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Functional neuroimaging: an overview

@ Functional neuroimaging has become an essential tool for
non-invasively studying the brain of normal and clinical
populations

e Ex: compare activations between two similar but different
types of experiments
e Increasing interest in inverse inference

@ Work supported by the simplicity and computational efficiency of
the mass univariate approach

@ Limitations: low power, low reliability, etc.

@ Need meta-analyis!



Coordinate-based meta-analysis

Often, peak activation coordinates (foci) only are reported

L Fusiform (19/37) —36 —70 —12
L Fusiform (19/37) —38 —64 —12
L Inferior temporal (37) —42 —58 —16
R Cerebellum 4 —66 —24
R Cerebellum 18 —68 —24
R Sup./inf. parietal (19/39/40) 28 —66 36
L Inferior parietal (19/39/40) —30 -50 36
L Middle temporal (21)

R Postcentral 36 —26 44
L Postcentral/precentral —44 -8 36
L Precentral

R Thalamus 2 -4 0
L Thalamus

L Lenticular nucleus

L Paracentral

L Mid/anterior cingulate -4 4 44
L Inferior frontal (44) —-42 6 20
L Inferior frontal (44) —40 10 20
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Adopt spatial point processes

Goal: build a Bayesian model for coordinate meta-analysis data that
allows inference on the most likely domain for any new experiment



Spatial point processes

A spatial point process is a stochastic process where we observe
random occurrences of events, possibly with a value or mark
attached to each occurrence.
Examples:
@ Locations of foci in a brain (mark: z- or t-score)
@ Locations of trees in a forest (mark: type of tree, diameter, etc.)
@ Occurrences of disease (mark: type of disease)



Poisson processes

A Poisson process X is defined by a non-negative finite intensity
measure M which defines, for any A C 15, the number of expected
points in A:

N(A) ~ Poisson(M(A)), where M(A) = /,u(y)du < o0
A
We write X ~ Poisson(B, 1), where B is a common brain template
B c R® with finite volume |B|, and p is the intensity function.

The density of a realisation x of X is

m(x) = exp{|B| = M(B)} [ ] u(x)

XeEX

A Cox process is a Poisson process with random intensity u(x).



Assumptions and notation

@ N independent observations, i.e., N independent point patterns
arising from N studies

@ Focix; = {x,-j}/’.’;1 fromstudy i =1,2,...,N

@ Each x; is a realisation from a Cox process X; driven by a
random intensity function p;

Given that observations are independent, the sampling distribution is

N
(XL i }iy) o exp{ ZM }H IT witxp)

i=1 XEX;
Mi(B) = /u/(u)du<oo
B

B is a common brain template B ¢ R® with finite volume |5|.



Log-Gaussian Cox process (LGCP)

One model for Cox processes is an LGCP. Writing the intensity as
w(v) = exp{z" (v)B}uo(v), with z denoting a set of covariates, one
models

po(v) = exp{¥(v)},  V(v)~GP(p, C(v, ),

with C(v,v') = o2 exp{—o|jv — v'||}.

Euo(v) = exp{y + 02/2}, so a useful specification is to set
¢ = —0?/2 so that Euo(v) = 1.

Many decent options for fitting LGCPs: INLA, MCMC, MALA,
Hamiltonian MC.



Alternatives to LGCPs

@ Look into functional representation of the log intensity function
@ Natural computational advantage over a GP

@ Functional representations use a linear mean structure to
describe the intensity’s behaviour whereas GPs use the
covariance matrix



Functional Latent Factor Regression Model (LFRM)

We write the (log) intensity as

log i(v) = Y bm(v)0im = b(v) " 6; (1)

(g

@ bmy(v) corresponds to the mth basis function evaluated at voxel v
@ Potential choices for b(-) ": B-splines, 3D Gaussian kernels

@ 0; is the vector of study-specific basis function coefficients
(scores)

Variations between intensities are reflected through the variations in
the score vectors.



LFRM

We specify a sparse factor model for the basis coefficients as
0i =Mn; + ¢, i~ Np(0,X) (2)
@ Nis a p x k factor loading matrix

@ 7, is a k x 1 vector of latent factors

@ (;is aresidual vector that is uncorrelated with other variables in
the model, with ¥ = diag(o%, ..., 03)

This structure induces a low-dimensional representation of log ;.



LFRM

Information from study-specific covariates z; can be incorporated
through a simple linear model

n; = I,TZ,' +A;, A~ Nk(O, I) (2)

where ¢ is a r x k matrix of unknown coefficients, and r denotes the
dimension of ¢,.



LFRM

Despite the simplicity of this linear model, the resulting model on
log 11, . .., log i, allows a very flexible accommodation of covariate
information.

Conditionally on ({bm}"_,, N, Z,¢,{z;}7,), the log intensities are
independent (finite rank) Gaussian processes with covariate
dependent mean functions

k
Eflog pi(v)] = Y _ ¢/ zi¢i(v)
and a common covariance function
p
Cov{log j(v),log pi(v')} = Zdn V) + Y 0%bm(v)bm(v),
m=1

where ¢;(v) = Y-F _ Aimbm(v).



Bayesian analysis: the MGPS prior

We adopt the multiplicative gamma process shrinkage (MGPS) prior
on the loadings [1]:

)\jh‘lﬁjh,Th ~ N(O,l/)l;17'h_1), Z/J/h ~ Gamma ( ) Th = H5/

5 ~ Gamma(ar,1), ¢ ~Gamma(az,1), [>2

@ 75, is a global shrinkage parameter for the hth column
@ 75’s are stochastically increasing under the restriction a, > 1
@ Favors more shrinkage overall as the column index increases

@ ¢;'s are local shrinkage parameters for the elements in the hth
column

@ Avoids over-shrinking the non-zero loadings



MGPS prior

@ The MGPS prior let A be g x co with priors increasingly
concentrated at zero as the column index increases

@ The number of factors is automatically selected using adaptive
Gibbs sampler

@ The MGPS prior allows many of the loadings to be close to zero,
thus inducing effective basis selection

@ Bhattacharya and Dunson approach - computationally very
efficient (block updating)



Posterior computation

@ Update the model parameters sampling from their full conditional
posterior distributions when available in closed form

@ Resort to Hamiltonian MC to update the basis coefficients 6;

@ Adapt the number of factors as the sampler progresses



Emotion meta-analysis dataset
@ 164 publications

@ 219 studies and 1393 foci

@ Five emotions: sad, happy, anger, fear, and disgust

(Picture from [2])



Some estimated intensities
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Summary
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Probit model for valence

Consider a meta-analysis data set of emotion studies, which can be
split into positive and negative studies by valence. Let

)1 if study i is positive
i=Vo it study i is negative

with P(yi = 1]a, v, m;) = (e +~n;).
The same set of latent factors impacts on the intensity function via

the basis coefficients 8; and on the response variable via the
probability of a positive study.

The model is extendable to different types of outcomes.



ROC — Emotion dataset
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Simulations

SIM 1: Data. SIM 2: Data SiM 3: Data. SIM 4: Data
= o5 o8 08 o8
04 oa 04 o0
o 0 . 00 . 00
Estintensities Estintensities Estintensities
RrOC RoC ROC ROC
H ER| 24 3
i £ LA i
£ 2 g -
Fase posiive rate Faso posite rate Fatseposiive rate Falo postive rate




Summary and Discussion

@ Functional representation of the log intensity function of a Cox
process with inclusion of a high-dimensional set of pre-specified
basis functions

@ Allow for automatic shrinkage and effective removal of basis
coefficients that are not needed to characterise the intensities

@ Covariates allowed to impact on the latent factor scores

@ Easy modifications for joint modelling of disparate data of many
different types

@ 0, replaceable with concatenated coefficients within component
models for different types of objects, including images, movies,
text, etc.

@ Extendable to a semiparametric case that allows the latent
variables densities to be unknown via nonparametric Bayes
priors



References

a Anirban Bhattacharya and David B Dunson.
Sparse Bayesian infinite factor models.
Biometrika, 98(2):291-306, June 2011.
a Jian Kang, Timothy D Johnson, and Thomas E Nichols.

A Bayesian hierarchical spatial point process model for multi-type neuroimaging meta-analysis.
Annals of Applied Statistics, 8(3):1800-1824, 2014.



	Introduction
	Functional latent factor model
	Inverse inference
	Summary and Discussion

