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Motivation 
•  Many reports outlining smaller corpus 

callosum (CC) in Autism Spectrum Disorders 
 
•  Comparison between 

–  Meta-analysis 
–  Analysis of ABIDE cohort 

•  Simulations 
 



META-ANALYSIS 



Data collection Lefebvre et al. 

8 

SUPPLEMENTAL FIGURES 
 

 

Figure S1. Flow diagram for the inclusion of articles in the meta-analysis. 

All studies from: Frazier and Hardan (2009) 
Pubmed search: (autism OR PDD OR 
“pervasive developmental disorder”) AND 
“corpus callosum” 
 
Exclusion: “excluded those that did not report 
measurements of corpus callosum size and 
standard deviation for patients and controls” 
 
 
 
 
980 subjects, 521 patients and 459 controls 
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Table 3. Meta-analysis: Mean CC size, effect size, significance of the difference, statistical power. The different values were scaled to 
provided measurements in cm2 (This scaling does not affect our meta-analysis, which was performed on standardised mean differences). 
 

Reference NASD NCtrl Mean CCASD

±SD (cm2)

Mean CCCtrl

±SD (cm2)

Effect Size P-Value Power to detect

      (2-sided) SD=0.3 (2-sided)

Gaffney 1987 (36) 13 35 5.89±1.04 6.24±1.37 -0.27 0.41 17.3%

Egaas 1995 (37) 51 51 5.57±0.99 5.89±0.91 -0.33 0.097 32.3%

Piven 1997 (38) 35 36 6.15±0.83 6.40±0.38 -0.39 0.11 24.1%

Manes 1999 (39) 27 17 4.64±0.99 5.71±0.97 -1.07 0.0011 16.2%

Elia 2000 (40) 22 11 5.26±1.00 5.41±0.64 -0.16 0.67 12.7%

Rice 2005 (41) 12 8 7.34±1.11 7.75±1.14 -0.35 0.45 9.3%

Vidal 2006 (42) 24 26 6.06±1.15 6.68±0.79 -0.62 0.033 17.9%

Boger 2006 (43) 45 26 4.59±0.67 4.99±0.72 -0.57 0.022 24.1%

Alexander 2007 (44) 43 34 7.87±1.99 9.32±1.70 -0.77 0.012 25.2%

Just 2007 (3) 18 18 6.40±0.88 7.1±0.88 -0.78 0.025 13.9%

Hardan 2009 (45) 22 23 5.74±1.13 6.58±1.04 -0.76 0.014 16.2%

Freitag 2009 (46) 15 15 6.22±0.45 6.54±1.24 -0.34 0.36 12.2%

Keary 2009 (47) 32 34 6.19±1.09 6.76±1.10 -0.51 0.040 22.4%

Anderson 2011 (48) 53 39 6.54±1.20 7.05±0.90 -0.46 0.031 29.6%

Hong 2011 (49) 18 16 8.14±1.31 8.27±1.27 -0.10 0.78 13.3%

Frazier 2012 (50) 23 2 6.30±1.11 6.78±1.08 -0.43 0.15 16.7%

Prigge 2013 (51) 68 47 5.74±0.91 6.24±0.89 -0.55 0.0044 36.0%

 



Effect size, power and 
sample size 
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results, when the researcher may be willing to pursue low- 
likelihood hypotheses for a groundbreaking discovery (Fig. 1).  
One analysis of the medical research literature found that only 
36% of the experiments examined that had negative results could 
detect a 50% relative difference at least 80% of the time2. More 
recent reviews of the literature1,3 also report that most studies are 
underpowered. Reduced power and an increased number of false 
negatives is particularly common in omics studies, which test at 
very small significance levels to reduce the large number of false 
positives.

Studies with inadequate power are a waste of research resources 
and arguably unethical when subjects are exposed to potentially 
harmful or inferior experimental conditions. Addressing this short-
coming is a priority—the Nature Publishing Group checklist for 
statistics and methods (http://www.nature.com/authors/policies/
checklist.pdf) includes as the first question: “How was the sample 
size chosen to ensure adequate power to detect a pre-specified 
effect size?” Here we discuss inference errors and power to help 
you answer this question. We’ll focus on how the sensitivity and 
specificity of an experiment can be balanced (and kept high) and 
how increasing sample size can help achieve sufficient power.

Let’s use the example from last month of measuring a protein’s 
expression level x against an assumed reference level +0. We devel-
oped the idea of a null distribution, H0, and said that x was statis-
tically significantly larger than the reference if it exceeded some 
critical value x* (Fig. 2a). If such a value is observed, we reject H0 
as the candidate model.

Because H0 extends beyond x*, it is possible to falsely reject H0, 
with a probability of _ (Fig. 2a). This is a type I error and corre-
sponds to a false positive—that is, inferring an effect when there is 
actually none. In good experimental design, _ is controlled and set 
low, traditionally at _ = 0.05, to maintain a high specificity (1 – _), 
which is the chance of a true negative—that is, correctly inferring 
that no effect exists.

Let’s suppose that x > x*, leading us to reject H0. We may have 
found something interesting. If x is not drawn from H0, what 
distribution does it come from? We can postulate an alternative 
hypothesis that characterizes an alternative distribution, HA, for 
the observation. For example, if we expect expression values to be 
larger by 20%, HA would have the same shape as H0 but a mean 
of +A = 12 instead of +0 = 10 (Fig. 2b). Intuitively, if both of these 
distributions have similar means, we anticipate that it will be more 
difficult to reliably distinguish between them. This difference 
between the distributions is typically expressed by the difference 
in their means, in units of their s.d., m. This measure, given by  

POINTS OF SIGNIFICANCE

Power and sample size
The ability to detect experimental effects is 
undermined in studies that lack power.

Statistical testing provides a paradigm for deciding whether the data 
are or are not typical of the values expected when the hypothesis 
is true. Because our objective is usually to detect a departure from 
the null hypothesis, it is useful to define an alternative hypothesis 
that expresses the distribution of observations when the null is false. 
The difference between the distributions captures the experimental 
effect, and the probability of detecting the effect is the statistical 
power.

Statistical power is critically relevant but often overlooked. When 
power is low, important effects may not be detected, and in experi-
ments with many conditions and outcomes, such as ‘omics’ studies, 
a large percentage of the significant results may be wrong. Figure 1 
illustrates this by showing the proportion of inference outcomes in 
two sets of experiments. In the first set, we optimistically assume 
that hypotheses have been screened, and 50% have a chance for an 
effect (Fig. 1a). If they are tested at a power of 0.2, identified as the 
median in a recent review of neuroscience literature1, then 80% of 
true positive results will be missed, and 20% of positive results will 
be wrong (positive predictive value, PPV = 0.80), assuming testing 
was done at the 5% level (Fig. 1b).

In experiments with multiple outcomes (e.g., gene expression 
studies), it is not unusual for fewer than 10% of the outcomes to 
have an a priori chance of an effect. If 90% of hypotheses are null 
(Fig. 1a), the situation at a 0.2 power level is bleak—over two-
thirds of the positive results are wrong (PPV = 0.31; Fig. 1b). Even 
at the conventionally acceptable minimum power of 0.8, more 
than one-third of positive results are wrong (PPV = 0.64) because 
although we detect a greater fraction of the true effects (8 out of 
10), we declare a larger absolute number of false positives (4.5 out 
of 90 nulls).

Fiscal constraints on experimental design, together with 
a commonplace lack of statistical rigor, contribute to many 
underpowered studies with spurious reports of both false 
positive and false negative effects. The consequences of low 
power are particularly dire in the search for high-impact 
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Figure 1 | When unlikely hypotheses are tested, most positive results of 
underpowered studies can be wrong. (a) Two sets of experiments in which 50% 
and 10% of hypotheses correspond to a real effect (blue), with the rest being 
null (green). (b) Proportion of each inference type within the null and effect 
groups encoded by areas of colored regions, assuming 5% of nulls are rejected 
as false positives. The fraction of positive results that are correct is the 
positive predictive value, PPV, which decreases with a lower effect chance.

Figure 2 | Inference errors and statistical power. (a) Observations are 
assumed to be from the null distribution (H0) with mean +0. We reject H0 
for values larger than x* with an error rate _�(red area). (b) The alternative 
hypothesis (HA) is the competing scenario with a different mean +A. Values 
sampled from HA smaller than x* do not trigger rejection of H0 and occur 
at a rate `. Power (sensitivity) is 1 – ` (blue area). (c) Relationship of 
inference errors to x*. The color key is same as in Figure 1.

Source: Krzywinski, M., & Altman, N. (2013). Points of 
significance: Power and sample size. Nature Methods, 
10(12), 1139–1140. doi:10.1038/nmeth.2738 
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Results: Forest plot 
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Publication Bias: Funnel plot 
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Selective publication bias 
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ANALYSIS OF ABIDE 



Abide Dataset 
•  1102 subjects with T1w 
•  Freesurfer segmentations 
•  Exclusions 

–  QC: 380 subjects excluded 
–  Age: 28 subjects excluded 

694 subjects, 328 patients and 366 controls 
 
(IQ for 672 subjects) 



Behavioral characteristics 
•  Sample 

–  415 subjects with Autism Diagnostic Observation 
Schedule (ADOS) scores. 

–  672 subjects with IQ 

•  Significant Differences: 
–  Social Responsiveness Scale (p<0.0001) 
–  Autism Quotient scores (p<0.0001) 
–  Full IQ (-6 points, p<0.00001)  

•  mainly due to Verbal IQ (-8 points, p<0.00001) 
•  No signif. difference in Performance IQ. 



Effect of age, sex, scanning 
site, and diagnostic group  
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Table 4. Site, Age, Sex and Group effects in ICV, BV and CC. 
 

 ICV BV CC
Mean Size (cm3)±SD 1368±231 1131±130 3.16±0.54
Site Effect    
 F 32.8 10.6 10.7
 P-Value <0.0001 <0.0001 <0.0001
 R2 43.7% 20.1% 20.2%
Age Effect    
 Increase (cm3/year) 4.3 2.3 0.019
 F 12.19 10.86 45
 P-Value 0.0005 0.001 <0.0001
 R2 1.7% 1.5% 6.1%
Sex Effect    
 Percent Difference (1-Female/Male) 9.4% 9.3% 7.4%
 F 28.2 62.11 17.1
 P-Value <0.0001 <0.0001 <0.0001
 R2 3.9% 8.2% 2.4%
Group Effect    
 Difference (cm3) 6.8 4 -0.007
 F 0.26 0.03 0.35
 P-value 0.61 0.86 0.56
 R2 0.00 0.00 0.00
Variance explained by the full model 46.9% 26.0% 22.0%

 

Intra-Cranial 
Volume 

Brain 
Volume 

Volume of 
Corpus Callosum 



Effect of brain volume on 
CC volume 

•  CC depends on BV non-linearly 
–  Larger brain have prop. smaller CC 
–  No signif. difference between-group 

 

Brain volume 

CC 
volume 

CC ∝ BV 0.64  



Effect of brain volume on IQ 
•  IQ ~ site + age + sex + BV + group + BV*group 

–  Group effect (p<0.0001): IQ smaller in patients (same BV) 
–  Interaction Group*BV (p=0.0178): increases in BV resulted 

in smaller increase in IQ in patients. 

IQ 

Controls 

Patients 

Correlation between IQ and BV 
As expected in controls 
(ρ=0.23; p<0.0001) 
Signif. weaker in patients 
(ρ=0.04; p<0.044) 



SIMULATIONS 



Normalization w.r.t BV / IQ 
•  BV: 2 main approaches 

–  Use proportion of BV as units 
–  Add BV and group*BV as covariate of no interest 

in design matrix 

•  IQ matching across groups 
 



BV normalization Lefebvre et al. 
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Figure S5. Statistical power to detect a significant, artefactual difference in CC size for two groups presenting 
a difference in mean BV: CC normalized by BV.  Statistical power as a function of the difference in mean BV 
between 2 simulated groups (Cohen's d) consisting of 50, 100, … 350 subjects each. CC is normalized by dividing it 
by BV. Because of the non-linear relationship between CC and BV, CC normalization was not sufficient to control 
for the difference in mean BV. 
 
 
 
 

 
 
Figure S6. Statistical power to detect a significant, artefactual difference in CC size between two groups 
presenting a difference in mean BV: BV used as covariate in a GLM. (a) Statistical power to detect a group 
effect in CC size as a function of the difference in mean BV between 2 simulated groups (Cohen's d) consisting of 
50, 100, …, 350 subjects each. (b) Statistical power to detect an interaction effect BV*Group in CC size as a 
function of the difference in mean BV between 2 simulated groups consisting of 50, 100, …, 350 subjects each. 
Including BV as a covariate successfully controls for BV effects even for large sample sizes and large differences in 
mean BV. 
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BV covariation 

Lefebvre et al. 
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Figure S6. Statistical power to detect a significant, artefactual difference in CC size between two groups 
presenting a difference in mean BV: BV used as covariate in a GLM. (a) Statistical power to detect a group 
effect in CC size as a function of the difference in mean BV between 2 simulated groups (Cohen's d) consisting of 
50, 100, …, 350 subjects each. (b) Statistical power to detect an interaction effect BV*Group in CC size as a 
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Including BV as a covariate successfully controls for BV effects even for large sample sizes and large differences in 
mean BV. 
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IQ matching 
Lefebvre et al. 
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Figure S7. Effect of IQ matching on mean BV. Two groups were simulated with different correlation between FIQ 
and BV. In one (the control group) both VIQ and PIQ correlated with BV. In the other (the ASD group) only PIQ 
correlated with BV. FIQ was computed as the average between VIQ and PIQ, and subjects in both groups were 
selected to match the FIQ distributions. (a) Mean BV difference induced by matching two populations as a function 
of the correlation between PIQ and BV, for groups of 50, 150, …, 750 subjects each. (b) Power to detect a difference 
in mean BV induced by matching two populations by FIQ as a function of the number of subjects per group. 
Statistical power curves were drawn for correlations between PIQ and BV of 0.3, 0.35, …, 0.5. 



DISCUSSION 



CC size in Autism 
•  Significant effect detected by meta-analysis 
•  No significant effect when taking into account 

site, age and sex. 
•  Non-linear variations of CC with BV might 

explain the difference. 
 
 

   ………………… => Data Sharing 


