 is a natural generalization to processes with jumps of a

well known criterion for non-explosion of diffusions that states that a diffusion

V.N. KOLOKOLTSOV4



process does not explode and defines a Feller semigroup whenever its diffusion

coefficients grow at most quadratically and the drift grows at most linearly.

The proof of this theorem will be given in the next three sections (using also Appendix 1),

each of which is based on different ideas and techniques, which seemingly can be used

for more general Feller processes. In second section, we shall prove (see Proposition 2.1)

the result of Theorem 1 subject to some additional bounds for coefficients an and under

the additional assumption

ðA1 0Þ
		Im pnðj Þ

		 # c
		p0ðj Þ

		
on the symbols pn. Clearly (A1 0) is a version of (A1) for the whole symbol, which thus

combines (A1) and some restrictions on the drift. The proof will be based on the perturbation

theory representation for semigroups in Sobolev spaces (as in Ref. [17], and not for

resolvents as in Refs. [8,9,11,12]), which shall give us other nice properties of the semigroup

constructed, e.g. that C 2 > Cc is a core for the generator.

In third section, we shall use the methods of T-products and of the “interaction

representation” to get rid of the additional assumption (A1 0).

In fourth section, we shall get rid of the bounds on the norms kank and complete the proof

of Theorem 1 using the martingale problem approach. This last part of the proof of Theorem 1

has three ingredients: a general existence result for the solution to a martingale problem

proved in Appendix 1, standard localization arguments for proving the uniqueness of these

solutions (see e.g. Ref. [8] in the similar context of Feller processes and Ref. [5] in general),

and a simple argument to prove the Feller property in case (A3).

Continuity Properties by the Coupling Method

Theorems 2–5 formulated below are proved in “Coupling for processes with decomposable

generators” section. We are going to use the coupling method to relax the smoothness

assumptions on the coefficients an(x) and to prove the continuous dependence of the process

on these coefficients. Unfortunately, we are able to do it only under very restrictive

assumptions on the measures n n, namely, we shall assume that for all n

(A5) if nn – 0; then anðxÞ ¼ an is a constant.

Remark The following results and their proofs are still valid if instead of (A5) one assumes

that d ¼ 1 (one-dimensional case), an(x) is an increasing function of x (respectively,

decreasing) and nn has a support on (0,1) (respectively on (21,0)).

Let us recall the notion of coupling (for details, see e.g. Ref. [4]). For a probability

measures P1, P2 on Rd, a measure P on R2d is called a coupling of P1, P2, if

PðB £ RdÞ ¼ P1ðBÞ; PðRd £ BÞ ¼ P2ðBÞ

for all measurable B , Rd: The Wp-metric between P1 and P2 (sometimes called also

Kantorovich or Wasserstein metric) is defined by the formula

WpðP1;P2Þ ¼
P

inf

ð
jx1 2 x2j

p
Pðdx1; dx2Þ


 �1=p

; p $ 1; ð1:5Þ
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where inf is taken over all couplings P of P1, P2. We shall write simply W for W1. For the

application of coupling the most important fact is that the convergence of distributions in any

of Wp-metric implies the weak convergence. For given Rd-valued processes Xt, Yt, t $ 0;

a process Zt valued in R2d is called a coupling of Xt and Yt, if the distribution of Zt is a

coupling of the distributions of Xt and Yt for all t. In other words, the coordinates of the

process Zt have the distributions of Xt and Yt so that one can write Zt ¼ ðXt; YtÞ: With some

abuse of notations, we shall denote by W(Xt,Yt) the W1-distance between the distributions of

Xt and Yt. For Xt, Yt, Zt being Feller processes with generators LX, LY, LZ, respectively, the

condition of coupling can be written as LZ f Xðx; yÞ ¼ LX f ðxÞ and LZ f Y ðx; yÞ ¼ LY f ð yÞ for all

f from the domains of LX and LY, respectively, where f Xðx; yÞ ¼ f ðxÞ and f Y ðx; yÞ ¼ f ð yÞ:

The following result reflects the continuous dependence of Feller processes with

decomposable generators on their coefficients and initial conditions.

Theorem 2 Let (A1), (A2), (A4 0) hold and let an, ~an be two families of positive functions

from C s(Rd) with s . 2 þ d=2 such that (A3), (A4), (A5) hold for both of them (see also the

Remark after (A5)), v ¼ maxnkan 2 ~ank , 1;

K ¼ max
n:G n–0
max k7

ffiffiffiffiffi
an

p
k;

n:b n–0 orm n–0
max k7ank

� �
, 1; ð1:6Þ

and ~an ¼ an if nn – 0: Let Xx0
t be the Feller process with generator (1.1) starting from some

point x0 and let Y
y0
t be the Feller process with generator (1.1) where all an are replaced by ~an

and starting from y0. Then for any e . 0 and T . 0 there exists a coupling Ze
t ¼ ðXx0

t ; Y
y0
t Þ of

Xx0
t and Y

y0
t which is a Feller process with a decomposable symbol starting from (x0,y0) such

that for all t [ ½0; T 


E e jXx0

t 2 Yy0

t j # CðT ;KÞ ðjx0 2 y0j þ e þ maxðv;
ffiffiffiffi
v

p
ÞÞ ð1:7Þ

with some constant C(T, K) depending on T, K and the bound in (A4 0). Here E e denotes the

expectation with respect to the coupling process Ze
t : In particular, taking e ! 0 and using

definition (1.5) yields

WðXx0

t ; Yy0

t Þ # C jx0 2 y0j þ maxðv;
ffiffiffiffi
v

p
Þ

� �
: ð1:8Þ

If additionally all measures mn have a finite second moment, i.e. if

n
sup

ð
jyj

2
mnðdyÞ , 1; ð1:9Þ

then

E e jXx0

t 2 Yy0

t j
2
# CðT ;KÞ jx0 2 y0j

2
þ jx0 2 y0j þ e þ vþ v2


 �
: ð1:10Þ

It is not difficult now to get the following improvements of the results obtained.

Theorem 3 (i) The statement of Theorem 1 still holds under assumptions (A1), (A2), (A3),

(A4), (A4 0),(A5) if the positive functions an are not necessarily smooth but such that
ffiffiffiffiffi
an

p

(respectively an) are Lipschitz continuous whenever Gn – 0 (respectively whenever b n or

mn do not vanish). (ii) The statement of Theorem 2 still holds if an and ~an are not necessarily

smooth and instead of Eq. (1.6) the functions an satisfy condition (i). Moreover, in Eq. (1.7)

one can take e ¼ 0; i.e. there exists a coupling Zt ¼ ðXx0
t ; Y

y0
t Þ obtained as the limit e ! 0
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from the couplings Ze
t such that

E 0jXx0

t 2 Yy0

t j # CðT ;KÞ jx0 2 y0j þ maxðv;
ffiffiffiffi
v

p
Þ

� �
ð1:11Þ

holds, and analogously Eq. (1.10) holds with e ¼ 0:

In the following theorem we collect some useful estimates describing in various ways the

continuous dependence of the process under consideration on their starting points.

Theorem 4 Let P0 and E 0 denote the probability and the expectation given by the coupling

Z0
t ¼ ðXx

t ;X
y
t Þ described in Theorem 3. Under the assumptions of Theorem 3 (i)

jx2yj! 0
lim P0

0#s#t
sup jXx

s 2 Xy
s j . r

 !
¼ 0 ð1:12Þ

for all r . 0;

jx2yj! 0
lim E 0 juðXx

t Þ2 uðXy
t Þj

� �
¼ 0 ð1:13Þ

for any bounded continuous function u and

r!1
lim P

0#s#t
sup jXx

s 2 xj . r

 !
¼ 0;

t!1
lim P

0#s#t
sup jXx

s 2 xj . r

 !
¼ 0; ð1:14Þ

the first limit being uniform for all x from any compact set and 0 # t # T and the second

limit being uniform for all x from any compact set and r $ r0 with any r0 . 0: If all

coefficients of the generator L are bounded, all limits above are uniform with respect to all x.

We are going to generalize the main results obtained under condition (A3) to a more

general case of condition (A3 0).

Theorem 5 Let an [ C sðRdÞ for s . 2 þ d=2 and let conditions (A1), (A2), (A3 0), (A4),

(A5) hold. Then for any e . 0; there exists a coupling Ze
t ¼ ðXx

t ;X
y
t Þ such that

1! 0
lim

jx2yj! 0
lim P0

�
0#s#t
supjXx

s 2 Xy
s j . r

�
¼ 0 ð1:15Þ

for all r . 0; and

1!0
lim

jx2yj!0
lim E 0ðjuðXx

t Þ2 uðXy
t ÞjÞ ¼ 0 ð1:16Þ

for any bounded continuous function u. Moreover, Eq. (1.14) holds.

Processes in Cones and the Dirichlet Problem

We shall turn now to the study of the processes reduced to an open convex cone U , Rd

(with the vertex at the origin). We shall denote by �U and ›U the closure and the boundary of

U, respectively. The dual cone {v:(v,w) . 0 for all non-vanishing w [ �U} will be denoted

by U*.

Remark More general domains could be considered, but for decomposable generators

defined in cones all results are much more transparent, the main example being surely Rd
þ

considered below in more detail.
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To further simplify the formulation of the results, we shall assume that the cone U is proper,

i.e. U * > U is also an open convex cone. Let e denote some (arbitrary chosen) unit vector in

U > U * : Let L denote a decomposable operator in U, i.e. L ¼
PN

n¼1Ancn with cn of type

(1.1) and with An being the operators of multiplications by the real functions an on U. We shall

widely use the following notion that has its origin in the theory of branching process.

Definition If l [ U * ; we shall say that L is l-subcritical (respectively, l-critical), if

cn f l # 0 (respectively, cn f l ¼ 0) for all n, where f lðxÞ ¼ ðl; xÞ: (Notice that cn fl is a

constant.) We say that l-subcritical L is strictly subcritical, if there is n such that cn f l , 0:

From now on, we shall use the classification of the boundary points, the definition of exit

times and stopped processes together with the general characterization of the stopped

processes in terms of the martingale problem formulation, which are given in Appendix 2.

Here we shall study the continuity property (Feller property) of the corresponding

semigroups under the following conditions:

(B1) an [ Cbð �UÞ for all n and they are (strictly) positive and smooth (of class C s(U)

with s . 2 þ d=2 in case of a non-vanishing nn and of class C 1(U) for vanishing nn)

in U;

(B2) the support of the measure mn þ nn is contained in U for all n (this condition

ensures that U is transmission admissible as discussed in Appendix 2);

(B3) there exists l [ U * such that L is l-subcritical.

Occasionally we shall use the following additional assumptions:

(B4) all an are extendable as smooth (strictly ) positive functions to the whole Rd; in this

case we shall assume that this extension is made in such a way that an are uniformly

bounded outside U 2 e.

Example The operator xðd2=dx2Þ on Rþ can not be extended to R2 as a diffusion operator

with a (positive) smooth coefficient.

The following result is simple.

Proposition 1.1

(i) Suppose (A1), (A2), (A4 0), (B1)–(B4) hold for L. Then there exists a function

f [ C 2ðRdÞ that coincides with fl inside U up to an additive constant and such that

condition (A3 0) of Theorem 1 holds, and hence the martingale problem is well posed

for L and its solution uniquely defines a strong Markov process Xt in Rd.

In particular, condition (U1) of Appendix 2 holds. Moreover, Lf [ C1 whenever

f [ C 2 > Cc:

(ii) If (A1), (A2), (A4 0), (B1)–(B3) hold, then the operator L and the domain U satisfy

the condition (U2) of Appendix 2 with Um ¼ U þ ð1=mÞe: Moreover, Lf [ C1ðUÞ

whenever f [ C 2 > Cc:

Proof (i) Choose a positive constant K such that f l þ K is strictly positive in U 2 e: Then let

us extend the restriction of this function to U 2 e as a smooth positive function f on Rd such

that f 0 is bounded and f 00 ¼ Oð1 þ jxj
21
Þ: Then Lf # 0 in U 2 e by subcriticallity, and

Lf # c everywhere with some c . 0 because all an are bounded outside U 2 e: (ii) Similarly

V.N. KOLOKOLTSOV8



one can extend the restrictions of an on Um to the whole Rd in such a way that they are bounded

outside U and Theorem 1 can be applied. The last statements in both (i) and (ii) are

obvious. A

Hence Proposition A1 from Appendix 2 holds under assumptions of Proposition 1.1,

so that the stopped process X
stop
t in U is correctly defined and is uniquely specified as a

solution to the corresponding martingale problem.

The semigroup T
stop
t of the process stopped on the boundary and the semigroup of the

corresponding process killed on the boundary are defined as

ðTstop
t uÞ ðxÞ ¼ Exu

�
Xminðt;tU Þ

�
; ðTkil

t uÞ ðxÞ ¼ Ex

�
uðXtÞxt,tU

�
ð1:17Þ

on the space of bounded measurable functions on �U.

An important question is whether the semigroups (1.17) are Feller or not (whether they

preserve the class of continuous functions and the class of functions vanishing at infinity).

Clearly the second semigroup preserves the set of functions vanishing on the boundary ›U and

actually coincides with the restriction of the first semigroup to this set of functions. Hence the

Feller property of the first semigroup would imply the Feller property for the second one.

Some criteria for boundary points to be t-regular, inaccessible or an entrance boundary

(that can be used to verify the assumptions in the following results) are given in Appendix 3.

The estimates for the exit times are discussed at the end of “Processes in Rd
þ” section

(Propositions 7.2–7.4).

Theorem 6 Under assumptions of Proposition 1.1 (ii), suppose that all nn vanish, that Xt

leaves U almost surely, and ›U\›Utreg is an inaccessible set. Then

(i) the set CbðU < ›UtregÞ of bounded continuous functions on U < ›Utreg is preserved by

the semigroup T
stop
t ; in particular, if ›U ¼ ›Utreg and (A3), (A4 00) hold, the semigroup

T
stop
t is a Feller semigroup in �U;

(ii) the subset of CbðU < ›UtregÞ consisting of functions vanishing at ›Utreg is preserved by

Tkil
t ;

(iii) for any continuous bounded function h on ›Utreg, the function Exh(XtU
) is continuous in

U < ›Utreg and for any u [ CbðU < ›UtregÞ and x [ U there exists a limit

t!1
lim T stop

t uðxÞ ¼ ExuðXtU
Þ; ð1:18Þ

(iv) if PxðtU . tÞ! 0 uniformly in x (in particular, if supx ExtU , 1), then the limit in

Eq. (1.18) is uniform (i.e. it is a limit in the topology of CbðU < ›UtregÞÞ; and moreover,

the function ExhðXtU
Þ is invariant under the action of T

stop
t for any h [ Cbð›UtregÞ:

It is not difficult to give an example when T
stop
t does not preserve the whole space

Cb(U < ›U). However, if (B4) holds and the inaccessible set ›U\›Utreg consists of the

entrance boundary points only, one can consider a natural modification of T
stop
t ; where the

process is supposed to stop only on ›Utreg; i.e. one can define a stopping time

~tU ¼ inf{t : Xx
t [ ›Utreg} ð1:19Þ

and the corresponding semigroups�
~T

stop

t u
�
ðxÞ ¼ Exu

�
Xminðt; ~tU Þ

�
;
�
~T

kil

t u
�
ðxÞ ¼ Ex

�
uðXtÞxt, ~tU

�
ð1:20Þ

on the space of bounded measurable functions on �U:
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A simple example that illustrates the difference between T stop and ~T stop is given by the

process in U¼ R2
þ ¼ {ðx; yÞ : x . 0; y . 0} with the generator 2›=›x: Here ›Utreg ¼

{ðx; yÞ [ ›U : x ¼ 0}: One sees by inspection that T
stop
t is not Feller in �U; whereas ~T

stop

t is.

This example makes the following result not surprising.

Theorem 7 Let the assumptions of Theorem 6 and condition (B4) hold, and let the

inaccessible set ›U\›Utreg consist of the entrance boundary points only. Then (i) the space

Cbð �UÞ is preserved by ~T
stop

t ; in particular, if (A3), (A4 0) hold, the semigroup ~T
stop

t and the

corresponding process on �U are Feller; (ii) for any continuous bounded function h on ›Utreg;

the function ExhðX ~tU
Þ is continuous in �U; coincides with Exh(XtU

) for x [ U; and for any

u [ Cbð �UÞ there exists a limit

t!1
lim ~T

stop

t uðxÞ ¼ ExuðX ~tU
Þ:

A natural application of Theorems 6 and 7 is in the study of the Dirichlet problem.

Definition Let h [ CbðUtregÞ: A function u [ CbðU < ›UtregÞ is called a generalized

solution of the Dirichlet problem for L in U if (i) u coincides with h on ›Utreg; (ii) u belongs to

the domain D(L stop) of the generator L stop of the semigroup T stop and L stopu ¼ 0:

To show that this definition is reasonable, one should prove that any classical solution (i.e.

a function u [ CbðU < ›UtregÞ which satisfies the boundary condition, is two times

continuously differentiable and satisfies Lu ¼ 0 in UÞ; is also a generalized solution. This

question as well as the well posedness of the problem are addressed in the following theorem.

Theorem 8 Suppose the assumptions of Theorem 6 hold. Then

(i) a generalized solution exists, is unique, and is given by the formula

uðxÞ ¼ Exh
�
XtU

�
for any h [ CbðUtregÞ;

(ii) any classical solution is a generalized solution;

(iii) if, in addition, the conditions of Theorem 7 hold, the generalized solution u is

continuous (or can be extended continuously) on �U; belongs to the domain of ~Lstop and
~Lstopu ¼ 0:

Some bibliographical comments on the Dirichlet problem for the generators of Markov

processes seem to be in order here. For degenerate diffusions the essential progress was

begun with the papers [14] and [6]. In particular, in Ref. [6] the Fichera function was

introduced giving the partition of a smooth boundary into subsets S0,S1,S3,S4 which in one-

dimensional case correspond to natural boundary, entrance boundary, exit boundary and

regular boundary, respectively, studied by Feller (see e.g. Ref. [23] for one-dimensional

theory). A hard analytic work was done afterwards on degenerate diffusions (see e.g. Refs.

[15,16,26], or more recent development in Refs. [28,31]). However, most of the results

obtained by analytic methods require very strong assumptions on the boundary, namely that it

is smooth and the four basic parts S0,S1,S3,S4 are disjoint smooth manifolds. Probability

theory suggests very natural notions of generalized solutions to the Dirichlet problem that

can be defined and to be proved to exist in rather general situations (see Ref. [27] for

a definition based on the martingale problem approach, [2] for the approach based on

the general Balayage space technique, [10] for comparison of different approaches and
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the generalized Dirichlet space approach), however the interpretation of the general

regularity conditions in terms of the given concrete generators and domains becomes a non-

trivial problem. Usually it is supposed, in particular, that the process can be extended beyond

the boundary. For degenerate diffusions some deep results on the regularity of solutions can

be found e.g. in Refs. [7,27]. But for non-local generators of Feller processes with jumps, the

results obtained so far seem to be dealing only with the situations when the boundary is

infinitely smooth and there is a dominating non-degenerate diffusion term in the generator

(see e.g. Refs. [29,30]). Theorem 8 above (in combination with criteria from Appendix 3)

clearly includes the situations without a dominating diffusion term and also the situations

when the process is not extendable beyond the boundary. The most important example with

U ¼ Rd
þ is considered in more detail below. Our definition of the generalized solution to the

Dirichlet problem is the same as used in Ref. [7] for degenerate diffusions (the only

difference is that we included the continuity of the solution in the definition). Similar results

can be obtained by generalizing to jump processes the martingale problem definition from

Ref. [27].

Processes on Rd
1

There is a variety of situations when the state space of a stochastic model is parametrized by

positive numbers only. This happens, for instance, if one is interested in the evolution of the

number (or the density) of particles or species of different kinds. In this case, the state space

of a system is Rd
þ: Consequently, one of the most natural application of the results discussed

above concerns the situation when D ¼ Rd
þ: We shall discuss this situation in more detail.

Theorems 9 and 10 formulated below are proved in seventh section.

From now on, let a co-ordinate system {x1; . . .; xd} be fixed in Rd and let U¼ Rd
þ be

the set of points with all co-ordinates being strictly positive. Then U * ¼ U and one can

take as a unit vector e used above the vector e ¼ ð1; . . .; 1Þ: We shall suppose that the

assumptions (and consequently the conclusions) of Proposition 1.1 (i) or (ii) hold. We

shall denote by Uj the subset of the boundary of U where x j ¼ 0 and all other x k are

strictly positive.

As Rd
þ is a proper cone, Theorems 6–8 in combination with the criteria established in

Appendix 3 (in particular, see Remark 2 following Proposition A6) can be applied to

construct processes in that cone. In the next Theorem we are going to single out some

important particular situations which ensure also that the corresponding semigroup is a

Feller one.

Theorem 9

(i) Suppose (A1), (A2), (A4 0), (B1)–(B3) hold for a decomposable pseudo-differential

operator L in U. For any j ¼ 1; . . .; d and n ¼ 1; . . .;N; let anðxÞ ¼ Oððx jÞ2Þ in a

neighbourhood of �Uj uniformly on compact sets whenever Gn
jj – 0 or

Ð
ðx jÞ2nnðdxÞ – 0;

and anðxÞ ¼ Oðx jÞ uniformly on compact sets whenever bn
j , 0: Then the whole

boundary ›U is inaccessible, and Proposition A5 is valid that ensures that there exists

a unique solution to the martingale problem for L in U, which is a Markov process whose

semigroup Tt preserves the space Cb(U).

(ii) Suppose additionally that anðxÞ ¼ Oðx jÞ uniformly on compact sets whenever either

bn
j – 0 or

Ð
x jmnðdxÞ – 0: Then Tt preserves the subspace of Cbð �UÞ of functions
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vanishing on the boundary. If additionally conditions (A3), (A4 00) on the growth of

an hold, then Tt is a strongly continuous Feller semigroup on the Banach space

of continuous function on U vanishing when x approaches infinity or the boundary

of U.

Our last purpose is to study a natural class of processes which have possibly accessible

boundary but which do not stop on the boundary but stick to it as soon as they reach it. For

any subset I of the set of indices {1; . . .; d}; let UI ¼ >j[IUj:

Definition Let us say that the boundary subspace UI is gluing if for all j [ I; x [ UI

and all j

›

›jj

XN

n¼1

anðxÞ pnðj Þ ¼ 0:

Clearly if the boundary Uj, say, is gluing, the values L f(x) for x [ Uj do not depend on the

behavior of f outside Uj. This is the key property of the gluing boundary that allows the

process (with generator L) to live on it without leaving it. In the Theorem below, we shall call

Uj accessible if it is not inaccessible.

Our main result on gluing boundaries is the following.

Theorem 10 Let (A1), (A2), (B1)–(B3) hold.

(i) Suppose that for any j, the boundary Uj is inaccessible or gluing and the same hold for

the restrictions of L to any accessible Uj, i.e. for the process on Uj defined by the

restriction of L to Uj (well defined due to the gluing property) each of its boundaries Uji,

i – j is either inaccessible or gluing, and the same holds for the restriction of L to each

accessible Uji and so on. Then there exists a unique Markov process Yt in �U with sample

paths in D �U½0;1Þ such that

fðYtÞ2 fðxÞ2

ðt

0

LfðYsÞ ds

is a Px-martingale for any x [ U and any f [ C 2ðRdÞ> CcðR
dÞ and moreover such

that Yt [ Uj for all t $ s almost surely whenever Ys [ Dj: Moreover, this process

coincides with the process Xt which is uniquely defined as follows: for any x [ U; the

process Xt is defined as the (unique) solution to the stopped martingale problem in U up

to the time t1 when it reaches the boundary at some point y [ Uj1 with some j1 such

that Uj1
is not inaccessible and hence gluing. Starting from y it evolves like a unique

solution to the stopped martingale problem in Uj1
(with the same generator L) till it

reaches a boundary point at Uj1 > Uj2 with some j2, hence it evolves as the unique

solution of the stopped martingale problem in Uj1 > Uj2 and so on, so that it either stops

at the origin or ends at some UI with an inaccessible boundary.

(ii) If additionally all nn vanish and ›U\›Utreg is an inaccessible set (for all restrictions of L

to all accessible boundary spaces), then the corresponding semigroup preserves the set

of functions Cb(U < ›Utreg). In particular, if either ›U ¼ ›Utreg or ›U\›Utreg consists

of entrance boundaries only, then the space Cbð �UÞ is preserved, and if condition (A3),

(A4 00) hold, then the corresponding semigroup is Feller in �U.
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(iii) In order that condition (i) holds it is sufficient that anðxÞ ¼ 0 whenever x [ Uj and either

Gn
jj – 0; or bn

j – 0; or
Ð
ðx jÞ2nnðdxÞ – 0; or

Ð
x jmnðdxÞ – 0: Then all UI are gluing.

Remark Surely the condition in (iii) is just a simplest reasonable criterion for (i) to hold.

Other conditions for (i), as well as various conditions for (ii) follow from Propositions

A6–A10 of Appendix 3.

The end of the “Processes in Rd
þ” section is devoted to some simple estimates for exit

times from U.

PERTURBATION THEORY IN SOBOLEV SPACES

Recall first that a Sobolev space H s is defined as the completion of the Schwarz space S(Rd)

with respect to the norm

k fk
2
s ¼

ð �
1 þ jjj

2�s		 f̂ ðj Þ		2 dj;

where f̂ ðj Þ ¼ ð2pÞ2d=2
Ð

e2ixj f ðxÞ dx is the Fourier transform of f. In particular, H 0 (with the

norm k·k0) is the usual L 2-space.

Let an and cn be as in Theorem 1. Let L0 ¼
PN

n¼1cn and

L ¼ L0 þ
XN

n¼1

Ancn ð2:1Þ

(the pseudo-differential operator with the symbol 2
PN

n¼1ð1 þ anðxÞÞ pnðj ÞÞ: In this section

we shall prove the following result.

Proposition 2.1 Suppose (A1 0) and (A2) hold for the family of operators cn, all an [

Cs
bðR

dÞ for s . 2 þ d=2 and

2ðc þ 1Þ
XN

n¼ 1

kank , 1; ð2:2Þ

where the constant c is taken from condition (A1 0) (let us stress that k·k always denotes the

usual sup-norm of a function). Then the closure of
PN

n¼1Ancn (with the initial domain

Cc > C 2) generates a Feller semigroup in C1ðR
dÞ and the (strongly) continuous semigroups

in all Sobolev spaces H s 0

, s 0 # s; including H 0 ¼ L2.

From now on, we shall suppose that the assumptions of Proposition 2.1 are satisfied.

We shall start with defining an equivalent family of norms on H s. Namely, let

b ¼ {bI} be any family of (strictly) positive numbers parametrized by multi-indices

I ¼ {i1; . . .; id} such that 0 , jIj ¼ i1 þ . . .þ id # s and ij $ 0 for all j. Then the norm

k·ks;b defined by

k fks;b ¼ k fk0 þ
0,jIj#s

X
bI

���� ›jIj›xI

f

����
0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
j f̂ ðj Þj

2
dj

s
þ

0,jIj#s

X
bI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
jjj

2I
j f̂ ðj Þj

2
dj

s
;
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where jjj
2I
¼ jj1j

2i1 . . . jjdj
2id for I ¼ {i1; . . .; id}, is a norm in S(Rd) which is obviously

equivalent to norm k·ks: We shall denote by H s,b the corresponding completion of S(Rd)

which coincides with H s as a topological vector space.

Lemma 2.1 Let aðxÞ [ Cs
bðR

dÞ: Then for an arbitrary e . 0 there exists a collection

b ¼ {bI}, 0 , jIj # s; of positive numbers such that the operator A of multiplication by a(x)

is bounded in H s,b with the norm not exceeding kak þ e (i.e. the bounds on the derivatives of

a(x) are essentially irrelevant for the norm of A).

Proof To simplify the formulas, we shall give a proof for the case s ¼ 2, d ¼ 1. In this case

we have

k fk2; b ¼ k fk0 þ b1k f 0k0 þ b2k f 00k0

and

kA fk2;b #
�
kak þ b1ka 0k þ b2ka 00k

�
k fk0 þ

�
b1kak þ 2b2ka 0k

�
k f 0k0 þ b2kak k f 00k0:

Clearly by choosing b1, b2 small enough we can ensure that the coefficient of k f k0 is

arbitrary close to kak and then by decreasing (if necessary) b2 we can make the coefficient at

k f 0k0 arbitrary close to b1kak. The proof is complete. A

We are going to construct a semigroup in L 2 and H s with generator L which is considered

as a perturbation of L0. To this end, for a family of functions fs, s [ ½0; t 
; on Rd let us define

a family of functions F sðfÞ, s [ ½0; t 
; on Rd as

F sðfÞ ¼

ðs

0

e tL0

XN

n¼1

ðL 2 L0Þft dt: ð2:3Þ

From the perturbation theory one knows that formally the solution to the Cauchy problem

_f ¼ Lf; fð0Þ ¼ f ð2:4Þ

is given by the series of the perturbation theory

f ¼
�
1 þ F þ F 2 þ · · ·

�
f0; f0

s ¼ e2sL 0 f : ð2:5Þ

In order to carry out a rigorous proof on the basis of this formula, we shall study carefully

the properties of the operator F. We shall start with the family of operators Ft on the Schwarz

space S(Rd) defined as

FtðfÞ ¼

ðt

0

esL0 ðL 2 L0Þf ds:

Lemma 2.2 Ft is a bounded operator in L 2(Rd) for all t . 0: Moreover, for an arbitrary

e . 0; there exists t0 . 0 such that for all t # t0

kFtk0 # 2ðc þ 1Þ
n

X
kank þ e

and hence kFtk0 , 1 for small enough e.

Proof As

Ft ¼
XN

n¼ 1

ðt

0

e2sL0cnAn ds 2
XN

n¼ 1

ðt

0

e2sL0½cn;An
 ds
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one has for f [ SðRdÞ :

½cn;An
 f ðxÞ ¼ ðcnðanÞÞ ðxÞ f ðxÞ þ 2ðGn7an;7f ÞðxÞ

þ

ð �
anðx þ yÞ2 anðxÞ

��
f ðx þ yÞ2 f ðxÞ

��
nnðdyÞ þ mnðdyÞ

�

¼ 2
k;l

X
7k

�
Gn

klð7lanÞf
�
ðxÞ þ

ð
k

X
ykðð7kan f Þðx þ yÞ2 ð7kan f ÞðxÞÞnnðdyÞ

þ
�
cnðanÞ2 2

k;l

X
7kðG

n
kl7lanÞ

�
ðxÞ f ðxÞ

þ

ð �
anðx þ yÞ2 anðxÞ2

�
7anðxÞ; yÞ

� �
f ðx þ yÞ2 f ðxÞ

�
nnðdyÞ

2

ð
k

X�
7kanðx þ yÞ2 7kanðxÞ

�
f ðx þ yÞ ykn

nðdyÞ

þ

ð �
anðx þ yÞ2 anðxÞ

� �
f ðx þ yÞ2 f ðxÞ

�
mnðdyÞ:

Apart from the first two terms, all other terms in the last expression define bounded

operators of f in L 2. Hence

Ftð f Þ ¼
XN

n¼ 1

ðt

0

esL0cnAnð f Þ ds þ 2
XN

n¼ 1

ðt

0

esL0

k;l

X
7k

�
Gn

klð7lanÞf
�

ds

þ
XN

n¼ 1

ðt

0

esL0 ds
k

Xð �
e ið y;7Þ 2 1

�
ykn

nðdyÞ
�
7kan f

�
þ OðtÞ k fk0:

We can estimate the first term usingðt

0

esL0cnAn ds

����
����

0

# kank

ðt

0

e2sp0ðj Þpnðj Þ ds

����
���� # kank

pn

p0

ð1 2 e2tp0 Þ

����
���� # 2ð1 þ cÞkank

(due to (A1 0), the second term asðt

0

esL07k

�
Gn

klð7lanÞf
�

ds

����
���� ¼ O

�
t 1=2
�
k7ank kGk

(to get the latter estimate one should decompose Rd in the orthogonal sum of the two sub-

spaces such that G n is non-degenerate on the first subspace and vanishes on the other one),

and the last term usingðt

0

esL0 ds

ð �
e iðy;7Þ21

�
ykn

nðdyÞ

����
����

0

#

ðt

0

e2sRep0 j7kpn
njds

����
����¼Oð1Þ

ðt

0

s2b=a ds¼Oðt 12b=aÞ

(which holds due to (A2)). These estimates prove the Lemma. A

It turns out that the same holds in H s.
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Lemma 2.3 For an arbitrary e . 0 there exists t0 . 0 and a family of positive numbers

b ¼ {bI}; 0 , jIj # s . such that for all t # t0 and s 0 # s

kFtks 0;b # 2ðc þ 1Þ
n

X
kank þ e

Proof Follows by the same arguments as the proof of Lemma 2.2 with the use of Lemma 2.1

and the definition of the norm k·ks; b: A

Lemma 2.4 The family Ft is strongly continuous in H s 0,b for all s 0 # s, i.e. Ftþt f 2

Ft f ! 0 in H s 0, b for any f [ H s 0; b:

Proof From the estimates on Ft obtained in the proof of Lemma 2.2, we conclude that

we only need to prove that
Ð t

0
esL0cn f ds ! 0 as t ! 0 (because the other terms in Ft tends to 0

uniformly). By (A1 0), it is sufficient to show that ð1 2 e tL0 Þ f ! 0 as t ! 0; i.e that the family

of operators of multiplication the Fourier image f̂ of f by the function 1 2 e2tp0ðj Þ is strongly

continuous, but this is obvious (in a bounded region of j the function 1 2 e2tp0ðj Þ tends to 0

uniformly, and we can always choose a bounded domain such that outside of it the function f̂

is small).

We can now deduce the necessary properties of the operator F.

For a Banach space B of functions on Rd let us denote by C([0, t ], B) the Banach space of

continuous functions fs from [0, t ] to B with the usual sup-norm sups[½0;t 
kfskB: We shall

identify B with a closed subspace of functions from C([0, t ], B) which do not depend on

s [ ½0; t 
: A

Lemma 2.5 Under conditions of Lemma 2.3, the operator F defined by Eq. (2.3) is a

continuous operator in C([0,t ],H s,b) and kFk , 1 for small enough t.

Proof The statement about the norm follows from Lemma 2.3. Let us show that F ðfÞ [

Cð½0; t 
;H s;bÞ whenever f [ Cð½0; t 
;H s;bÞ: One has

F tþtðfÞ2 F tðfÞ ¼

ðt

0

�
e ðtþt2sÞL0 2 e ðt2sÞL0

�
ðL 2 L0Þfs ds

þ

ðtþt

t

�
e ðtþt2sÞL0

� �
L 2 L0

�
fs ds ð2:6Þ

The first integral in this expression tends to zero as t! 0; because ð1 2 e tL0 Þ converges to

zero strongly as t! 0 (see proof of Lemma 2.4). Next, writing fs ¼ ft þ ðfs 2 ftÞ in the

second integral and again using Lemma 2.4, we conclude that the second integral also tends

to zero as t! 0:

As a consequence of Lemma 2.5 (and the assumptions of Proposition 2.1) we get the

following result. A

Lemma 2.6 Under the conditions of Lemma 2.3, there exists t0 such that the series (2.5)

converges in C([0, t ], H s 0,b) for all s 0 # s and t # t0: Moreover, the r.h.s. of Eq. (2.5) defines

a strongly continuous family of bounded operators f 7! Tt f in all H s 0

, s 0 # s:

Proof of Proposition 2.1 By the Sobolev lemma, H s can be continuously imbedded in

C1 > C l whenever s . l þ d=2: Hence, Tt defines also a strongly continuous family of

bounded operators in C1. Next, as s . 2 þ d=2; Ft(f) is differentiable in t for any
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f [ Cð½0; t 
;H s;b) and

d

dt
F tðfÞ ¼

t! 0
lim

1

t

�
F tþtðfÞ2 F tðfÞ

�
¼ L0F t þ ðL 2 L0Þft; ð2:7Þ

where the limit is understood in the norm of H s22. Therefore, one can differentiate the series

(2.5) to show that for f [ H s; the function Tt f gives a (classical) solution to the Cauchy

problem (2.4). Since a classical solution in C1 for such a Cauchy problem is always positivity

preserving and unique, because L is an operator with the positive maximum principle (PMP)

property (see e.g. Ref. [17], section 8), we conclude that Tt defines a positivity preserving

semigroup in each H s 0

, s 0 # s; and in C1 for all t (using the semigroup property one can

prolong Tt to all finite t . 0 thus taking away the restriction t # t0). By the standard

arguments one can now deduce that Tt defines a contraction semigroup (and thus a Feller

semigroup) in C1, for example using Hille-Yosida theorem and the fact that the resolvent

Rl f ¼
Ð1

0
e2tlTt f dt is defined on the whole C1 for all sufficiently large l . 0: A

T-PRODUCTS FOR FELLER GENERATORS

Let B1 , B2 be two Banach spaces with norms k·kB1
$ k·kB2

; such that B1 is dense in B2.

Let Lt : B1 7! B2; t $ 0; be a family of uniformly (in t) bounded operators such that the

closure in B2 of each Lt is the generator of a strongly continuous semigroups of bounded

operators in B2. For a partition D ¼ {0 ¼ t0 , t1 , · · · , tN ¼ t} of an interval [0, t ] let us

define a family of operators UD(t, s), 0 # s # t # t; by the rules

UDðt; sÞ ¼ exp{ðt2 sÞLtj
}; tj # s # t # tjþ1;

UDðt; rÞ ¼ UDðt; sÞUDðs; rÞ; 0 # r # s # t # t:

Let Dtj ¼ tjþ1 2 tj and dðDÞ ¼ maxj Dtj: If the limit

Uðs; rÞ f ¼
dðDÞ! 0

lim UDðs; rÞ f ð3:1Þ

exists for some f and all 0 # r # s # t (in the norm of B2), it is called the T-product

(or chronological exponent of Lt) and is denoted by T exp{
Ð s

r
Lt dt}f : Intuitively, one expects

the T-product to give a solution to the Cauchy problem

d

dt
f ¼ Ltf; f0 ¼ f ; ð3:2Þ

in B2 with the initial conditions f from B1. In particular, the following (not very hard)

statement is proved in Ref. [24] (Lemma 1.1). If the T-product exists for f [ B1 and the

following basic assumption holds:

(C) the limit

t! 0
lim

exp{tLt}f 2 f

t
2 Lt f

����
����

B2

¼ 0 ð3:3Þ

is uniform on the bounded sets of B1, then T exp{
Ð s

r
Lt dt}f is a solution of the problem (3.2).

From this fact, we shall deduce now the following simple statement.
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Lemma 3.1 If (i) Lt f is continuous in t locally uniformly in f (i.e. for f from

bounded domains of B1), (ii) all exp{sLt} preserve B1 and define a strongly

continuous in s, t and a uniformly bounded family of operators in B1, (iii) condition (C)

holds, then

(i) the T-product (3.1) exists for all f [ B2;

(ii) the convergence in Eq. (3.1) is uniform for f from any bounded set of B1,

(iii) the obtained T-product defines a strongly continuous (in t, s) family of uniformly

bounded operators both in B1 and B2,

(iv) T exp{
Ð s

0
Lt dt} f is a solution of the problem (3.2) for any f [ B1:

Proof Due to the above stated result from Ref. [24], the statement (iv) follows from

(i)–(iii). Next, since B1 is dense in B2, it is enough to prove only the claims from (i)–(iii)

concerning B2. But they follow from the formula

UDðs; rÞ2 UD 0 ðs; rÞ ¼ UD 0 ðs; tÞUDðt; rÞ
		t¼ s

t¼ r

¼

ðs

r

d

dt
UDðs; tÞUD 0 ðt; rÞ dt ¼

ðs

r

UDðs; tÞ ðL½t 
D 0 2 L½t 
DÞUD 0 ðt; rÞ ds

(where we denoted ½s 
D ¼ tj for tj # s , tjþ1) and the uniform continuity of Lt.

The aim of this section is to apply Lemma 3.1 to a particular example of Feller generators

and to prove the following result. A

Proposition 3.1 The statement of Proposition 2.1 still holds if we assume (A1) instead

of (A1 0).

Proof The difference between (A1) and (A1 0) concerns only the drift terms of L. So,

our statement will be proved, if we will be able to show, that if L is as in Proposition

2.1 and g be an arbitrary vector field of the class Cs
bðR

dÞ, then the statements

of Proposition still holds for the generator L þ (g(x),7). Let St be the family of

diffeomorphisms of Rd defined by the equation _x ¼ 2g ðxÞ in Rd. With some abuse of

notation we shall denote by St also the corresponding action on function, i.e.

St f ðxÞ ¼ f ðStðxÞÞ. In the interaction representation (with respect to the group St),

the equation

_f ¼
�
L þ ðgðxÞ;7Þ

�
f; fð0Þ ¼ f ; ð3:4Þ

has the form

_g ¼ Ltg ¼
�
S21

t LSt

�
g; gð0Þ ¼ f ; ð3:5Þ

i.e. Eqs. (3.4) and (3.5) are equivalent for g and f ¼ Stg. We shall now apply Lemma

3.1 to the operators Lt from Eq. (3.5) using the pair of Banach spaces B1 ¼ H s; s .

2 þ d=2; and B2 ¼ H s22: The only non-obvious condition to be checked is (C). For this

we observe that (i) the convergence in Eq. (2.7) is uniform on the “localized” subsets

M , H s22, i.e. on such subsets M that for any e there exists a compact set K such thatÐ
Rd \K

ð1 þ jjj
s22

Þj f̂ ðj Þj dj , e for all f [ M, and (ii) the bounded subsets of H s are
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localized subsets in H s22. Hence the validity of (C) follows. Consequently

the T-product yields the classical solutions of Eq. (3.5) (and hence of Eq. (3.4))

for any f from H s. But as we mentioned before, the uniqueness of the classical

solution follows directly from the PMP property. Hence we obtain a semigroup in both

H s and C1. A

MARTINGALE PROBLEM APPROACH

Proof of Theorem 1 Let us first prove the well posedness of the martingale problem for the

operator L ¼
P

Ancn under the assumptions of Theorem 1 (see Appendix 1 for the

definition of the martingale problem). It follows from Theorem A1 (given in Appendix 1)

that under conditions (A3), (A4) the martingale problem for the operator L ¼
P

Ancn with

sample paths in DRd ½0;1Þ has a solution. Moreover, in a neighbourhood of any point in Rd

one can represent the operator
P

Ancn in the form
P

anðx0Þcn þ
P

ðanðxÞ2 anðx0ÞÞcn in

such a way that Proposition 3.1 can be applied, and hence in this neighbourhood L

coincides with an operator for which the martingale problem is well posed (because for

generators of the Feller processes the martingale problem is known to be well posed, see

Ref. [5]). Consequently, assuming (A3), (A4) the uniqueness of the solution of the

martingale problem with sample paths in DRd ½0;1Þ (and hence the well-posedness) follows

from the standard localization procedure (see Theorem 7.1 in Ref. [8] or Theorems 6.1, 6.2

in Chapter 4 of Ref. [5]).

Assume now that (A3 0), (A4 0) hold. For each n, let us choose an increasing sequence of

continuous positive bounded functions am
n ðxÞ converging to an(x) and let Lm denote the

operator
P

Am
n cn, where Am

n denote the multiplication by am
n . Due to Theorem A1 (ii) from

Appendix, the processes

f ðXm
t Þ2

ðt

0

Lm f ðXm
s Þ ds ð4:1Þ

is a martingale for all m. Moreover, from our assumptions it follows that am
n ðxÞcn f ðxÞ # c

for all m and n. Hence

0 # E f ðXm
t Þ # f ðxÞ þ tNc:

Moreover, since the negative part of the martingale (4.1) is uniformly bounded by tNc,

we conclude that the expectation of its magnitude is bounded by f ðxÞ þ 2Nct and hence

by Doob’s inequality

r!1
lim Px

�
0#s#t
sup f ðXm

s Þ . r

�
¼ 0 ð4:2Þ

uniformly for x from any compact set and t # T with arbitrary T. This clearly implies

the compact containment condition and the relative compactness of the family Xm
t

(similar arguments are given in more detail in the proof of Theorem A1 of Appendix).

Hence, taking a converging subsequence we obtain as a limit a solution to the

martingale problem for the operator L which satisfies Eq. (1.4). Uniqueness again

follows by localization as above. Moreover, as the limit in Eq. (4.2) is uniform on x

from compact sets, it follows that for arbitrary r . 0 and e . 0 there exists R . 0 such
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that for the solution Ph of the martingale problem with an arbitrary initial probability

measure h

Ph

�
0#s#t
supjXsj $ R; jX0j # r

�
$ ð1 2 eÞh ð{jX0j # r}Þ: ð4:3Þ

Due to this estimate one can apply Theorem 5.11 (b), (c) from Chapter 4 of Ref. [5] to deduce

that the family Px of the solutions to the martingale problem is a family of measures on

DRd ½0;1Þ that depends weakly continuous on x and that the corresponding semigroup

preserves the space Cb(Rd).

Since it is well known (Theorem 4.2 from Chapter 4 of Ref. [5]) that the well posedness of

the martingale problem implies that its solution is a strong Markov process, to prove

Theorem 1 it remains to show that under condition (A3) the set of functions vanishing at

infinity is preserved by the corresponding semigroup. But this follows from a more general

Corollary to Theorem A1 from Appendix.

Let us give now some information on the domain of the generator of the (generally

speaking not a Feller) contraction semigroup of the Markov process given by Theorem 1 with

condition (A3 0). A

Proposition 4.1 Let Xt be a Markov process given by Theorem 1 under conditions (A1),

(A2), (A3 0), (A4 0), let Tt denote the corresponding contraction semigroup on Cb, and let C(L)

denote the “classical domain” of L, i.e. the space of functions f [ C 2 > Cb such that

Lf [ Cb. Then

(i) if f [ CðLÞ; then the pair (f, Lf) belongs to the domain of the full generator of Tt, i.e.

Ttf2 f ¼

ðt

0

Ts Lf ds; ð4:4Þ

(ii) the mapping t 7! Ttf is strongly continuous for any f from the closure �CðLÞ of C(L)

in Cb;

(iii) if f [ CðLÞ and Lf [ �CðLÞ; then Ttf is differentiable with respect to t and

ðd=dtÞTtf ¼ TtLf for all t; in particular, such f belongs to the domain D(L) of the

generator L in the sense that limt!0ðTtf2 fÞ=t exists in the uniform topology of Cb

and equals Lf.

Proof

(i) Let f [ CðLÞ; and let fm ¼ fxm; m ¼ 1; 2; . . .; where xm is a smooth function Rd 7!

½0; 1
 such that xmð yÞ ¼ 1 (respectively 0) for jyj # m (respectively jyj $ m þ 1Þ.

As fm [ C 2 > Cc, it follows that fmðXtÞ2 fmðxÞ2
Ð t

0
LfmðXsÞ ds is a martingale with

respect to any Px. To get the same property for f itself from the dominated convergence

theorem we need the uniform boundedness of Lfm, which does not seem to be obvious.

To circumvent this difficulty let us apply Doob’s option sampling theorem to

conclude that

fmþKðmÞðXminðt;tmÞÞ2 fmþKðmÞðxÞ2

ðminðt;tmÞ

0

LfmþKðmÞðXsÞ ds
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is a Px-martingale, where K(m) is chosen in such a way that

mnðjyj $ KðmÞÞ #
1

n

�
j;jxj#m

sup jajðxÞj

�21

;

and tm is the exit time from the ball jyj # m: Hence

Ex

ðminðt;tmÞ

0

LfmþKðmÞðXsÞ ds ¼ Ex

ðminðt;tmÞ

0

LfðXsÞ ds þ Oðt=nÞ

and a random variable under the integral is uniformly bounded. Hence by the

dominated convergence theorem as m !1 we get that

ExfðXtÞ2 fðxÞ ¼

ðt

0

ExfðXsÞ ds:

This yields Eq. (4.4).

(ii) From Eq. (4.4) and due to the contraction property of Tt (which ensures that TtLf is

uniformly bounded) it follows that t 7! Ttf is continuous for f [ CðLÞ: One extends

this property to all f [ �CðLÞ by a standard e=3 trick.

(iii) If Lf [ �CðLÞ, then the function under the integral in Eq. (4.4) is continuous by (ii).

Hence the statement follows from Eq. (4.4). A

Remark One can find examples where C(L) is rather poor. However, in many reasonable

situations it is pretty obvious that C(L) contains C 2 > Cc and hence �CðLÞ contains C1.

For instance, this is the case if all mn have a finite support, or in the case of processes on

cones considered in “Processes in cones and the Dirichlet problem” and “Processes in

Rd
þ” sections.

COUPLING FOR PROCESSES WITH DECOMPOSABLE GENERATORS

Here we shall prove Theorems 2–5 essentially by the coupling method.

Proof of Theorem 2 We shall omit here for brevity the upper subscripts in the

notations of the process Xx0
t and Y

y0
t . Moreover, also for brevity we shall assume

that all nn ¼ 0 noting that if there exists a ~n such that n~n – 0 (and then a~n is a

constant), one only needs to include in the coupling operator Le given below the extra

term

a~n

ð �
f ðx þ v; y þ vÞ2 f ðx; yÞ2

›f

›x
ðx; yÞv 2

›f

›y
ðx; yÞv

�
n ~nðdvÞ

to get the same result.

For an arbitrary e . 0 let Me denote a regularized function of minimum, i.e. Me is

an infinitely smooth function on R2 such that Me ðb; cÞ ¼ minðb; cÞ for jb 2 cj $ e

and minðb; cÞ2 e # Me # minðb; cÞ for all b,c. As a coupling Ze
t let us take
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the Feller process in R2d with the generator

Le f ðx; yÞ ¼
XN

n¼1

anðxÞ tr

�
Gn ›2

›x2

�
f ðx; yÞ þ ~anð yÞ tr

�
Gn ›2

›y2

�
f ðx; yÞ

�

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
anðxÞ~anð yÞ

p
tr

�
Gn ›2

›x›y

�
f ðx; yÞ þ anðxÞ

�
bn;

›

›x

�
f ðx; yÞ

þ ~anð yÞ

�
bn;

›

›y

�
f ðx; yÞ þ Me ðanðxÞ; ~anð yÞÞ

ð
ð f ðx þ v; y þ vÞ

2 f ðx; yÞÞmnðdvÞ þ ðanðxÞ2 Me ðanðxÞ; ~anð yÞÞÞ

ð
ð f ðx þ v; yÞ

2 f ðx; yÞÞmnðdvÞ þ ðanð yÞ2 Me ðanðxÞ; ~anð yÞÞÞ

£

ð
ð f ðx; y þ vÞ2 f ðx; yÞÞmnðdvÞ

�
: ð5:1Þ

This is a sort of the combination of a regularized marching coupling for the jump part of

the generator with the standard coupling of the diffusion processes coming from their

representations as solutions to the Ito stochastic equations. The existence of the Feller

process with the generator Le follows from Theorem 1. The key property of the generator Le

is the following: if a function f(x,y) depends only on the difference ðx 2 yÞ; then Le f ðx; yÞ

equals

XN

n¼1

� ffiffiffiffiffiffiffiffiffiffi
anðxÞ

p
2

ffiffiffiffiffiffiffiffiffiffiffi
~anð yÞ

p �2
tr

�
Gn ›2

›x2

�
f ðx; yÞ þ ðanðxÞ2 ~anð yÞÞ

�
bn;

›

›x

�
f ðx; yÞ

�

þ ðanðxÞ2 Me ðanðxÞ; ~anð yÞÞÞ

ð
ð f ðx þ v; yÞ2 f ðx; yÞÞmnðdvÞ

þ ð~anð yÞ2 Me ðanðxÞ; ~anð yÞÞÞ

ð
ð f ðx; y þ vÞ2 f ðx; yÞÞmnðdvÞ

�
: ð5:2Þ

Now let rd denote a regularized amplitude function on R, i.e.

rdðbÞ ¼
jbj; jbj $ d

1
2d

b2 þ d
2
; jbj , d

8<
: ð5:3Þ

and let f d ðx; yÞ ¼ rdðjx 2 yjÞ denote the corresponding regularized distance on Rd.

By Theorem A1 (ii) of the Appendix, the process

f dðZ
e
t Þ2

ðt

0

Le f d ðZ
e
s Þ ds ð5:4Þ

is a martingale. Consequently, using Eqs. (1.6), (5.2) and the trivial formula

a;b$0; ja2bj#v
max j

ffiffiffi
a

p
2

ffiffiffi
b

p
j ¼

x$0
max ð

ffiffiffiffiffiffiffiffiffiffiffiffi
x þ v

p
2

ffiffiffi
x

p
Þ ¼

ffiffiffiffi
v

p
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yields

E e f dðXt; YtÞ # f dðx0; y0Þ þ CðT;KÞ

ðt

0

E e
�
ðjXs 2 Ysj þ

ffiffiffiffi
v

p
Þ2 min

1

d
;

1

jXs 2 Ysj

� �
þ ðjXs 2 Ysj þ vþ eÞ

�
ds:

A

Remark Notice that one seemingly can not obtain a similar estimate for non-trivial measure

n n (and an(x) being not a constant).

Choosing d ¼
ffiffiffiffi
v

p
yields

EZ
e ðjXt 2 YtjÞ # EZ

e f dðXt; YtÞ

# jx0 2 y0j þ
ffiffiffiffi
v

p
þ C

ðt

0

�
EZ
e ðjXs 2 YsjÞ þ maxð

ffiffiffiffi
v

p
;vÞ þ eÞ

�
ds;

and one gets (1.7) by the standard application of the Gronwall lemma. The proof of (1.10) is

quite analogous. Namely, one applies the martingale property of the process (5.4) with

f ðx; yÞ ¼ jx 2 yj
2

(which is possible due to Eq. (1.9) and Theorem A1 (iii) of the Appendix)

to get the estimate

E e jXt 2 Ytj
2
# jx0 2 y0j

2
þ CðT ;KÞ

ðt

0

E e
�
jXs 2 Ysj

2
þ jXs 2 Ysjðvþ 1Þ þ v2 þ e

�
ds:

Estimating here E e jXs 2 Ysj by Eq. (1.7) and then using Gronwall’s lemma yields

Eq. (1.10).

Proof of Theorem 3 (i) Approximating Lipshitz continuous functions an by smooth functions

~av
n such that Eq. (1.6) holds and noticing that (due to Theorem 2) the family of process Yv

t

(constructed from the family ~av
n ) is fundamental in W-metric asv! 0; one concludes that there

exists a limiting process Yt (in W-metric and hence in the sense of the weak convergence)

that does not depend on the approximating family ~av
n : (ii) The first part of this statement is

now obvious. To get the coupling with e ¼ 0 one needs only to notice that the only reason to have

e . 0 in the proof of Theorem 2 is the necessity to have smooth coefficients in the coupling in

order to get the existence of the coupling process from Theorem 1. Since the Lipschitz continuity

of the coefficients an(x) and their square roots
ffiffiffiffiffi
an

p
ðxÞ is now proved to be sufficient for the

existence of the process, everything works fine with e ¼ 0 and with the (non-smooth) function

min instead of its regularized version Me used in the proof of Theorem 2. A

Proof of Theorem 4 This proof borrows some ideas from the proofs of the analogous results

on degenerate diffusions from Ref. [7], the essential difference being the use of Dynkin’s

formula and the coupling Z 0 instead of the use of stochastic equations and Ito’s formula in

Ref. [7]. Let Fd
t denote the martingale (4.4) where f ¼ f dðx; yÞ as in the proof of Eq. (1.7)

above, where e ¼ 0 (which is possible due to Theorem 3) and where Y
y
t ¼ X

y
t : From the

estimates obtained when proving Eq. (1.7), it follows that E 0ðjFsjÞ # Cðjx 2 yj þ dÞ for all

s # t and E 0
Ð t

0
jL0 fdðZ

0
s

� �
j ds # Cðjx 2 yj þ dÞ with some constant C ¼ CðtÞ: Hence by

a standard martingale inequality

P0

0#s#t
sup jFsj . r

 !
# CðrÞ ðjx 2 yj þ dÞ
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and by the Chebyshev inequality

P0

ðt

0

		L0 f dðZ
0
s Þ
		 ds . r

� �
# CðrÞ ðjx 2 yj þ dÞ

with some constant C(r). This implies that

P0

0#s#t
sup jXx

t 2 Xy
t j . r

 !
# P0

0#s#t
sup rdðjX

x
t 2 Xy

t jÞ . r

 !
# Cðjx 2 yj þ dÞ

with some (may be different) constant C. This implies Eq. (1.12) since d can be chosen

arbitrary small.

Next, due to the continuity and boundedness of the function u, for any e . 0 one can find

a r . 0 such that juðx1Þ2 uðx2Þj # e whenever jx1 2 x2j # r and maxðjx1j; jx2jÞ # e 21:

Hence E 0juðXx
t Þ2 uðX

y
t Þj does not exceed

e þ 2kuk
�
P0 jXx

t 2 Xy
t j . r

�
þ P0

�
jXx

t j . e 21
�
þ P0

�
jXy

t j . e 21
�� �

# e þ 2kuk r21E 0
�
jXx

t 2 Xy
t j
�
þ eE

�
jXx

t j
�
þ eE

�
jXy

t j
�� �
:

This expression can be made arbitrary small by choosing first small e and then small jx 2 yj

(because of Eq. (1.11) and the boundedness of EjXx
t j that follows from Theorem A1 (ii) of

the Appendix). This proves Eq. (1.13). A

First limit in Eq. (1.14) is obvious, because it just expresses the non-explosion property of

the process. For the case of bounded coefficients an, the second limit in Eq. (1.14) follows

from a more precise and a more general formula (Ap7) of the Appendix. For general situation

one observes that changing the generator L outside a domain does not change the behaviour

of the process inside this domain (see e.g. Theorem 6.1 of Chapter 4 from Ref. [5] for a

precise formulation of this result). Hence using the first limit in Eq. (1.14) one can first

reduce the situation to the set of trajectories living in a ball, then change L to ~L having

bounded coefficients ~an that coincide with an inside this ball and then again apply (Ap7).

Proof of Theorem 5 We define the coupling by the same operator (5.1). The corresponding

process is well defined as a strong Markov process due to Theorem 1 (ii) (see also Remark 3

after this theorem), where as a function f in condition (A3 0) one can take f ðxÞ þ f ð yÞ: From

(1.4) and the martingale property of f ðXtÞ2
Ð t

0
f ðXsÞ ds it follows (by Doob’s inequality) that

P e

0#s#t
sup ðjXtj þ jYtÞ . r

 !
¼ oð1Þ ð5:5Þ

as r !1: Again as in the proof of Theorem 4, one can change the generator Le to ~Le having

bounded coefficients ~an that coincide with an inside the ball of radius r centered at the origin

without changing the behaviour of the process inside the ball. Hence, Eqs. (1.14)–(1.16) are

obtained by first choosing r to make the r.h.s. of (5.5) arbitrary small and then using

Eqs. (1.12)–(1.14) for a suitable modification of Le outside the ball of radius r. A

PROCESSES IN CONES AND THE DIRICHLET PROBLEM

Proof of Theorem 6 (i) Let u [ CbðU < ›UtregÞ: Then

ExuðXt^tU
Þ2 EyuðXt^tU

Þ
		 		 # E e u Xx

t^tx
U


 �
2 u X

y

t^t
y
U


 �			 			:
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We need to show that this can be made arbitrary small by choosing jx 2 yj small

enough. Taking into account that the process leaves U almost surely, and hence

limT!1 Pðtx
U . TÞ ¼ 0, one concludes that one can assume additionally that both t x

U and t
y

U

do not exceed some large (but fixed) T and that their trajectories lie in some fixed compact

set, because one can ensure that these properties hold with probability arbitrary close to one.

By the definition of t-regularity, for arbitrary positive t and e, and any z [ ›Utreg; there

exists a ball Vz centered at z such that Pðt v
U . tÞ , e for all v [ Vz: Choosing a dense

denumerable subset of ›Utreg, we can get a denumerable covering of ›Utreg by these Vz. Now by

the countable additivity of probability measures, we can choose a finite number of these

subsets Vj, j ¼ 1; . . .; q; such that PðXtx
U
� VÞ is arbitrary small for V ¼ <q

j¼1Vj: Next, by

Proposition A1 and again by the countable additivity of probability measures one concludes

that by choosing m large enough one can ensure that Xs [ V for all s [ ½tm; tU
 with

probability arbitrary close to one. Since for any fixed m, Theorem 5 is applicable, one deduces

that for arbitrary positive t and e, there exists d . 0; an integer m, and an open subset

V [ U < ›Utreg such that Pðt v
U . tÞ , e for all v [ V and for any y : jy 2 xj # d; X

y

t
y
m
[ V

with probability not less than e . As t x
U and t

y
U are both less than some large (but fixed T ) for y

near x, the trajectories Xx
t and X

y
t are uniformly close to each other till the time tx

m ^ ty
m (again

with probability arbitrary close to one). Hence by the above, one can ensure that tx
U and t

y
U are

arbitrary close to each other with probability arbitrary close to one and hence by Eq. (1.14),

Xtx
U

and Xt
y
U

are also arbitrary close (notice that we use the fact that the estimates (1.14) are

uniform for all Lm, because their coefficients are uniformly bounded in any compact domain).

Hence E e juðXx
t^tx

U
Þ2 uðX

y

t^t
y
U

Þj tends to zero as y tends to x for any continuous u.

Thus we have proved that T
stop
t uðxÞ is continuous inside U, but exactly the same argument

shows that it is continuous for x [ ›Utreg: At last, the Feller property (i.e. that the set of

functions vanishing at infinity is preserved by the semigroup) in case (A3), (A4) follows

directly from Theorem 1. In case (A4 00), we notice that condition (Ap4 0) from Appendix

holds in U and the corresponding result follows from Theorem A1, if one observes that its

proof works also in the situation when (Ap4 0) holds on a cone and (Ap4) holds outside it.

Statement (ii) is obvious.

(iii) and (iv). The continuity of Exh(XtU
) is proved in exactly the same way as above.

To prove that the limit (1.18) exists, we write

Tstop
t uðxÞ ¼ ExðuðXtÞ1tU$tÞ þ ExðuðXtU

Þ1tU,tÞ; ð6:1Þ

where as usual 1M for an event M means the indicator of M that equals 1 if M holds and

vanishes otherwise. The first term here tends to zero, because we assumed that the process

leaves the domain almost surely in a finite time, and second term tends to the r.h.s.

of Eq. (1.18) by the dominated convergence theorem. If PxðtU $ tÞ! 0 as t !1 uniformly

in x, then the first term tends to zero uniformly and

ExðuðXtU
Þ1tU,tÞ2 ExðuðXtU

ÞÞ ¼ ExðuðXtU
Þ1tU$tÞ

also tends to zero uniformly in x. The invariance of Ex(u(XtU
)) is now obtained by the

application of T
stop
t to both sides of Eq. (1.18). A

Proof of Theorem 7 One just observes that all arguments given in the proof of Theorem 6

hold for ~tx
U for all x [ �U: A

We shall give now some information on the generator of the stopped process similar to

the one given for Tt in Proposition 4.1. Similar to the space C(L) used in Proposition 4.1, we
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now define the space CU(L) (the classical domain of L in U) as the space of functions

f [ C 2ðUÞ> CbðU < ›UtregÞ such that Lf [ CbðU < ›UtregÞ:

Proposition 6.1 Let the assumptions of Theorem 6 hold. Then

(i) if f [ �CUðLÞ; then T
stop
t f is a continuous function t 7! CbðU < ›UtregÞ;

(ii) if f [ CUðLÞ; Lf [ �CUðLÞ; and LfðxÞ ¼ 0 for all x [ ›Utreg; then f belongs to the

domain of the generator of the semigroup T
stop
t in the sense that limt!0ðT

stop
t f2 fÞ=t

exists in the uniform topology of CbðU < ›UtregÞ and equals Lf.

Proof

(i) If f [ CUðLÞ; then

T stop
t fðxÞ2 fðxÞ ¼ Ex

ðmin ðt;tU Þ

0

LfðXsÞ ds: ð6:2Þ

Since Lf [ CbðUÞ; it implies that T
stop
t f depends continuously on t. For general

f [ �CUðLÞ; one gets the assertion by the usual e/3-trick.

(ii) Since Lf vanishes on the boundary, one concludes that the r.h.s. of Eq. (6.2) can be

written as

Ex

ðt

0

LfðXmin ðs;tU ÞÞ ds ¼

ðt

0

T stop
s ðLfÞ ðxÞ ds:

By (i), the function T
stop
t ðLfÞ depends continuously on t. Consequently, one gets (ii) by

differentiating Eq. (6.2). A

Remark Similar result can be obtained under assumptions of Theorem 7.

Proof of Theorem 8

(i) From Theorem 6,

uðxÞ ¼ ExhðXtU
Þ [ CbðU < ›UtregÞ:

Next, T
stop
t u ¼ u: In case supx ExðtUÞ , 1; it is already proved in Theorem 6 (iv).

In general case, this is a consequence of the strong Markov property of Xt quite similar to

the case of diffusions (see Ref. [7], p.224). Consequently u [ DðL stopÞ and L stopu ¼ 0:

Hence u is a generalized solution. To show uniqueness, suppose u is a solution vanishing

at ›Dtreg. Hence T
stop
t u ¼ u and from Eq. (1.18), it follows that u ¼ limt!1 T

stop
t u ¼ 0:

(ii) If u [ C 2(Rd) > Cb(Rd), Lu ¼ 0; then u [ DðL stopÞ and L stopu ¼ 0 by Proposition 6.1 (ii)

(or simply because T
stop
t u ¼ u). If u [ C 2ðUÞ only, consider a sequence of functions

um [ C 2 > Cb; Lu [ C1 such that um coincide with u in Um and vanishes outside Umþ1:

Hence

ExuðXminðt;tmÞÞ2 uðxÞ ¼ Ex

ðminðt;tmÞ

0

LuðXsÞ ds ¼ 0;

where tm denote the exit times from Um, and by the dominated convergence theorem

T
stop
t u ¼ u; which again implies u [ DðL stopÞ and L stopu ¼ 0:

(iii) Is the same as (i). A
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PROCESSES IN Rd
1

Proof of Theorem 9

(i) This follows directly from Theorem 1 and Propositions A4, A5 (ii).

(ii) The last statement follows from Theorem A1 (see proof of Theorem 6 above). Let us

prove that Tt preserves the space of bounded functions vanishing on the boundary.

To this end, let us choose an arbitrary j [ {1; . . .; d} and let us show that

R!1; x!x0; x[U

lim Pxðt
R
e , tÞ ¼ 0; ð7:1Þ

t . 0; e . 0; uniformly for x0 from an arbitrary compact subset K of Uj, where

BR ¼ {x0 [ Uj : jx0j # R} and tR
e denotes the exit time from VR

e ¼ {x : dðx;BRÞ , e}

(d denotes the usual distance, of course). By Eq. (1.14), by taking R large enough one

can ensure that the process does not leave the domain {x [ U : jxj # R} with the

probability arbitrary close to 1 when started in x0 [ K: Let f(x) be a function

from C 2ð{x : x j . 0}Þ such that f ðxÞ ¼ ðx jÞg with some g [ ð0; 1Þ in a neighbourhood

of VR
e and vanishes outside some compact set. Then jL f ðxÞj # cf in a neighbourhood of

VR
e with some constant c and as in the proof of Proposition A6 from Appendix 3

(and taking into account that the whole boundary ›U is inaccessible) one shows that

Ex f Xmin ðt;tR
e Þ

� �
# f ðxÞect

for x from VR
e : As (up to an arbitrary small probability which allows the process to leave

the domain {x : jxj # R}Þ the l.h.s. of this inequality can be estimated from below by

Pxðte , tÞmin { f ðxÞ : x j ¼ e} ¼ Pxðte , tÞe g;

the limiting formula (7.1) follows. This formula implies that for any given time t, if the

initial point of the process tends to a boundary point, the process is obliged to stay near

the boundary the whole time t. This clearly implies that Tt f ðxÞ ¼ Ex f ðXtÞ tends to zero

as x tends to a boundary point whenever f(x) vanishes on the boundary. Consequently

the proof of Theorem 9 is completed. A

Proof of Theorem 10

(i) Notice first that the process Xt described in the Theorem is well (and uniquely) defined

due to Theorem 1, Proposition A1 and Proposition 1.1. If Yt solves the martingale

problem and does not leave Uj after reaching it, then applying the option sampling

theorem we conclude that

E f Yminðt1þt2;t2Þ

� �
2 f Yminðt1þt1;t2Þ

� �
2

ðminðt1þt2;t2Þ

minðt1þt1;t2Þ

LfðYsÞ dsjYminðt1þt1;t2Þ

� �
¼ 0

for any t1 , t2; which is precisely the condition that Yt coincides with Xt between

stopping times t1 and t2. Similar formulas are valid for tk, k ¼ 1; . . .; d and hence Yt

coincides with Xt. Similar arguments show that conversely, Xt then solves the global

martingale problem, which completes the proof of (i).

(ii) This is obtained by the same argument as in the proof of Theorem 6 by analyzing

separately the cases with t [ ½tk; tkþ1
:

(iii) Follows from the definition of a gluing boundary. A
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We shall conclude this Section with three Propositions that give some criteria for the exit times

from U that can be used to verify the corresponding assumptions from Theorem 6–8. Let us

assume for the rest of this Section that the assumptions of Proposition 1.1 (i) or (ii) hold and

U¼ Rd
þ:

The following statement shows that the deterministic case (when the generator has only

drift terms) is quite special for the treatment of the exit from Rd
þ:

Proposition 7.2 The process Xt leaves the domain U almost surely, if there exists n such

that an(x) is (strictly) positive up to the boundary ›U and either Gn – 0 or mn – 0:

Proof A key argument in the proof is based on the observation that (due to subcriticallity), the

process Zt ¼ f lðXminðt;tU ÞÞ is a positive supermartingale, and hence it has a finite limit as t !1

almost surely. Hence almost surely, there exists a compact subset U b1; b2 ¼ {x : b1 # ðl; xÞ #

b2} in U where the process lives all the time starting from some time t0. Consequently, to

prove the statement, one only needs to show that the process leaves any subset U b1b2 almost

surely using Proposition A2 from Appendix 2. If there exist n and j such that Gn
jj – 0; one takes

as a barrier function a positive function that equals f ðxÞ ¼ l21ðelR 2 elxÞ in U b, where R

and l are large enough. Next, suppose Gn ¼ 0 for all n. As mn – 0; it follows that there exists

j such that
Ð
ðl; xÞmnðdxÞ . 0: Hence, by subcriticallity

PN
n¼1ðb

n; lÞ , 0: Consequently, one

proves that Xt leaves U b1,b2 almost surely as in Proposition A8 of Appendix 3.

Let us give now some estimates on the expectation of the exit time considering separately

the subcritical and critical cases.

Proposition 7.3 Let L be strictly l-subcritical and let n be such that cn f l ¼ 2c , 0: Then

(i) if anðxÞ $ a . 0 for all x, then ExtU # ðl; xÞ=ðacÞ; (ii) if anðxÞ $ að1 þ jxj
a
Þ with some

a . 0; a . 1; then
ExtU # K min ð1; ðl; xÞÞ ð7:2Þ

for some K . 0; in particular, the expectation of the exit time is uniformly bounded in U.

Proof

(i) Follows from Proposition A2 of Appendix 2 with the barrier function f lðxÞ ¼ ðl; xÞ:

(ii) As a barrier function, let us take the function f ðxÞ ¼ gað f lððxÞÞ, where ga is a real function

such that gað0Þ ¼ 0 and g 0
að yÞ ¼ ð1 þ yÞ2a. Since f is positive increasing and does

exceed fl, it is easy to show that it satisfies the martingale condition and hence Proposition

A2 from Appendix is applicable. Next, as g 00
að yÞ , 0 for all y, it follows that the results of

the application of the diffusion part of L and the integral part depending on n n to f is

always non-positive. As g 0
a( y) is positive decreasing it follows that the result of the

application of the integral part of cn depending on mn to f is positive and does not exceed

g 0ð f lðxÞÞ
Ð
ðl; yÞmnðdyÞ at the point x, and hence, as g 0

a( y) is of order y 2a, it follows that

L f ðxÞ # 2b , 0 uniformly for all x. Hence, the statement follows from Proposition A2

and the observation that f ðxÞ # C min ð1; f lðxÞÞ for some C. A

Proposition 7.4 Let L be l-critical and let there exists n such that Gn – 0 and anðxÞ .

að1 þ jxj
1þa

Þ with some a . 0:

(i) If a . 1; then again Eq. (7.2) holds.

(ii) If a [ ð0; 1Þ, then ExtU # K min ðl; xÞa; ðl; xÞÞ.
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Proof Is the same as for Proposition 7.5 above: one uses Proposition A2 from Appendix 2

and the barrier f ¼ gað f lðxÞÞ taking into account that

tr G n ›
2f ðxÞ

›x2

� �
¼ ðGl; l Þg 00

að f lðxÞÞ

is negative and of order jxj
2ð1þaÞ

: A
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associated with a degenerate Lévy operator”, Lith. Math. J. 33(4), 352–367.

[26] Oleinik, O.A. and Radkevich, E.V. (1971) Second Order Equations with Nonnegative Characteristic Form,
(Itogi Nauki Moscow), (in Russian); English transl., AMS, Providence, RI and Plenum Press, New York, 1973.

[27] Stroock, D. and Varadhan, S.R.S. (1972) “On degenerate elliptic–parabolic operators of second order and their
associated diffusions”, Comm. Pure Appl. Math. XXV, 651–713.

[28] Taira, K. (1993) “On the existence of Feller semigroups with Dirichlet conditions”, Tsukuba J. Math. 17,
377–427.

[29] Taira, K. (1997) “Boundary value problems for elliptic pseudo-differential operators II”, Proc. R. Soc.
Edinburgh 127 A, 395–405.

[30] Taira, K. On the Existence of Feller Semigroups with Boundary Conditions. Memoirs of the American
Mathematical Society, v. 99, Number, 475, 1992.

[31] Taira, K., Favini, A. and Romanelli, S. (2001) “Feller semigroups and degenerate elliptic operators with
Wentzell boundary conditions”, Studia Mathematica 145(1), 17–53.

APPENDIX 1: ON THE EXISTENCE OF SOLUTIONS TO MARTINGALE

PROBLEMS

Here we prove a rather general existence result for the martingale problem corresponding to

a pseudo-differential (or integro-differential) operator of the form

LuðxÞ ¼ tr GðxÞ
›2

›x2

� �
uðxÞ þ ðbðxÞ;7ÞuðxÞ

þ

ð
ðuðx þ yÞ2 uðxÞ2 1jyj#1ð y;7ÞuðxÞÞnðx; dyÞ;

ðAp1Þ

where 1M( y) is an indicator function for a set M (that equals one or zero respectively for

y [ M and y � M), n (x, )̇ is a Lévy measure for all x (i.e. it is a Borel measure on Rd such

that n ðx; {0}Þ ¼ 0 and
Ð

min ð1; y2Þn ðx; dyÞ , 1Þ; and GðxÞ ¼ ðGijðxÞÞ; bðxÞ ¼ ðbjðxÞÞ; i; j ¼

1; . . .; d; are respectively non-negative matrix and vector valued functions on Rd.

We shall denote by XtðvÞ ¼ vðtÞ; v [ D _Rd ½0;1Þ; the canonical projections of

the Skorokhod space and by F t ¼ sðXs : s # tÞ the corresponding canonical filtration.

For a given probability measure h on Rd, a probability measure Ph on DRd ½0;1Þ

(respectively on D _Rd ½0;1Þ) is called a solution to the martingale problem for L and the initial

measure h with sample paths in DRd ½0;1Þ (respectively in D _Rd ½0;1ÞÞ if the distribution of

X0 under Ph coincides with h and if for all f [ Cc > C 2 the process

fðXtÞ2

ðt

0

LfðXsÞ ds ðAp2Þ

is an Ft-martingale with respect to Ph. If for all initial distributions h there is a unique solution,

then the martingale problem is called well-posed. For some abuse of notations we shall

write shortly Px for Pdx
for any x [ Rd; and we shall denote by Ex the corresponding expectation.

The following result (and its proof) generalizes Theorem 3.2 from [Ho2], where the case of

bounded real symbols was considered.

Theorem A1

(i) Suppose that the symbol

pðx; j Þ ¼ ðGðxÞj; j Þ2 iðbðxÞ; j Þ þ

ð
1 2 e ijy þ i1jyj#1ð yÞðj; yÞ
� �

n ðx; dyÞ ðAp3Þ

V.N. KOLOKOLTSOV30



of the operator (2L) is continuous, jGðxÞj ¼ Oðx2Þ;
Ð
jyj#1

y2nðx; dyÞ ¼ Oðx2Þ; jbðxÞj ¼

OðjxjÞ as x !1 and either

x
sup

ð
jyj.1

nðx; dyÞ , 1 ðAp4Þ

orð
jyj.1

jyjn ðx; dyÞ ¼ OðjxjÞ; supp n ðx; _Þ> {jyj . 1} , {y : jy þ xj . jxj}: ðAp4 0Þ

Then the martingale problem corresponding to L has a solution Ph with sample paths in

DRd ½0;1Þ for any initial probability distribution h.

(ii) If (i) with (Ap4 0) holds, or (i) with (Ap4) holds together with a stronger condition

x
sup

ð
jyj.1

jyjn ðx; dyÞ , 1; ðAp5Þ

then

ExjXtj # ð1 þ jxjÞ eCt ðAp6Þ

for all x and t . 0 with some constant C, and for any (strictly) positive f [ C 2 such that

jf 0ðxÞj is bounded and jf 00ðxÞj ¼ Oð1Þð1 þ jxjÞ21; the process (Ap2) is a Px-martingale.

(iii) If (i) holds and moreover

x
sup

ð
jyj.1

jyj
2
n ðx; dyÞ , 1;

then

ExðjXt 2 xj
2
Þ # ð1 þ jxj

2
Þ ðeCt 2 1Þ ðAp7Þ

for all t and process of type (Ap2) is a martingale for any f [ C 2 with uniformly

bounded second derivative. Moreover, if all coefficients are bounded, i.e. G(x), b(x),Ð
jyj#1

y2n ðx; dyÞ are bounded, then for any T . 0 and a compact set K , Rd

P
s#t
sup jXx

s 2 xj . r

 !
#

t

r
CðT;KÞ ðAp8Þ

for all t # T and x [ K with some constant C(T, K).

Proof

(i) Writing L ¼ L0 þ L1 with

L1uðxÞ ¼

ð
{jyj$1}

ðuðx þ yÞ2 uðxÞÞn ðx; dyÞ;

and using a perturbation theory result (Proposition 10.2 from Chapter 4 of Ref. [5])

one concludes that if (Ap4) holds, the existence of the solutions to the martingale

problem for the operator L0 with sample paths in DRd ½0;1Þ implies the existence for

the same martingale problem for the operator L. This reduces the proof of Theorem A1
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to the case when either the support of all measures n (x, )̇ is contained in a unit ball or

(Ap4 0) holds. But in this case it is known (see Theorem 5.4 from Chapter 4 of

Ref. [5]) that there exists a solution to the martingale problem with the sample paths

in D _Rd ½0;1Þ: So, one needs to prove only that the paths of this solution lie in

DRd ½0;1Þ almost surely. Notice also that it is enough to prove this for initial measures

of type dx only.

First suppose that the coefficients of the generator L are bounded, i.e. (A5) holds,

and the functions G(x), b(x) and
Ð
jyj#1

jyj
2
n ðx; dyÞ are bounded. Choose a positive

increasing smooth function fln on Rþ such that f ln ð yÞ ¼ ln y for y $ 2: We claim that

the process (Ap2) is a martingale for fð yÞ ¼ f ln ðjyjÞ under any Px. Here one needs to

be a bit cautious because the function fln (jyj) does not belong to Cc > C 2: However,

approximating it by the increasing sequence of positive functions gnð yÞ ¼

f ln ðjyjÞxðjyj=nÞ; n ¼ 1; 2; . . .; where x is a smooth function ½0;1Þ 7! ½0; 1Þ which

has a compact support and equals 1 in a neighborhood of the origin, noticing that

jLgnðxÞj is a uniformly bounded function of x and n (because gn and g 0
n are uniformly

bounded and the coefficients of L are uniformly bounded) and using the dominated

convergence theorem we justify the martingale property of (Ap2) with f ¼ f ln ðjyjÞ:

Hence Ex f ln ðXtÞ # f ln ðxÞ þ ct with some constant c . 0: From Doob’s martingale

inequality we conclude that

Px
0#s#t
sup f ðjXsjÞ $ r

 !
#

Cðt þ f ln ðxÞÞ

r
ðAp9Þ

for all r . 0 and some C . 0: This clearly implies that, almost surely, the paths do

not reach infinity in finite time, which completes the proof for the case of bounded

coefficients.

In general case, we approximate G(x),b(x) and n (x, )̇ by a (uniformly on compact sets)

converging sequence of bounded Gm, bm, nm such that all estimates required in (i) are

uniform for all m and all operators Lm obtained from L by changing G, b, n by Gm, bm, nm

respectively have bounded coefficients. It follows that jLmfðxÞj is a uniformly bounded

function of m and x for fð yÞ ¼ f ln ðjyjÞ: But the processes (Ap2) with this f and with Lm

instead of L is a martingale (as was shown above). Hence we conclude that Em
x f ln ðXtÞ #

f ln ðxÞ þ ct uniformly for all m. Again by Doob’s inequality it implies that (Ap9) holds

uniformly for all processes Xm
t defined by Lm. In turn, this implies the so called compact

containment condition for the family of processes Xm
t (or the corresponding measures Pm

x Þ;

i.e. that for every e . 0 and every T . 0 there exists a compact set Ge ;T , Rd such that

m
inf Pm

x {Xt [ Ge ;T for all t [ ½0; T 
} $ 1 2 e : ðAp10Þ

Hence by a well known criterion (see Lemma 5.1 and Remark 5.2 from Chapter 4 of

Ref. [5]) the family of measures Pm
x on DRd ½0;1Þ or the corresponding processes X

x;m
t is

relative ly compact, and its limit will solve the martingale problem for the operator L.

(ii) Process (Ap2) is surely a martingale for f [ C 2 > Cc and for their shifts on

constants. Let

rðxÞ ¼

jxj; jxj $ 1

1 þ jxj
2


 �
=2 jxj # 1

8<
: ðAp11Þ
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and for n . 1

rnðxÞ ¼

rðxÞ; jxj # n

2n; jxj $ 2n

2n 2 ðjxj2 2nÞ2=n; n # jxj # 2n

8>><
>>: ðAp12Þ

Then each rn can be obtained by shifting a function with a compact support by a

constant and hence (Ap2) is a martingale for each rn. (Strictly speaking, the second

derivative of rn is not continuous everywhere, but one can approximate it by

infinitely smooth functions having the same estimates on its first and second

derivatives.) Hence

ExrnðXtÞ ¼ rnðxÞ þ

ðt

0

ExLrnðXsÞ ds ðAp13Þ

As jr 0
nðxÞj are uniformly bounded and jr 00

nðxÞj # Cð1 þ jxjÞ21 with some C for all n

and x, one concludes that

LrnðxÞ # KrnðxÞ

with some K . 0 uniformly for all n and x (by inspection, considering separately

the cases when jxj # n; jxj $ 2n and n # jxj # 2n and the three terms in the

expression for L). Hence from Eq. (Ap13) and Gronwall’s lemma one gets

ExrnðXtÞ # rnðxÞe
Kt ðAp14Þ

with some K . 0 uniformly for all n and x. As rnðxÞ is an increasing sequence of

functions converging to r(x) this implies by the monotone convergence theorem

that

ExjXtj # Ex r ðXtÞ # r ðxÞeKt # ð1 þ jxjÞ eKt:

Next, for any f from the condition (ii) of the theorem, let us take a sequence

gnðxÞ ¼ fðxÞxðjxj=nÞ where x is an infinitely differentiable non-increasing function

on Rþ with a compact support taking value in [0,1] and equal to 1 in a

neighborhood of the origin. Then all gn have compact support and the process

(Ap2) with gn for f is a martingale. As one sees by inspection jLgnðxÞj #

Kð1 þ jxjÞ with some constant K . 0 uniformly for all n. As Exð1 þ jXtjÞ is already

proved to be bounded, one can apply the dominated convergence theorem to the

sequence gn to obtain the required result for its limit f.

(iii) This is quite similar to (ii). Namely, one first gets the result for the function

fðxÞ ¼ 1 þ jxj
2

approximating it by the sequence

fnðxÞ ¼
1 þ x 2; jxj # n

1 2 n2 þ 2nx jxj $ n

(

and then for general f(x) approximating it by fðxÞxðjxj=nÞ: One gets (Ap7) picking

up fð yÞ ¼ ð y 2 xÞ2 and then using Gronwall’s lemma.

At last, to prove (Ap8), picking up fð yÞ ¼ ð y 2 xÞ2 and using the martingale

property yields now ExðjXt 2 xj
2
Þ ¼ OðtÞ uniformly for all x and then applying
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Doob’s inequality yields the estimate

rPx
s#t
supðjXs 2 xj

2
þ OðtÞjXt 2 xj

2
þ OðtÞÞ . r

 !

# 3
s#t
sup Ex jXt 2 xj

2
þ OðtÞjXt 2 xj

2
þ OðtÞ


 �
;

which implies Eq. (Ap8) for small enough t. For finite t the result is

straightforward.

Corollary Under conditions of Theorem A1 (i) suppose additionally that the

solution to the martingale problem is unique, and hence this problem is well defined.

Then

(i) the corresponding process is a Feller process, i.e. its semigroup Tt preserves the

space C1(Rd);

(ii) if f [ C 2 > C1 is such that x2f 00 [ C1 and jxjf 0 [ C1; then Lf [ C1 and f

belongs to the domain D(L) of the generator L, i.e. limt!0 ðTtf2 fÞ=t ¼ Lf in the

uniform topology of the space C1.

Proof

(i) Suppose first that the function (Lgy)(x) is uniformly bounded as a function of two

variables, where gyðxÞ ¼ rðx 2 yÞ with r from Eq. (Ap11) (this holds, say, if the

coefficients of L are bounded). Then, applying the statement of Theorem A1 (ii) to

the function gy yields the estimate EyjXt 2 yj # KeKt with some K . 0 uniformity

with respect to all y. Hence Pðsup0#s#t jXs 2 yj . rÞ tends to zero as r !1

uniformly for all y. Consequently, for a f [ C1ðR
dÞ; one has Ey f ðXtÞ! 0 as

y !1:

Returning to the general case, first observe that due to the standard perturbation

theory result (if A generates a Feller semigroup and B is bounded and satisfies the

positive maximum principle, then A þ B generates a Feller semigroup), it is enough

to prove the statement under additional assumption that either all measures n(x, )̇

have a support in the unit ball or (Ap4 0) holds. In this case, changing the variable

x 7! ~x where ~xðxÞ is a diffeomorphism of Rd such that ~x ¼ x for jxj # 1; ~x=j~xj ¼

x=jxj for all x, and j~xj ¼ ln jxj for jxj $ 3 allows to reduce the problem to the case

of an operator ~L defined as ð ~LgÞð~xÞ ¼ ðL f Þðxð~xÞÞ that has the same structure as L but

has bounded drift and diffusion coefficients. Moreover, one observes that ~Lgyð~xÞ is

uniformly bounded as a function of two variables y and ~x: In fact, this is equivalent

to the statement that L fz(x) is uniformly bounded, where f zðxÞ ¼ rð~x 2 zÞ; and the

latter follows from the fact f 0
zðxÞ ¼ Oðjxj

21
Þ uniformly for all z. Hence the previous

arguments work for ~L; which completes the proof. A

(ii) If, say, Eq. (Ap5) holds, it follows that

x
supn

�
x; {Rd\{y : jyj . r}}

�
#

1

r x
sup

ð
Rd \{y:jyj.r}

jyjn ðx; dyÞ! 0
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as r !1; which implies thatð
Rd \{y:jyj.1}

fðx þ yÞn ðx; dyÞ! 0

as x !1 for any f [ C1: This implies that Lf [ C1 for any f from the

conditions (ii). Next, using the martingale property (statement (ii) of Theorem A1),

we find that

ExfðXtÞ2 fðxÞ ¼

ðt

0

Ex Lf ðXsÞ ds

and hence

TtfðxÞ2 fðxÞ ¼

ðt

0

Ts ðLfÞ ðxÞ ds:

As Lf [ C1; TsðLfÞ is a continuous function s 7! C1; which implies that

limt!0ðTtf2 fÞ=t ¼ Lf: The proof is complete. A

Remarks (1) The statement (i) of this corollary is a particular case of a result claimed in

Ref. [3]. However, the general result from Ref. [3] seems to be erroneous as can be seen

already on a simple deterministic process with generator 2x 3ð›=›xÞ on the line, whose

martingale problem is well posed but the corresponding group is not Feller in the sense that it

does not preserve the set of functions vanishing at infinity. (2) Clearly statement

(ii) still holds if instead of (Ap5) one assumes only that supx n ðx; {Rd \ {y : jyj . r}}Þ! 0

as r ! 0:

APPENDIX 2: EXIT FROM DOMAIN AND CLASSIFICATION OF BOUNDARY

POINTS

Let U be an open subset of Rd and let L be given by Eq. (Ap1) in U, i.e. G(x), b(x), n (x, )̇ are

well defined continuous functions on �U: Let Uext be define as

Uext ¼ { <x[U supp n ðx; _Þ} < U

We shall say that U is transmission admissible (with respect to L), if U ¼ Uext:

Remark This terminology stems from the observation that L satisfies the so called

transmission property (see e.g. [10] and references therein) in U whenever U is transmission

admissible by our definition.

From now on, we shall fix some U and L assuming that at least one of the following two

conditions holds.

(U1) The domain U is transmission admissible and the operator L can be extended to an

operator on the whole Rd of form (Ap1) (which we shall again denote by L) in such a way

that its symbol is continuous and the corresponding martingale problem is well-posed

(for instance, Theorem 1 or the results from Refs. [17,18] or Ref. [12] are applicable).

As above, we shall denote by Xt the corresponding strong Markov process with sample paths

in DRd ½0;1Þ and by Px the corresponding distribution on the path space when the process

starts at x.
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(U2) There is a sequence of transmission admissible subdomains Um of U such that
�Um , Umþ1 for all m, <1

m¼1Um ¼ U and the operator Lm obtained from L by the restriction

to Um can be extended to an operator on Rd of form (Ap1) (which we again denote by Lm) in

such a way that (i) its symbol is continuous, (ii) the corresponding martingale problems are

well posed, (iii) for any compact set K , Rd

x[K>U
sup

ð
min ð y; y2Þn ðx; dyÞ , 1

(iv) for the corresponding Markov processes Xt, m the following uniform compact

containment condition holds: for any e . 0; T . 0 and a compact set K , Rd; there exists

a compact set Ge ;T ;K , Rd such that

PxðXt;m [ Ge ;T ;K ; t [ ½0; T 
Þ $ 1 2 e

holds for all m and all x [ K:

There is a large variety of notions of regularity for boundary points of U. This Appendix is

devoted to a discussion of the basic notions of regularity, where we are going to be more general

than in usual texts on diffusions (see e.g. Refs. [7,27]), but at the same time more concrete than in

general potential theory (see Ref. [2]). In particular, we shall propose some generalization of

the notion of the entrance boundary from the theory of one-dimensional diffusions

(see e.g. Ref. [23]) to the case of processes with general pseudo-differential generators. Notice

also that (U1) is a usual simplifying assumption for dealing with subdomains, for example,

the results of Refs. [7,10] are formulated subject to this assumption. For our purposes,

a generalization to (U2) is of vital importance (see Refs. [18,19]).

For an open D , U (including D ¼ U) the exist time tD from D is defined as

tD ¼ tx
D ¼ inf t $ 0 : Xx

t � D or Xt2 � D
� �

ðAp15Þ

if (U1) holds or as tD ¼ limm!1 tD>Um
if (U2) holds. Clearly, if D itself is transmission

admissible and (U1) holds, then

tD ¼ inf{t : Xx
t [ ›D} ðAp16Þ

(where ›D is the boundary of D), and the trajectories of Xx
t are almost surely continuous at

t ¼ tD: We need a similar characterization of tD for the case (U2).

Proposition A1

(i) Under condition (U2), if tU ¼ limm!1 tUm
, 1; then almost surely there exists a

limit limm!1 Xm;tUm
and it belongs to ›U.

(ii) The stopped process X
stop
t in �U is correctly defined by

(1) X
stop
t ¼ Xmin ðt;tU Þ in case (U1),

(2) X
stop
t ¼ Xt for t # tUm

for some m and X
stop
t ¼ limm!1 Xm;tm

for t $ limm!1 tUm

in case (U2).
(iii) In case (U2) suppose additionally that Lf [ Cb whenever f [ C 2 > Cc: The stopped

process in (ii) is the unique solution of the stopped martingale problem in U, i.e. for any

initial probability measure h on U it defines a unique measure Pstop
h on D �U½0;1Þ such

that X0 is distributed according to h, Xt ¼ Xminðt;tU Þ almost surely and

fðXtÞ2 fðX0Þ ¼

ðminðt;tU Þ

0

LfðXsÞ ds

is a Pstop
h -martingale for any f [ C 2ðRdÞ> CcðR

dÞ:
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Proof

(i) The compact containment condition reduces the problem to the case when the

coefficients of all Lm are uniformly bounded. In fact, since changing the generator

outside a domain does not change the behaviour of the process inside this domain

(see e.g. Theorem 6.1 from Chapter 4 of Ref. [5] for a precise formulation of this

result), one can change L to some ~L by multiplying by an appropriate smooth function

a(x) outside a given compact set to get an operator with bounded coefficients with all

other conditions preserved. Next, again by the compact containment condition there

exists, almost surely, a finite limit point of the sequence Xm, tUm
which clearly belongs

to ›U. At last, it follows from Eq. (Ap8) that this limit point is unique, because if one

suppose that there are two different limit points, y1 and y2, say, the process must

perform infinitely many transitions from any fixed neighbourhood of y1 to any fixed

neighbourhood of y2 and back in a finite time, which is impossible by (Ap8) and

condition (iii) of (U2) that ensures that (Ap8) holds uniformly for all processes Xt,m.

In fact, the probability of at least n jumps is of order t n/n!.

(ii) This is a direct consequence of (i).

(iii) In case (U1) this is a consequence of a general Theorem 6.1 from Chapter 4 of

Ref. [5]. In case (U2), from the same general result, it follows that the stopped (at

Um) processes X
stop
t;m give unique solutions to the corresponding stopped martingale

problem in Um, and by the dominated convergence theorem we get from (i) that X
stop
t

is a solution to the stopped martingale problem in U. Uniqueness is clear, because

the (uniquely defined) stopped processes X
stop
t;m defines X

stop
t uniquely for t , tU ; and

hence up to tU inclusive (due to (i)). After tU the behaviour of the process is fixed

by the definition. Thus, Proposition is proved. A

We shall say that the process Xt leaves a domain D , U almost surely (respectively with

a finite expectation) if PxðtD , 1Þ ¼ 1 for all x (respectively if ExtD , 1 for all x [ D).

Definition We shall say that

(i) a point x0 [ ›U is t-regular if for all t

x!x0
lim PxðtU . tÞ ¼ 0; ðAp17Þ

(ii) a point x0 [ ›U is normally regular, if there exists a neighborhood V of x0 such that

x!x0; x[U
lim sup

ExtU>V

jx 2 x0j
, 1;

(iii) a subset G , ›U is inaccessible if PxðXtU [ G; tU , 1Þ ¼ 0 for all x [ U;

(iv) a point x0 [ ›U is called an entrance boundary if for any positive t and e there exist an

integer m and a neighbourhood V of x0 such that Pðtx
U\Um

. tÞ , e and Pðtx
U\Um

¼

tx
UÞ , e for all x [ V > U; where Um are the domains from condition (U2), if (U2)

holds, or Um ¼ {x [ U : rðx; ›UÞ . 1=m} in case (U1) holds (r denotes the usual

distance).

We shall denote by ›Utreg the set of t-regular points of U (with respect to some given

process).
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Remarks Notice that a point from an inaccessible set can be nevertheless normally regular.

The notion of t-regularity is the key notion for the analysis of the continuity of stopped

semigroups (see Theorems 1.6, 1.7) and the corresponding boundary value problems. The

normal regularity of a point is required if one is interested in the regularity of the solutions to

a boundary value problem beyond the simple continuity (see e.g. Ref. [7] for the case of

degenerate diffusions under condition (U1)).

For the analysis of the exit times from a domain and for the classification of the boundary

points, the major role is played by the method of barrier (or Lyapunov) functions, which is

essentially contained in the following simple statement.

We shall say that f [ C 2 satisfies the martingale condition, if (Ap2) is a martingale for all

measures Px in case (U1) or the same holds for all Lm in case (U2). By definition, all

f [ C 2 > Cc satisfy the martingale condition, but not vice versa.

Proposition A2 Method of barrier function. Let f [ C 2 satisfy the martingale condition

and be non-negative in Dext for some D , U:

(i) If L f ðxÞ # 0 for x [ D; then for all t . 0 and x [ D

f ðxÞ $ Exð f ðXmin ðt;tDÞÞÞ:

If, moreover, f is bounded and the process leaves D almost surely, then also f ðxÞ $

Exð f ðXtD
ÞÞ:

(ii) If L f ðxÞ # 2c for x [ D with some c . 0; then

f ðxÞ $ cExðmin ðt; tDÞÞ:

In particular, the process leaves the domain D almost surely and ExðtDÞ # f ðxÞ=c:

Proof Consider the case (U2) only (the case (U1) being clearly simpler). Let Dm ¼

D > Um: As f satisfies the martingale condition,

Ex f Xmin ðt;tDm Þ

� �
¼ f ðxÞ þ Ex

ðmin ðt;tDm Þ

0

L f ðXsÞ ds;

which implies the statements of the Proposition concerning min (t,tD) (using also Fatou’s lemma

for the statement (i)). To get the corresponding results for tD one takes a limit as t !1 and

uses the dominated convergence theorem in (i), and the monotone convergence theorem in (ii).

From Proposition A2, one can deduce some criteria for transience and recurrence for

processes with pseudo-differential generators (see e.g. Ref. [22]). We shall use it now to

deduce some criteria of t-regularity and inaccessibility generalizing the corresponding results

from Ref. [7] devoted to diffusion processes under condition (U1).

Proposition A3 Suppose x0 [ ›U; f [ C 2ðUÞ satisfies the martingale condition (or, in

case (U2), the restrictions of f to Um can be extended to C 2(Rd) functions that satisfy the

martingale conditions for Lm), f ðx0Þ ¼ 0; and f ðxÞ . 0 for all x [ �U\{x0}: Suppose there

exists a neighbourhood V of x0 such that L f ðxÞ # 2c for x [ U > V with some c . 0: Then

x0 is a t-regular point and

ExðtV>UÞ # f ðxÞ=c ðAp18Þ

for x [ V > U: In particular, if f ðxÞ # jx 2 x0j for x [ V > U; then x0 is normally regular.
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Proof Proposition A2 implies (Ap18). Hence ExðtV>UÞ! 0 as x ! 0: And consequently

PxðtV>U . tÞ! 0 as x ! x0 for any t . 0: Next, by Proposition A2 (i), for x [ U > V

f ðxÞ $ Ex f ðXtV>U
Þ ¼ Exð f ðXtU

Þ1tV>U¼tU
Þ þ Exð f ðXtV>U

Þ1tV>U,tU
Þ

$
y[U\V
min f ð yÞPxðtV>U , tUÞ;

where 1M for an event M denotes the indicator function of M. Hence PxðtV>U , tUÞ! 0 as

x ! x0: Consequently,

PxðtV>U , t and tV>U ¼ tUÞ! 1

as x ! x0; x [ V > U; and so does

PxðtU , tÞ . PxðtU , t and tV>U ¼ tUÞ ¼ PxðtV>U , t and tV>U ¼ tUÞ: A

Proposition A4

(i) Let G be a subset of the boundary ›U. Suppose there is a neighbourhood V of G and a

twice continuously differentiable non-negative function f on U such that f vanishes

outside a compact subset of Rd, L f ðxÞ # 0 for x [ V > U; and f ðxÞ!1 as x ! G;

x [ V > U: Then G is inaccessible.

(ii) Suppose x0 [ ›U and V is a neighbourhood of x0 such that the set V > ›U is

inaccessible. Suppose for any d . 0; there exist a positive integer m and a non-negative

function f [ C 2 > Cc such that f ðxÞ [ ½0; d 
 and L f ðxÞ # 21 for x [ V > ðU\UmÞ:

Then x0 is an entrance boundary.

Proof

(i) As U is transmission admissible, it is enough to prove that G is inaccessible for the

domain V > U: Let us give a proof in case of the condition (U2) only (the other case

being similar). For any m, let us choose a function f m [ C 2 > Cc that coincides with f

in Um. For any r . 0 there exists a neighbourhood Vr of G such that �Vr , V and

inf {f ð yÞ : y [ Vr > U} $ r: By Proposition A2, for x [ Um > V ;

f ðxÞ ¼ f mðxÞ $ Ex f m Xmin ðt;tUm>V Þ

� �
$ min { f mð yÞ : y [ Vr > ›Um}

PxðtðUm>VÞ # t; XtUm>V
[ VrÞ

Hence

Px tðUm>VÞ # t; XtUm>V
[ Vr

� �
# f ðxÞ=r

for all t, and consequently

Px tðU>VÞ # t; XtU>V
[ Vr > ›U

� �
# f ðxÞ=r:

Hence

Px tðU>VÞ # 1; XtU>V
[ Vr > ›U

� �
# f ðxÞ=r:

Since >1
r¼1Vr . G; the proof of (i) is complete.
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(ii) First by reducing t, if necessary one can ensure that the probability of leaving V > U in

time t is arbitrary small (because V > ›U is inaccessible and because the coefficients of

L are uniformly bounded which implies Eq. (1.14)). Next, by the Chebyshev inequality

and Proposition A2 we conclude that

P tx
V>ðU\UmÞ

. t

 �

#
1

t
Ex tV>ðU\UmÞ

� �
#

1

t
f ðxÞ #

d

t

for x [ V > ðU\UmÞ; which can be made arbitrary small because d is arbitrary small.

In Appendix 3, we shall show how one can use the general results obtained above in order

to obtain more concrete criteria (in terms of the coefficients of L). Now we shall give only the

following simple (but important) consequences to Proposition A1.

Proposition A5

(i) Under conditions of Proposition A1 (iii) suppose that G [ ›U is inaccessible and

LfðxÞ ¼ 0 for any x [ ›U\G and any f [ C 2 > Cc: Then for any x [ U; the stopped

process X
stop
t defines the unique distribution Px on D �U½0;1Þ such that X0 ¼ x and

Xt ¼ Xmin ðt;tU Þ almost surely, and Eq. (Ap2) is a martingale for any f [ C 2 > Cc:

(ii) If

m!1
lim Pðtm # tÞ ¼ 0 ðAp19Þ

almost surely for any t and any initial probability measure on U (in particular, (Ap19) is

satisfied, if for any x0 [ ›U there exists a neighbourhood G of x0 in ›U such

that Proposition A4 holds), then for any measure h on U there exists a unique measure

Ph on the Skhorohod space DU[0,1) such that Eq. (Ap2) is a Ph-martingale for any

f [ C 2ðUÞ> CbðUÞ vanishing outside a bounded domain of Rd. Moreover, this measure

defines a strong Markov process where the semigroup Tt preserves the space Cb(U).

(iii) Under condition (ii), if both (U1) and (U2) hold, then the semigroup Tt of the corresponding

Markov process in U preserves the subspace Cbð �UÞ:

Proof

(i) It follows from Proposition A1 (iii) and the observation that

ðmin ðt;tuÞ

0

LfðXsÞ ds ¼

ðt

0

LfðXsÞ ds

under conditions from (i).

(ii) For f [ C 2 > Cc the required martingale property follows again from Proposition A1,

or in this particular case, it is in fact a direct consequence of Theorem 6.3 from

Chapter 4 of Ref. [5]. Forf [ C 2ðUÞ> CbðUÞ> CcðR
dÞ; it follows by first considering

the stopped martingale problems in Um and then as usual by the dominated convergence

theorem. The last statement follows from Theorem 5.11 (b), (c) from Chapter 4 of

Ref. [5],

(iii) By the same theorem 5.11 (b), (c) from Chapter 4 of Ref. [5], under (U1), (U2), the

semigroup Tt of the process defined by L preserves the space Cb(Rd). Since Ttf ¼ T
stop
t f

for all x [ U and all f [ C 2ðRdÞ> CcðR
dÞ; it follows that T

stop
t f [ Cbð �DÞ for these f.

As C 2ðRdÞ> CcðR
dÞ is dense in Cbð �DÞ; the required statement follows. A
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APPENDIX 3: EXAMPLES OF BARRIER FUNCTIONS

In this Appendix, we shall show how one can choose barrier functions in Propositions

A2–A4 above in order to obtain the corresponding criteria in terms of the coefficients of the

generator L of form (Ap1). More precisely, we shall consider the operator ~L given by

~L f ðxÞ ¼ L f ðxÞ þ

ð
ð f ðx þ yÞ2 f ðxÞÞmðx; dyÞ ðAp20Þ

where m is a Borel measure on Rd\{0} such that
Ð
jyjmðx; dyÞ is finite for all x and L is of form

(Ap1). Surely ~L can be written in form (Ap1), but it is convenient to have special criteria for

integral terms written in a form with m above (which is possible to do when a Lévy measure

has a finite first moment).

We are going to give local criteria for points lying on smooth parts of the boundary

(however, they can be used also for piecewise smooth boundaries, see Remark 2 after

Proposition A6). Since locally all these parts look like hyper-spaces (can be reduced to them

by an appropriate change of the variables), we shall take U here to be the half-space

U ¼ Rþ £ Rd21 ¼ ðz; vÞ [ Rd : z . 0; v [ Rd21
� �

and we shall denote by bz and bv the corresponding components of the vector field b and by

Gzz(x) the first entry of the matrix G(x). We shall assume that the supports of all n (x, )̇ and

m(x, )̇ belong to U and that condition (U2) holds with Um ¼ {z . 1=m}: Let us pick up

positive numbers a and r, and for any e . 0 let

Ve ¼ {z [ ð0; aÞ; jvj # r þ e}: ðAp21Þ

Proposition A6 If

bzðxÞ ¼ OðzÞ; GzzðxÞ ¼ Oðz2Þ;

ð
~z2n ðx; d~xÞ ¼ Oðz2Þ; ðAp22Þ

in Ve, then the ball {ð0; vÞ : jvj # r} belongs to the inaccessible part of the boundary ›U.

Remark 1 As one could expect, the measure m does not enter this condition at all.

Remark 2 This criterion can also be used for piecewise smooth boundaries. For example,

let ~U ¼ U > {v : v1 . 0} and condition (Ap22) holds in Ve > ~U: Then the same proof as

below shows that {jvj # r} > {v : v1 . 0} is inaccessible. The same remark concerns

other Propositions below.

Proof A direct application of Proposition A4 is not enough here, but a proof given below is

in the same spirit. Let a non-negative f [ C 2ðUÞ be such that it is decreasing in z, equals 1/z

in Ve and vanishes for large v or z. By fm we denote a function f [ Cc > C 2 that coincides

with f in Um. Let tm denote the exit time from V > Um: Condition (Ap22) implies that
~Lf ðxÞ # cf ðxÞ for all x [ V and some constant c $ 0: Hence, considering the stopped

martingale problem in V > Um and taking as a test function f m [ C 2 > Cc one obtains that

Ex f Xmin ðt;tmÞ

� �
2 f ðxÞ ¼ Ex

ðmin ðt;tmÞ

0

~Lf ðXsÞ ds

# cEx

ðmin ðt;tmÞ

0

f ðXsÞ ds # cEx

ðt

0

f ðXmin ðs;tmÞÞ ds:
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Consequently, applying Gronwall’s lemma yields the estimate

E x f ðXmin ðt;tmÞÞ # f ðxÞect:

Hence

Pxðtm # t; Xtm
[ ›Um > Ve Þ #

1

m
f ðxÞ ect;

which implies that (a neighbourhood of) G is inaccessible by taking the limit as m !1: A

Proposition A7 Suppose there exist constants 0 # d1 , d2 # 1 such that

GzzðxÞ ¼ O z1þd2
� �

;

ð
z2n ðx; d~xÞ ¼ Oðz1þd2 Þ

in Ve and also either

bjðxÞ $ vzd1

or bjðxÞ $ 0 and ð
Ve>{z# ~z# 3z=2}

~zmðx; d~xÞ $ vzd1

in Ve /2 with some v . 0: Then the ball {ð0; vÞ : jvj # r} belongs to the inaccessible part of

the boundary.

Proof This is a direct consequence of Proposition A4, if one takes the same function f from

Proposition A6 above to be a barrier function and observes that under the given conditions

the diffusion term and the integral term depending on n in ~L are both of order Oðzd222Þ and

either the drift term is negative of order zd122 and the integral term depending on m is

negative (because f is decreasing in z) or the drift term is negative and the integral term

depending on m is negative of order zd122: A

Proposition A8 Suppose that for jvj # r þ e either Gzz(0,v) does not vanish, orð
Ve=2>{~z#b}

~z2n ðð0; vÞ; d~xÞ $ vbd

with some d . 0; v . 0 and all sufficiently small b, or bzð0; vÞ , 0: Then the origin 0

belongs to ›Utreg.

Proof Let us prove that 0 [ ›Utreg: Let f be defined as

f ðxÞ ¼
cv2 þ z 2 bz 2; z , 1=2b

cv2 2 1
4b
; z $ 1

2b

8<
:

in Ve and belongs to C 2 and is bounded from below and above by some positive constants.

Then

~Lf ð0; vÞ ¼ bzð0; vÞ2 2bGzzð0; vÞ þ

ð
min ð~z 2 b~z2;

1

2b
Þmðð0; vÞ; d~xÞ

þ

ð
min

�
~z 2 b~z2;

1

2b
2 ~z

�
n ðð0; vÞ; d~xÞ þ OðcÞ:
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Clearly the integral term depending on m tends to zero as b !1; the integral depending on n

over the subset ~z $ 1=2b is negative. Hence

~Lf ð0; vÞ # bzð0; vÞ2 2bGzzð0; vÞ2 b

ð
Ve>{~z#1=2b}

~z2n ðð0; vÞ; d~xÞ þ oð1Þ;

where o(1) tends to zero if c ! 0; b !1; and z ! 0: Clearly, if bz , 0; this expression

becomes negative (for small c and large b), and otherwise, other two assumptions of the

Proposition ensure that this expression becomes negative for large enough b . 0: By

continuity, it will be negative also for (z,v) with small enough z. Consequently, the

application of Proposition A3 completes the proof. A

Proposition A9 Suppose Gzz ðz; vÞ ¼ kðvÞ z ð1 þ oð1ÞÞ as z ! 0 in Ve. (i) If kðvÞ . b1ðvÞ

for jvj # r þ e ; then the ball {jvj # r} belongs to ›Utreg. (ii) If kðvÞ , b1ðvÞ for jvj # r þ e ;

then the ball {jvj # r} belongs to the inaccessible part of the boundary.

Proof (i) As a barrier function, let us take f that equals zg þ cv2 with a g [ ð0; 1Þ in Ve and

is smooth and bounded from below and above by positive constants outside. Then near the

boundary the sum of the drift and the diffusion terms of L f is

gzg21ðb1 2 ð1 2 gÞkþ oð1ÞÞ;

which can be made negative by choosing small enough g. The integral term

depending on n is negative and the integral term depending on m can be made small by

changing f outside an arbitrary small neighbourhood of the boundary. Then the origin

belongs to ›Utreg by Proposition A3, and similarly one deals with other points of {jvj # r}:

(ii) This follows from Proposition A4 if one uses the same barrier function as in Propositions

6 and 7 above.

The set where kðvÞ ¼ b1ðvÞ is known to be a nasty set for the classification even in the case

of diffusions (see e.g. Refs. [7,27,31]). The following simple result is intended to show what

kind of barrier function can be used to deal with this situation.

Proposition A10 Let the boundary of the open set G ¼ {v : bzð0; vÞ . 0} in ›U is

smooth, the vector field b(x) on ›G has a positive component in the direction of outer normal

h to ›G, and diffusion term and the integral terms vanish in a neighbourhood of G in �U:

Then the closed subset �G ¼ G< ›G of the boundary ›U is inaccessible.

Proof Consider the barrier function f ¼ ðz2 þ rðvÞ2Þ21; where r denotes the distance to G.

Then

L f # 22
zbzðxÞ

z2 þ ðrðvÞÞ2
2 2rðvÞ

ðbvðxÞ;hÞ

z2 þ ðrðvÞÞ2
;

and the second term dominates in a neighbourhood of the boundary of G, because bz(x) is of

order r(v). Hence the proof is completed by the application of Proposition A4. A

We conclude with a criterion for a point to be an entrance boundary.

Proposition A11 Let Ve be defined by (Ap21) and let the ball {ð0; vÞ : jvj # r þ e} is

inaccessible. Suppose bzðxÞ $ c . 0 and
Ð

z2n ðx; d~xÞ ¼ OðzÞ in Ve. Then all points from the

ball {ð0; vÞ : jvj # r} are entrance boundaries.
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Proof Clearly it is enough to prove the statement for the origin. Suppose for brevity that

n (x, )̇ vanishes in Ve (the modifications required in the general case are as above). Then our

claim is a consequence of Proposition A4 (ii), if as a barrier function one takes a function f(x)

that equals d2 z=c for z , cd=2 and which is non-negative and decreasing in z. Then

f ðxÞ [ ½d=2; d 
 for z # cd=2 and L f ðxÞ # 21 for these z, because the contributions from the

diffusion part of L and the integral part depending on m are clearly negative. A
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