# Functional Bayesian point process model for neuroimaging meta-analysis data 

Silvia Montagna

Joint work with T. D. Johnson and T. E. Nichols

November 27, 2014

## Functional neuroimaging: an overview

- Functional neuroimaging has become an essential tool for non-invasively studying the brain of normal and clinical populations
- Ex: compare activations between two similar but different types of experiments
- Increasing interest in inverse inference
- Work supported by the simplicity and computational efficiency of the mass univariate approach
- Limitations: low power, low reliability, etc.
- Need meta-analyis!


## Coordinate-based meta-analysis

## Often, peak activation coordinates (foci) only are reported

L Fusiform (19/37)
L Fusiform (19/37)
L Inferior temporal (37)
R Cerebellum
R Cerebellum
R Sup./inf. parietal (19/39/40)
L Inferior parietal (19/39/40)
L Middle temporal (21)
R Postcentral
L Postcentral/precentral
L Precentral
R Thalamus
L Thalamus
L Lenticular nucleus
L Paracentral
$\begin{array}{llll}\text { L Mid/anterior cingulate } & -4 & 4 & 44\end{array}$
$\begin{array}{llll}\text { L Inferior frontal (44) } & -42 & 6 & 20\end{array}$
L Inferior frontal (44)

$$
\begin{array}{rrr}
-36 & -70 & -12 \\
-38 & -64 & -12 \\
-42 & -58 & -16 \\
4 & -66 & -24 \\
18 & -68 & -24 \\
28 & -66 & 36 \\
-30 & -50 & 36 \\
36 & -26 & 44 \\
-44 & -8 & 36 \\
2 & -4 & 0 \\
& & \\
& & \\
-4 & 4 & 44 \\
-42 & 6 & 20 \\
-40 & 10 & 20
\end{array}
$$



## Coordinate-based meta-analysis

Often, peak activation coordinates (foci) only are reported

L Fusiform (19/37)
L Fusiform (19/37)
L Inferior temporal (37)
R Cerebellum
R Cerebellum
R Sup./inf. parietal (19/39/40)
L Inferior parietal (19/39/40)
L Middle temporal (21)
R Postcentral
L Postcentral/precentral
L Precentral
R Thalamus
L Thalamus
L Lenticular nucleus
L Paracentral
L Mid/anterior cingulate
L Inferior frontal (44)
L Inferior frontal (44)

$$
\begin{array}{rrr}
-36 & -70 & -12 \\
-38 & -64 & -12 \\
-42 & -58 & -16 \\
4 & -66 & -24 \\
18 & -68 & -24 \\
28 & -66 & 36 \\
-30 & -50 & 36 \\
36 & -26 & 44 \\
-44 & -8 & 36 \\
2 & -4 & 0 \\
& & \\
& & \\
-4 & 4 & 44 \\
-42 & 6 & 20 \\
-40 & 10 & 20
\end{array}
$$



## Adopt spatial point processes

Goal: build a Bayesian model for coordinate meta-analysis data that allows inference on the most likely domain for any new experiment

## Spatial point processes

A spatial point process is a stochastic process where we observe random occurrences of events, possibly with a value or mark attached to each occurrence.

Examples:

- Locations of foci in a brain (mark: z- or t-score)
- Locations of trees in a forest (mark: type of tree, diameter, etc.)
- Occurrences of disease (mark: type of disease)


## Poisson processes

A Poisson process $\mathbf{X}$ is defined by a non-negative finite intensity measure $M$ which defines, for any $A \subseteq \mathcal{B}$, the number of expected points in $A$ :

$$
N(A) \sim \operatorname{Poisson}(M(A)), \quad \text { where } M(A) \equiv \int_{A} \mu(\nu) d \nu<\infty
$$

We write $\mathbf{X} \sim \operatorname{Poisson}(\mathcal{B}, \mu)$, where $\mathcal{B}$ is a common brain template $\mathcal{B} \subset \mathbb{R}^{3}$ with finite volume $|\mathcal{B}|$, and $\mu$ is the intensity function.

The density of a realisation $\mathbf{x}$ of $\mathbf{X}$ is

$$
\pi(\mathbf{x})=\exp \{|\mathcal{B}|-M(\mathcal{B})\} \prod_{x \in \mathbf{x}} \mu(x)
$$

A Cox process is a Poisson process with random intensity $\mu(x)$.

## Assumptions and notation

- $N$ independent observations, i.e., $N$ independent point patterns arising from $N$ studies
- Foci $\mathbf{x}_{i}=\left\{\mathbf{x}_{i j}\right\}_{j=1}^{n_{i}}$ from study $i=1,2, \ldots, N$
- Each $\mathbf{x}_{i}$ is a realisation from a Cox process $\mathbf{X}_{i}$ driven by a random intensity function $\mu_{i}$

Given that observations are independent, the sampling distribution is

$$
\begin{aligned}
\pi\left(\left\{\mathbf{x}_{i}\right\}_{i=1}^{N} \mid\left\{\mu_{i}\right\}_{i=1}^{N}\right) & \propto \exp \left\{-\sum_{i=1}^{N} M_{i}(\mathcal{B})\right\} \prod_{i=1}^{N} \prod_{\mathbf{x}_{j} \in \mathbf{x}_{i}} \mu_{i}\left(\mathbf{x}_{i j}\right) \\
M_{i}(\mathcal{B}) & =\int_{\mathcal{B}} \mu_{i}(\boldsymbol{\nu}) d \boldsymbol{\nu}<\infty
\end{aligned}
$$

$\mathcal{B}$ is a common brain template $\mathcal{B} \subset \mathbb{R}^{3}$ with finite volume $|\mathcal{B}|$.

## Log-Gaussian Cox process (LGCP)

One model for Cox processes is an LGCP. Writing the intensity as $\mu(\boldsymbol{\nu})=\exp \left\{\mathbf{z}^{\top}(\boldsymbol{\nu}) \boldsymbol{\beta}\right\} \mu_{0}(\boldsymbol{\nu})$, with $\mathbf{z}$ denoting a set of covariates, one models

$$
\mu_{0}(\boldsymbol{\nu})=\exp \{\Psi(\boldsymbol{\nu})\}, \quad \Psi(\boldsymbol{\nu}) \sim \operatorname{GP}\left(\varphi, C\left(\boldsymbol{\nu}, \boldsymbol{\nu}^{\prime}\right)\right)
$$

with $C\left(\boldsymbol{\nu}, \boldsymbol{\nu}^{\prime}\right)=\sigma^{2} \exp \left\{-\phi\left\|\boldsymbol{\nu}-\boldsymbol{\nu}^{\prime}\right\|\right\}$.
$\mathbb{E} \mu_{0}(\nu)=\exp \left\{\varphi+\sigma^{2} / 2\right\}$, so a useful specification is to set $\varphi=-\sigma^{2} / 2$ so that $\mathbb{E} \mu_{0}(\nu)=1$.

Many decent options for fitting LGCPs: INLA, MCMC, MALA, Hamiltonian MC.

## Alternatives to LGCPs

- Look into functional representation of the log intensity function
- Natural computational advantage over a GP
- Functional representations use a linear mean structure to describe the intensity's behaviour whereas GPs use the covariance matrix


## Functional Latent Factor Regression Model (LFRM)

We write the (log) intensity as

$$
\begin{equation*}
\log \mu_{i}(\boldsymbol{\nu})=\sum_{m=1}^{p} b_{m}(\boldsymbol{\nu}) \theta_{i m}=\mathbf{b}(\boldsymbol{\nu})^{\top} \boldsymbol{\theta}_{i} \tag{1}
\end{equation*}
$$

- $b_{m}(\nu)$ corresponds to the $m$ th basis function evaluated at voxel $\nu$
- Potential choices for $\mathbf{b}(\cdot)^{\top}$ : B-splines, 3D Gaussian kernels
- $\theta_{i}$ is the vector of study-specific basis function coefficients (scores)

Variations between intensities are reflected through the variations in the score vectors.

## LFRM

We specify a sparse factor model for the basis coefficients as

$$
\begin{equation*}
\boldsymbol{\theta}_{i}=\boldsymbol{\Lambda} \boldsymbol{\eta}_{i}+\boldsymbol{\zeta}_{i}, \quad \boldsymbol{\zeta}_{i} \sim \mathrm{~N}_{p}(0, \boldsymbol{\Sigma}) \tag{2}
\end{equation*}
$$

- $\boldsymbol{\Lambda}$ is a $p \times k$ factor loading matrix
- $\eta_{i}$ is a $k \times 1$ vector of latent factors
- $\zeta_{i}$ is a residual vector that is uncorrelated with other variables in the model, with $\boldsymbol{\Sigma}=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{p}^{2}\right)$

This structure induces a low-dimensional representation of $\log \mu_{i}$.

## LFRM

Information from study-specific covariates $\mathbf{z}_{i}$ can be incorporated through a simple linear model

$$
\begin{equation*}
\boldsymbol{\eta}_{i}=\boldsymbol{\iota}^{\top} \mathbf{z}_{i}+\boldsymbol{\Delta}_{i}, \quad \boldsymbol{\Delta}_{i} \sim N_{k}(0, \boldsymbol{I}) \tag{2}
\end{equation*}
$$

where $\iota$ is a $r \times k$ matrix of unknown coefficients, and $r$ denotes the dimension of $\iota_{i}$.

## LFRM

Despite the simplicity of this linear model, the resulting model on $\log \mu_{1}, \ldots, \log \mu_{n}$ allows a very flexible accommodation of covariate information.

Conditionally on $\left(\left\{b_{m}\right\}_{m=1}^{p}, \boldsymbol{\Lambda}, \boldsymbol{\Sigma}, \boldsymbol{\iota},\left\{\mathbf{z}_{i}\right\}_{i=1}^{n}\right)$, the log intensities are independent (finite rank) Gaussian processes with covariate dependent mean functions

$$
\mathbb{E}\left[\log \mu_{i}(\boldsymbol{\nu})\right]=\sum_{l=1}^{k} \boldsymbol{\iota}_{l}^{\top} \mathbf{z}_{i} \phi_{l}(\boldsymbol{\nu})
$$

and a common covariance function

$$
\mathbb{C o v}\left\{\log \mu_{i}(\boldsymbol{\nu}), \log \mu_{i}\left(\boldsymbol{\nu}^{\prime}\right)\right\}=\sum_{l=1}^{k} \phi_{l}(\boldsymbol{\nu}) \phi_{l}\left(\boldsymbol{\nu}^{\prime}\right)+\sum_{m=1}^{p} \sigma_{m}^{2} b_{m}(\boldsymbol{\nu}) b_{m}\left(\boldsymbol{\nu}^{\prime}\right)
$$

where $\phi_{l}(\boldsymbol{\nu})=\sum_{m=1}^{p} \lambda_{I m} b_{m}(\boldsymbol{\nu})$.

## Bayesian analysis: the MGPS prior

We adopt the multiplicative gamma process shrinkage (MGPS) prior on the loadings [1]:

$$
\begin{aligned}
\lambda_{j h} \mid \psi_{j h}, \tau_{h} & \sim N\left(0, \psi_{j h}^{-1} \tau_{h}^{-1}\right), \quad \psi_{j h} \sim \operatorname{Gamma}\left(\frac{\rho}{2}, \frac{\rho}{2}\right), \quad \tau_{h}=\prod_{l=1}^{h} \delta_{l} \\
\delta_{1} & \sim \operatorname{Gamma}\left(a_{1}, 1\right), \quad \delta_{l} \sim \operatorname{Gamma}\left(a_{2}, 1\right), \quad l \geq 2
\end{aligned}
$$

- $\tau_{h}$ is a global shrinkage parameter for the hth column
- $\tau_{n}$ 's are stochastically increasing under the restriction $a_{2}>1$
- Favors more shrinkage overall as the column index increases
- $\psi_{j h}$ 's are local shrinkage parameters for the elements in the $\mathrm{h} t h$ column
- Avoids over-shrinking the non-zero loadings


## MGPS prior

- The MGPS prior let $\Lambda$ be $q \times \infty$ with priors increasingly concentrated at zero as the column index increases
- The number of factors is automatically selected using adaptive Gibbs sampler
- The MGPS prior allows many of the loadings to be close to zero, thus inducing effective basis selection
- Bhattacharya and Dunson approach - computationally very efficient (block updating)


## Posterior computation

- Update the model parameters sampling from their full conditional posterior distributions when available in closed form
- Resort to Hamiltonian MC to update the basis coefficients $\boldsymbol{\theta}_{i}$
- Adapt the number of factors as the sampler progresses


## Emotion meta-analysis dataset

- 164 publications
- 219 studies and 1393 foci
- Five emotions: sad, happy, anger, fear, and disgust



## Some estimated intensities



$$
\text { Est int. } 142 \text { - Exp. Foci = } 2
$$



## Summary

Foci \& mean posterior intensity


Posterior stand dev


## Probit model for valence

Consider a meta-analysis data set of emotion studies, which can be split into positive and negative studies by valence. Let

$$
y_{i}= \begin{cases}1 & \text { if study } i \text { is positive } \\ 0 & \text { if study } i \text { is negative }\end{cases}
$$

with $\mathrm{P}\left(y_{i}=1 \mid \alpha, \gamma, \boldsymbol{\eta}_{i}\right)=\Phi\left(\alpha+\gamma^{\top} \boldsymbol{\eta}_{i}\right)$.
The same set of latent factors impacts on the intensity function via the basis coefficients $\theta_{i}$ and on the response variable via the probability of a positive study.

The model is extendable to different types of outcomes.

## ROC - Emotion dataset

ROC


## Simulations














## Summary and Discussion

- Functional representation of the log intensity function of a Cox process with inclusion of a high-dimensional set of pre-specified basis functions
- Allow for automatic shrinkage and effective removal of basis coefficients that are not needed to characterise the intensities
- Covariates allowed to impact on the latent factor scores
- Easy modifications for joint modelling of disparate data of many different types
- $\boldsymbol{\theta}_{i}$ replaceable with concatenated coefficients within component models for different types of objects, including images, movies, text, etc.
- Extendable to a semiparametric case that allows the latent variables densities to be unknown via nonparametric Bayes priors


## References



Anirban Bhattacharya and David B Dunson.
Sparse Bayesian infinite factor models.
Biometrika, 98(2):291-306, June 2011.
Jian Kang, Timothy D Johnson, and Thomas E Nichols.
A Bayesian hierarchical spatial point process model for multi-type neuroimaging meta-analysis.
Annals of Applied Statistics, 8(3):1800-1824, 2014.

