Spatial Bayesian Variable Selection Models on Functional Magnetic Resonance Imaging Time-Series Data

> by: KJ Lee, GL Jones, BS Caffo & SS Bassett Bayesian Analysis 9(3), 699-732

Warwick Statistics

October 16, 2014

Neuroimaging stats group Lee et al., 2014

Outline

2 Methods/Results

Neuroimaging stats group Lee et al., 2014

・ロト ・回ト ・ヨト ・ヨト

Introduction

- BOLD signal modelling for task-realted fMRI
- Keystone: model complexity/computational efficiency
- Main contributions:
 - Spatio-temporal correlations
 - Variable selection

< ≣⇒

æ

- Part of longitudinal AD study
- Sample consists of older, well-educated, right handed controls
- Investigation of the Stroop paradigm
 - Automatic behaviour vs decision rule
 - Several brain regions involved
 - In this study: WORD, BLUE , BLUE
- Experimental design:
 - Block design
 - 465 total time points, scanning time 2sec
 - Standard preprocessing...
 - $79\times95\times68$ template, $2\mathrm{mm}^3$ voxels

BOLD modelling

• For voxel v = 1, ..., N and time $i = 1, ..., T_v$ assume:

$$\mathbf{y}_{m{
u}} = \mathbf{X}_{m{
u}}m{eta}_{m{
u}} + m{\epsilon}_{m{
u}}, \quad m{\epsilon}_{m{
u}} \sim \mathcal{N}_{\mathcal{T}_{m{
u}}}(\mathbf{0}, \sigma_{m{
u}}^2 \mathbf{\Lambda}_{m{
u}})$$

with
$$\mathbf{y}_{\mathbf{v}} = [y_{\mathbf{v},1}, \dots, y_{\mathbf{v},N_{\mathbf{v}}}]^{\top}$$
, etc...

• Variable selection introduces as:

$$\mathbf{X}_{v}(\boldsymbol{\gamma}_{v})\boldsymbol{\beta}_{v}(\boldsymbol{\gamma}_{v})$$

イロト イヨト イヨト イヨト

æ

where γ_v has 0,1

Prior distributions (1/2)

• $\beta_v(\gamma_v)$ have Zellner's *g*-prior, with mean estimated from data • σ_v^2 independent:

$$\pi(\sigma_v^2) \propto rac{1}{\sigma_v^2}$$

• Several possibilities for Λ_v :

• **I**
•
$$\Lambda_{\nu}(i,j) = \rho_{\nu}^{|i-j|}$$
: AR(1) structure
• $\rho_{\nu} \stackrel{iid}{\sim} \text{Unif}(-1,1)$
• EB approach, $\hat{\rho}_{\nu}$ as the MLE

Prior distributions (2/2)

• γ have binary spatial Ising priors

$$\pi(\boldsymbol{\gamma} \mid \boldsymbol{\theta}) \propto \exp\left\{\sum_{\nu=1}^{N} \alpha_{\nu} \boldsymbol{\gamma}_{\nu} + \boldsymbol{\theta} \sum_{\nu \sim k} \omega_{\nu,k} I(\boldsymbol{\gamma}_{\nu} = \boldsymbol{\gamma}_{k})\right\}$$

where
$$\alpha_{\mathbf{v}} = \log rac{P(\gamma_{\mathbf{v}}=1)}{1-P(\gamma_{\mathbf{v}}=1)}$$
 and $\theta \sim \mathrm{Unif}(\mathbf{0}, heta_{\mathrm{max}})$

Posterior inferences (1/3)

- Full posterior computationally prohibitive
- However, is it really needed?
- Focus on the following quantities:
 - Activation probabilities:

$$\pi\left(\boldsymbol{\gamma}_{\textit{v},j}=1\mid \mathbf{y}\right)$$

Effect magnitudes:

$$\mathbb{E}\left[m{eta}_{v}\mid\mathbf{y}
ight]$$

• The rest are mere details...

Posterior inferences (2/3)

• We know that:

$$\mathbb{E}\left[\boldsymbol{\beta}_{\nu} \mid \mathbf{y}\right] = \sum_{\boldsymbol{\gamma}_{\nu}} \mathbb{E}\left[\boldsymbol{\beta}_{\nu} \mid \boldsymbol{\gamma}_{\nu}, \mathbf{y}\right] \pi\left(\boldsymbol{\gamma}_{\nu} \mid \mathbf{y}\right)$$

Also:

$$\begin{aligned} \pi \left(\boldsymbol{\gamma}_{\boldsymbol{v},j} = 1 \mid \boldsymbol{y} \right) &= \int \pi \left(\boldsymbol{\gamma}_{\boldsymbol{v},j} = 1 \mid \rho_{\boldsymbol{v}}, \gamma_{-(\boldsymbol{v},j)}, \boldsymbol{y} \right) \times \\ &\times \pi \left(\rho_{\boldsymbol{v}} \mid \boldsymbol{y} \right) \pi \left(\gamma_{-(\boldsymbol{v},j)} \mid \boldsymbol{y} \right) d\rho_{\boldsymbol{v}} d\gamma_{-(\boldsymbol{v},j)} \end{aligned}$$

Image: A mathematical states and a mathem

-

• Thus we only need to know $\pi\left(oldsymbol{\gamma},oldsymbol{
ho}\mid oldsymbol{y}
ight)$

Posterior inferences (3/3)

• Now we can approximate:

$$\mathbb{E}\left[\boldsymbol{\beta}_{\nu} \mid \mathbf{y}\right] \approx \frac{1}{K} \sum_{k=1}^{K} \hat{\boldsymbol{\beta}}_{\nu} \left(\boldsymbol{\gamma}_{\nu}^{[k]}\right)$$

and:

$$\pi \left(\boldsymbol{\gamma}_{\nu,j} = 1 \mid \mathbf{y} \right) \approx \frac{1}{K} \sum_{k=1}^{K} \pi \left(\boldsymbol{\gamma}_{\nu,j} = 1 \mid \boldsymbol{\rho}_{\nu}^{[k]}, \boldsymbol{\gamma}_{-(\nu,j)}^{[k]}, \mathbf{y} \right)$$

< A > < 3

• $\gamma^{[k]}, \rho^{[k]}$ via MCMC (see paper)

• Activation probability threshold: 0.8722

Simulation study

- 30×30 2D image
- 100 times points
- Signal simulated from:

$$\mathbf{y}_{v} = \mathbf{X}_{v}\left(\boldsymbol{\gamma}_{v}
ight) \boldsymbol{eta}_{v}\left(\boldsymbol{\gamma}_{v}
ight) + \boldsymbol{\epsilon}_{v}, \quad \boldsymbol{\epsilon}_{v} \sim \mathcal{N}_{100}\left(0, \sigma_{v}^{2} \mathbf{A}_{v}
ight)$$

A⊒ ▶ ∢ ∃

- \bullet One regressor, 5% signal; rest parameters fixed/simulated from priors
- B = 10 runs in total

Sensitivity analyses (1/2)

• ρ on $\theta = 0.7$

Prior for ρ	Estimate $\hat{\theta}$	MCSE
Uniform(-1,1)	0.73	0.0017
\mathbf{EB}	0.74	0.0015
$\Lambda_v = I_{100}$	0.78	0.0015

• ρ on accuracy

Prior for ρ	$\Lambda_v = I_{100}$	Uniform(-1,1)	\mathbf{EB}
Accuracy (%)	91.38	97.38	97.16
False Positive Rate (%)	13.59	0.045	0.04

• ω on accuracy

Weight	1/2	1	2
Accuracy (%)	97.11	97.28	97.25
False Positive (%)	1.20	1.36	1.34

・ロン ・回と ・ヨと ・

Sensitivity analyses (2/2)

• Activation probability threshold on accuracy

Critical value	.7946	.8722	.9650
Accuracy (%)	97.44	97.28	95.93
False Positive (%)	2.30	1.36	0.50

• EB AR(1) under assumption violations

Models	AR(1)	AR(2)	MA(1)	MA(2)	ARMA(1, 1)
Acc $(\%)$	97.38(0.97)	96.40(0.97)	95.98(0.67)	97.88(1.75)	96.01 (0.65)
FP (%)	0.68(0.041)	2.23(0.077)	0.97(0.041)	0.98(0.067)	0.97(0.043)

• Identity correlation under assumption violations

Models	AR(1)	AR(2)	MA(1)	MA(2)	ARMA(1, 1)
Acc $(\%)$	95.11(1.26)	94.43(1.47)	98.56(0.07)	96.88(0.08)	93.67(1.65)
FP (%)	8.74(0.41)	10.22(0.87)	$0.10 \ (0.004)$	6.00(0.64)	9.79(1.43)

イロン イヨン イヨン イヨン

Data analysis

- Analysis of the dataset described earlier
- EB for correlation parameters
- Activation probability threshold 0.8772
- Weights: reciprocal of Euclidian distance
- 2 models:
 - I) Activation patterns constant (focus: regions)
 - II) Activation patterns change (focus: changes over time)

A⊒ ▶ ∢ ∃

Design matrix

• Design matrix, convolved with HRF function:

Model I

(A) Ink Only.

(B) Congruence.

(C) Interference.

Neuroimaging stats group

Lee et al., 2014

Model II: trial 1

Neuroimaging stats group

Lee et al., 2014

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

Model II: trial 2

Neuroimaging stats group

Lee et al., 2014

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

Model II: trial 3

Neuroimaging stats group

Lee et al., 2014

< □ > < □ > < □ > < □ > < □ > .

Discussion

- Current model can:
 - Introduce both spatial and temporal correlations
 - Facilitates variable selection in fMRI regression
- But:
 - Interpretability not what practitioners used to
 - Cannot be applied to group-analyses
- MORE AND MORE BAYESIAN MODELS APPLIED IN NEUROIMAGING!!!!!

Neuroimaging stats group Lee et al., 2014

< □ > < □ > < □ > < □ > < □ > .

2