### **Neurostats Reading Group**

Neuroanatomical diversity of corpus callosum and brain volume in autism: meta-analysis, analysis of the Autism Brain Imaging Data Exchange (Abide) project, and simulation

A. Lefebvre, A. Beggiato, T. Bourgeron, R. Toro (2015)

#### Camille Maumet, February 26<sup>th</sup> 2015

THE UNIVERSITY OF WARVICK

#### Motivation

- Many reports outlining smaller corpus callosum (CC) in Autism Spectrum Disorders
- Comparison between
  - Meta-analysis
  - Analysis of ABIDE cohort
- Simulations





#### **META-ANALYSIS**



#### **Data collection**

Identification Records identified through Additional records identified database searching through other sources N=183 N=10Records after duplicates removed N=175 Screening Records screened Records excluded N=175 N=128 Eligibility Full-text articles Full-text articles assessed for eligibility excluded, with reasons N=47N=30Inclusion Studies included in gualitative synthesis N=17Studies included in quantitative synthesis (meta-analysis) N=17

<u>All studies from:</u> Frazier and Hardan (2009) <u>Pubmed search</u>: (autism OR PDD OR "pervasive developmental disorder") AND "corpus callosum"

<u>Exclusion:</u> "excluded those that did not report measurements of corpus callosum size and standard deviation for patients and controls"

980 subjects, 521 patients and 459 controls

Figure S1. Flow diagram for the inclusion of articles in the meta-analysis.



#### **Data collection**

**Table 3.** Meta-analysis: Mean CC size, effect size, significance of the difference, statistical power. The different values were scaled to provided measurements in cm<sup>2</sup> (This scaling does not affect our meta-analysis, which was performed on standardised mean differences).

| Reference           | NASD | N <sub>Ctrl</sub> | Mean CC <sub>ASD</sub> | Mean CC <sub>Ctrl</sub> | Effect Size | P-Value   | Power to detect  |
|---------------------|------|-------------------|------------------------|-------------------------|-------------|-----------|------------------|
|                     |      |                   | ±SD (cm <sup>2</sup> ) | ±SD (cm <sup>2</sup> )  |             |           |                  |
|                     |      |                   |                        |                         |             | (2-sided) | SD=0.3 (2-sided) |
| Gaffney 1987 (36)   | 13   | 35                | 5.89±1.04              | 6.24±1.37               | -0.27       | 0.41      | 17.3%            |
| Egaas 1995 (37)     | 51   | 51                | 5.57±0.99              | 5.89±0.91               | -0.33       | 0.097     | 32.3%            |
| Piven 1997 (38)     | 35   | 36                | 6.15±0.83              | 6.40±0.38               | -0.39       | 0.11      | 24.1%            |
| Manes 1999 (39)     | 27   | 17                | 4.64±0.99              | 5.71±0.97               | -1.07       | 0.0011    | 16.2%            |
| Elia 2000 (40)      | 22   | 11                | 5.26±1.00              | 5.41±0.64               | -0.16       | 0.67      | 12.7%            |
| Rice 2005 (41)      | 12   | 8                 | 7.34±1.11              | 7.75±1.14               | -0.35       | 0.45      | 9.3%             |
| Vidal 2006 (42)     | 24   | 26                | 6.06±1.15              | 6.68±0.79               | -0.62       | 0.033     | 17.9%            |
| Boger 2006 (43)     | 45   | 26                | 4.59±0.67              | 4.99±0.72               | -0.57       | 0.022     | 24.1%            |
| Alexander 2007 (44) | 43   | 34                | 7.87±1.99              | 9.32±1.70               | -0.77       | 0.012     | 25.2%            |
| Just 2007 (3)       | 18   | 18                | 6.40±0.88              | 7.1±0.88                | -0.78       | 0.025     | 13.9%            |
| Hardan 2009 (45)    | 22   | 23                | 5.74±1.13              | 6.58±1.04               | -0.76       | 0.014     | 16.2%            |
| Freitag 2009 (46)   | 15   | 15                | 6.22±0.45              | 6.54±1.24               | -0.34       | 0.36      | 12.2%            |
| Keary 2009 (47)     | 32   | 34                | 6.19±1.09              | 6.76±1.10               | -0.51       | 0.040     | 22.4%            |
| Anderson 2011 (48)  | 53   | 39                | 6.54±1.20              | 7.05±0.90               | -0.46       | 0.031     | 29.6%            |
| Hong 2011 (49)      | 18   | 16                | 8.14±1.31              | 8.27±1.27               | -0.10       | 0.78      | 13.3%            |
| Frazier 2012 (50)   | 23   | 2                 | 6.30±1.11              | 6.78±1.08               | -0.43       | 0.15      | 16.7%            |
| Prigge 2013 (51)    | 68   | 47                | 5.74±0.91              | 6.24±0.89               | -0.55       | 0.0044    | 36.0%            |



## Effect size, power and sample size



**Figure 2** | Inference errors and statistical power. (**a**) Observations are assumed to be from the null distribution  $(H_0)$  with mean  $\mu_0$ . We reject  $H_0$  for values larger than  $x^*$  with an error rate  $\alpha$  (red area). (**b**) The alternative hypothesis  $(H_A)$  is the competing scenario with a different mean  $\mu_A$ . Values sampled from  $H_A$  smaller than  $x^*$  do not trigger rejection of  $H_0$  and occur at a rate  $\beta$ . Power (sensitivity) is  $1 - \beta$  (blue area). (**c**) Relationship of inference errors to  $x^*$ . The color key is same as in **Figure 1**.

<u>Source:</u> Krzywinski, M., & Altman, N. (2013). Points of significance: Power and sample size. Nature Methods, 10(12), 1139–1140. doi:10.1038/nmeth.2738



#### Type of power analysis



#### **Data collection**

**Table 3.** Meta-analysis: Mean CC size, effect size, significance of the difference, statistical power. The different values were scaled to provided measurements in cm<sup>2</sup> (This scaling does not affect our meta-analysis, which was performed on standardised mean differences).

| Reference           | NASD | N <sub>Ctrl</sub> | Mean CC <sub>ASD</sub> | Mean CC <sub>Ctrl</sub>     | Effect Size | P-Value   | Power to detect  |
|---------------------|------|-------------------|------------------------|-----------------------------|-------------|-----------|------------------|
|                     |      |                   | ±SD (cm <sup>2</sup> ) | $\pm$ SD (cm <sup>2</sup> ) |             |           |                  |
|                     |      |                   |                        |                             |             | (2-sided) | SD=0.3 (2-sided) |
| Gaffney 1987 (36)   | 13   | 35                | 5.89±1.04              | 6.24±1.37                   | -0.27       | 0.41      | 17.3%            |
| Egaas 1995 (37)     | 51   | 51                | 5.57±0.99              | 5.89±0.91                   | -0.33       | 0.097     | 32.3%            |
| Piven 1997 (38)     | 35   | 36                | 6.15±0.83              | 6.40±0.38                   | -0.39       | 0.11      | 24.1%            |
| Manes 1999 (39)     | 27   | 17                | 4.64±0.99              | 5.71±0.97                   | -1.07       | 0.0011    | 16.2%            |
| Elia 2000 (40)      | 22   | 11                | 5.26±1.00              | 5.41±0.64                   | -0.16       | 0.67      | 12.7%            |
| Rice 2005 (41)      | 12   | 8                 | 7.34±1.11              | 7.75±1.14                   | -0.35       | 0.45      | 9.3%             |
| Vidal 2006 (42)     | 24   | 26                | 6.06±1.15              | 6.68±0.79                   | -0.62       | 0.033     | 17.9%            |
| Boger 2006 (43)     | 45   | 26                | 4.59±0.67              | 4.99±0.72                   | -0.57       | 0.022     | 24.1%            |
| Alexander 2007 (44) | 43   | 34                | 7.87±1.99              | 9.32±1.70                   | -0.77       | 0.012     | 25.2%            |
| Just 2007 (3)       | 18   | 18                | 6.40±0.88              | 7.1±0.88                    | -0.78       | 0.025     | 13.9%            |
| Hardan 2009 (45)    | 22   | 23                | 5.74±1.13              | 6.58±1.04                   | -0.76       | 0.014     | 16.2%            |
| Freitag 2009 (46)   | 15   | 15                | 6.22±0.45              | 6.54±1.24                   | -0.34       | 0.36      | 12.2%            |
| Keary 2009 (47)     | 32   | 34                | 6.19±1.09              | 6.76±1.10                   | -0.51       | 0.040     | 22.4%            |
| Anderson 2011 (48)  | 53   | 39                | 6.54±1.20              | 7.05±0.90                   | -0.46       | 0.031     | 29.6%            |
| Hong 2011 (49)      | 18   | 16                | 8.14±1.31              | 8.27±1.27                   | -0.10       | 0.78      | 13.3%            |
| Frazier 2012 (50)   | 23   | 2                 | 6.30±1.11              | 6.78±1.08                   | -0.43       | 0.15      | 16.7%            |
| Prigge 2013 (51)    | 68   | 47                | 5.74±0.91              | 6.24±0.89                   | -0.55       | 0.0044    | 36.0%            |



#### **Results: Forest plot**



WARWICK

#### **Publication Bias: Funnel plot**





#### **Selective publication bias**

Fig 2

WARWICK





Autism Brain Imaging Data Exchange

#### **ANALYSIS OF ABIDE**



#### Abide Dataset

- 1102 subjects with T1w
- Freesurfer segmentations
- Exclusions
  - QC: 380 subjects excluded
  - Age: 28 subjects excluded



Autism Brain Imaging Data Exchange

694 subjects, 328 patients and 366 controls

(IQ for 672 subjects)



#### **Behavioral characteristics**

- Sample
  - 415 subjects with Autism Diagnostic Observation Schedule (ADOS) scores.
  - 672 subjects with IQ
- Significant Differences:
  - Social Responsiveness Scale (p<0.0001)</li>
  - Autism Quotient scores (p<0.0001)</li>
  - Full IQ (-6 points, p<0.00001)</p>
    - mainly due to Verbal IQ (-8 points, p<0.00001)
    - No signif. difference in Performance IQ.



# Effect of age, sex, scanning site, and diagnostic group

| Table 4. Site, Age, Sex and Group effects in ICV, BV and CC. | Intra-Cranial<br>Volume | Brain<br>Volume | Volume of<br>Corpus Callosum |  |
|--------------------------------------------------------------|-------------------------|-----------------|------------------------------|--|
|                                                              | ICV                     | BV              | CC                           |  |
| Mean Size (cm <sup>3</sup> )±SD                              | 1368±231                | 1131±130        | 3.16±0.54                    |  |
| Site Effect                                                  |                         |                 |                              |  |
| F                                                            | 32.8                    | 10.6            | 10.7                         |  |
| P-Value                                                      | < 0.0001                | < 0.0001        | < 0.0001                     |  |
| $R^2$                                                        | 43.7%                   | 20.1%           | 20.2%                        |  |
| Age Effect                                                   |                         |                 |                              |  |
| Increase (cm <sup>3</sup> /year)                             | 4.3                     | 2.3             | 0.019                        |  |
| F                                                            | 12.19                   | 10.86           | 45                           |  |
| P-Value                                                      | 0.0005                  | 0.001           | < 0.0001                     |  |
| $R^2$                                                        | 1.7%                    | 1.5%            | 6.1%                         |  |
| Sex Effect                                                   |                         |                 |                              |  |
| Percent Difference (1-Female/Male)                           | 9.4%                    | 9.3%            | 7.4%                         |  |
| F                                                            | 28.2                    | 62.11           | 17.1                         |  |
| P-Value                                                      | < 0.0001                | < 0.0001        | < 0.0001                     |  |
| $R^2$                                                        | 3.9%                    | 8.2%            | 2.4%                         |  |
| Group Effect                                                 |                         |                 |                              |  |
| Difference (cm <sup>3</sup> )                                | 6.8                     | 4               | -0.007                       |  |
| F                                                            | 0.26                    | 0.03            | 0.35                         |  |
| P-value                                                      | 0.61                    | 0.86            | 0.56                         |  |
| $R^2$                                                        | 0.00                    | 0.00            | 0.00                         |  |
| Variance explained by the full model                         | 46.9%                   | 26.0%           | 22.0%                        |  |



#### Effect of brain volume on CC volume

- CC depends on BV non-linearly
  - Larger brain have prop. smaller CC
  - No signif. difference between-group



### Effect of brain volume on IQ

- IQ ~ site + age + sex + BV + group + BV\*group
  - **Group** effect (p<0.0001): IQ smaller in patients (same BV)
  - Interaction Group\*BV (p=0.0178): increases in BV resulted in smaller increase in IQ in patients.





#### SIMULATIONS



### Normalization w.r.t BV / IQ

- BV: 2 main approaches
  - Use proportion of BV as units
  - Add BV and group\*BV as covariate of no interest in design matrix
- IQ matching across groups



#### **BV** normalization



**Figure S5. Statistical power to detect a significant, artefactual difference in CC size for two groups presenting a difference in mean BV: CC normalized by BV.** Statistical power as a function of the difference in mean BV between 2 simulated groups (Cohen's d) consisting of 50, 100, ... 350 subjects each. CC is normalized by dividing it by BV. Because of the non-linear relationship between CC and BV, CC normalization was not sufficient to control for the difference in mean BV.



#### **BV** covariation



Figure S6. Statistical power to detect a significant, artefactual difference in CC size between two groups presenting a difference in mean BV: BV used as covariate in a GLM. (a) Statistical power to detect a group effect in CC size as a function of the difference in mean BV between 2 simulated groups (Cohen's d) consisting of 50, 100, ..., 350 subjects each. (b) Statistical power to detect an interaction effect BV\*Group in CC size as a function of the difference in mean BV between 2 simulated groups consisting of 50, 100, ..., 350 subjects each. (b) Statistical power to detect an interaction effect BV\*Group in CC size as a function of the difference in mean BV between 2 simulated groups consisting of 50, 100, ..., 350 subjects each. Including BV as a covariate successfully controls for BV effects even for large sample sizes and large differences in mean BV.



#### **IQ** matching



**Figure S7. Effect of IQ matching on mean BV.** Two groups were simulated with different correlation between FIQ and BV. In one (the control group) both VIQ and PIQ correlated with BV. In the other (the ASD group) only PIQ correlated with BV. FIQ was computed as the average between VIQ and PIQ, and subjects in both groups were selected to match the FIQ distributions. (a) Mean BV difference induced by matching two populations as a function of the correlation between PIQ and BV, for groups of 50, 150, ..., 750 subjects each. (b) Power to detect a difference in mean BV induced by matching two populations by FIQ as a function of the number of subjects per group. Statistical power curves were drawn for correlations between PIQ and BV of 0.3, 0.35, ..., 0.5.







### **CC** size in Autism

- Significant effect detected by meta-analysis
- No significant effect when taking into account site, age and sex.
- Non-linear variations of CC with BV might explain the difference.

..... => Data Sharing

