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1. Orthogonalisation. We can assume without loss of generality that the two parts of
the design matrix X0 and Xγ are orthogonal, i.e. XT

0Xγ = 0a×b. If this is not the case
then we can reparameterise from x = X0α + Xγβ + ε to x = X0α

′ + X ′γβ + ε, where

α′ = α+ (XT
0X0)

−1XT
0Xγβ, X ′γ = (In − P 0)Xγ , and XT

0X
′
γ = 0a×b

The orthogonal reparameterisation is useful because the hat matrix of the linear model (H)
is simpler when written in terms of X ′γ rather than Xγ , i.e. H = P 0 +X ′γ(X ′Tγ X

′
γ)−1X ′Tγ .

For more details see Forte Deltell (2011).

Furthermore this orthogonalisation can be used to improve computational effeciency when
comparing a large number of models with the same X0. Define x′ = (In − P 0)x (which can
be precomputed) and then assuming that XT

0Xγ = 0a×b, we have xT (In − P 0 − P γ)x =
x′T (In − P γ)x′. This reduces the number of computations that have to be performed for
each model matrix Xγ . When the only parameter common to all models is an intercept
parameter the orthogonalisation corresponds to centring the predictors and x′ becomes the
centred response.

2. Experimental procedure. Protein time course data were obtained using reverse-phase
protein arrays (Hennessy et al., 2010). Cells were plated into 10 cm2 dishes at a density of
1-2 ×106 cells. After 24 hours, cells were treated with 250 nM Lapatinib or 250 nM AKTi.
For treatment with both inhibitors, 250 nM of lapatinib and 250 nM of AKTi were used.
DMSO served as a control. Cells were grown in FCS and harvested in RPPA lysis buffer at 30
min, 1h, 2h, 4h, 8h, 24h, 48h, and 72h post-treatment. Cell lysates were quantitated, diluted,
arrayed, and probed as described previously (Tibes et al., 2006). Imaging and quantitation of
signal intensity was done as described previously (Tibes et al., 2006).
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2 SPENCER ET AL.

3. Intervention models. In this section we give a technical description of how to imple-
ment the intervention methods in practice. Since we focus primarily on the “-out” forms of the
interventions, we begin with these. In Section 3.11 we illustrate the use of these interventions
on a toy example.

3.1. No intervention. Recalling the regression equation for a node j with parents γ (Eq. 3),
we see that Xγ is the parent-specific design matrix for node j given a parent set γ. We form
Xγ by concatenating the columns of the design matrices from each set of conditions in the
usual way when adding extra observations to a linear model.

3.2. Perfect interventions. In a perfect-out intervention a zero is inserted into the design
matrix Xγ whenever the parent corresponding to an entry is inhibited. The inhibition design
is described by a n× p binary matrix Z = [z1, . . . ,zp] where Zij = 1 if node j is inhibited in
sample i and 0 otherwise; the matrix Z is treated as known by experimental design.

Given a parent set γ containing b elements, form the matrix Zγ by selecting the columns of
Z corresponding to indices in γ. Therefore the regression equation takes the form,

x = X0α+ [(1n×b −Zγ) ·Xγ ]β + ε

where A · B denotes the element-wise product of matrices A and B and 1n×b denotes the
n× b matrix of ones.

Inserting a zero into Xγ is equivalent to forcing the protein under inhibition to take its mean
value as we have orthogonalised Xγ to the intercepts X0, which causes the columns of Xγ

to have mean zero.

3.3. Mechanism change interventions. In the ‘-out’ form of a mechanism change intervention
the regression parameter between a parent and a child takes a different value when the parent
is inhibited. This allows some dependency to remain between the two nodes, but the strength
or even direction of the relationship can change. In principle this leads to the regression
equation,

x = X0α+ [(1n×b −Zγ) ·Xγ ]β + [Zγ ·Xγ ] ξ + ε,

where ξ is a vector of b additional parameters. Note that we are predominantly interested in
experiments in which only a subset of the nodes are intervened upon. When a parent node
is not inhibited in any of the experimental conditions then this leads to a column of zeros in
Zγ and therefore also Zγ ·Xγ . In such cases the system is no longer of full rank and for the
least squares estimator to exist these columns must be deleted before the model is fitted. Let
γI = {j : j ∈ γ,zj 6= 0} denote the set of parents that are inhibited in at least one sample.
Therefore the mechanism change regression equation is more correctly expressed as

x = X0α+ [(1n×b −Zγ) ·Xγ ]β + [ZγI ·XγI ] ξ + ε,
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where ξ is a vector of |γI | additional parameters. This could be further generalised by allowing
for mutiple inhibitors to target the same node. In this situation an additional regression
parameter would be added for each inhibitor and a more complex notation is required to
describe inhibition.

3.4. Fixed effect interventions. In the ‘-out’ form of a fixed effect interventions an interven-
tion on a node is assumed to create an additive change in each of the target node’s children.
As with the mechanism change intervention, it is again necessary to restrict attention to par-
ents that are intervened upon to avoid problems with identifiability. The intervention can
usually be represented by the addition of ZγIδ to the regression equation, where δ is a vector
of |γI | fixed effects. However further identifiability problems may occur in situations where
an inhibitor has several target nodes or when two or more inhibitors are inseparable through
poor experimental design. In such cases we would observe that some of the columns of ZγI are
linearly dependent. To rectify this, form a new set γ?I from the linearly independent columns
of ZγI such that |γ?I | = rank(ZγI ). The regression equation is therefore

x = X0α+Xγβ +Zγ?I
δ + ε,

where δ is a vector of rank(ZγI ) additional parameters. So in the case of inhibitors with more
than one target, we estimate a single fixed effect for each inhibitor (and not one for each of
its targets). This models the overall effect of the intervention on the node of interest and its
use serves to ensure identifiability of the fixed effect in the multiple-target case.

3.5. Perfect and fixed effect interventions. When the ‘-out’ forms of the perfect and fixed
effect interventions are combined, a zero is inserted in the design matrix when a parent protein
is inhibited and for these observations an additive parameter is also estimated. Inserting a
zero into Xγ is equivalent to forcing the protein under inhibition to take its mean value, as
we have orthogonalised Xγ to the intercepts X0, which causes the columns of Xγ to have
mean zero. The fixed effect term then allows data-driven estimation of the effect of inhibition
on the children of the inhibitor’s targets (this effect must be estimated when working with
relative log-concentrations, since the locations of specific values on the scale are lost). The
regression equation takes the form

x = X0α+ [(1n×b −Zγ) ·Xγ ]β +Zγ?I
δ + ε.

3.6. Perfect-in interventions. For completeness, we also describe the ‘-in’ forms of each in-
tervention, where the intervention affects the edges coming in to the target node. We do not
consider them to be useful models for kinase inhibition, but they may have uses elsewhere,
such as with gene expression data.

The perfect-in intervention is already described by Eaton and Murphy (2007) and is precisely
Pearl’s do(X = x), in which the target node X is forced to take some value x. Consequently we
cannot learn anything about the relationship between X and its parents from these samples
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and so the rows in which the inhibited node is acting as the response must be removed from
the regression equation.

Partition the response vector x into two parts – let xI indicate the entries in which the
response is inhibited and xU indicate the entries in which it is uninhibited. Let XI

0 and XI
γ

be the rows of the design matrices for xI and XU
0 and XU

γ be the rows of the design matrices

for xU . Similarly, let εI and εU be the respective components of the error vector ε.

The regression equation for perfect-in interventions is therefore

xU = XU
0 α+XU

γ β + εU

3.7. Mechanism-change-in interventions. A mechanism-change-in intervention allows the re-
lationship between the target node and its parents to change in the presence of the interven-
tion. Let βI be a vector of b extra parameters that must be estimated when the response is
inhibited, and let βU denote the existing, uninhibited regression coefficients. The regression
equation is now,

xU = XU
0 α+XU

γ β
U + εU ,

xI = XI
0α+XI

γβ
I + εI ,

noting that the vector α is the same in both sets of equations. The regression equation is
therefore [

xU

xI

]
=

[
XU

0 XU
γ 0

XI
0 0 XI

γ

] α

βU

βI

+

[
εU

εI

]
.

3.8. Fixed-effect-in interventions. A fixed-effect-in intervention admits an additive change
in the response when it is intervened upon. The regression equation can be written as

xU = XU
0 α+XU

γ β + εU ,

xI = XI
0α+XI

γβ + δ + εI ,

or equivalently,
x = X0α+Xγβ + ziδ + ε,

where zi is the column of Z corresponding to the response.

3.9. Combinations of ‘-in’ and ‘-out’ interventions. In some circumstances it may be desir-
able to use combinations of both ‘-in’ and ‘-out’ forms of the intervention models. For example
if the inhibitor prevented its target from having any interactions with the other nodes, it would
be desirable to remove both the in-coming and out-going edges from the target node. In such
circumstances it would seem to make sense to use the perfect-in, perfect-out and possibly the
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fixed-effect-out interventions together. Such combinations may appear to be biological plau-
sible, but it is always advisable to monitor the number of observations relative to the number
of parameters.

3.10. Interventions described using Pearl’s “do” operator. As discussed previously, perfect-
in interventions correspond to the application of Pearl’s “do” operator (Pearl, 2000) to the
nodes of the DBN. If node i is a parent of node j in the rolled up DBN then we have directed
edges from Xi,c,t to Xj,c,t+1 in the unrolled DBN, for each timepoint 0 ≤ t < T and each
condition c without intervention on node j. A perfect-in intervention on node j in condition
c deletes edges between Xi,c,t and Xj,c,t+1 reflecting the fact that the j nodes have been set
by the intervention and are no longer under the causal influence of the i nodes. This equates
to do(Xj,c,0 = x0, . . . , Xj,c,T−1 = xT−1) in the language of Pearl.

The “do” operator provides a general framework for handling interventional designs and it
is possible to formulate all of the intervention models described in this paper using the “do”
operator (Pearl and Bareinboim, 2014). In biological interventions, like those we considered
in the protein signaling application, the causal influence of a node can be set separately from
its measured value. In our application, the causal influence of a phospho-protein j on the
phosphorylation of other proteins is mediated via the kinase domain of j. The activity of
the kinase domain can be abolished by binding with an inhibitor, without requiring that the
concentration of phospho-protein j be altered by the presence of the inhibitor. We proposed
“perfect-out” interventions as a way to handle this kind of data.

More generally it might be the case that the intervention does not completely remove the
dependence between the inhibited phospho-protein j and its children, but instead alters the
relationship between them (e.g. in the mechanism change and the fixed effect intervention
models). This might occur if the amount of the inhibitor is limited and only a proportion of
the available kinase domains are rendered inactive. In this situation all of dependencies in the
original DBN structure remain (even though the distributional relationships have changed),
and so additional nodes and edges must be introduced to capture the effect of the inhibitor.

An arbitrary intervention model can be described by augmenting the unrolled graph for the
DBN with additional nodes given by binary random variables Z, where Zj,c = 1 when node j
is inhibited in condition c. When modeling an arbitrary ‘-out’ intervention, the inhibition of
node j affects the children of j and so directed edges representing this dependence lead from
Zj,c to the children of Xj,c,t. The effect of the intervention is then mediated by Zj,c and can
in principle take any functional form. An intervention on node j in condition c can now be
expressed using Pearl’s “do” operator as do(Zj,c = 1) on the augmented DBN.

An arbitrary ‘-in’ intervention can be represented similarly, the only difference being that
directed edges lead from Zj,c to Xj,c,t itself rather its children. The intervention is again
written as do(Zj,c = 1). If both ‘-in’ and ‘-out’ interventions are used together, then edges
leading from Zj,c to Xj,c,t as well as the children of Xj,c,t are present.
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Figure S1. A toy network in which two variables X, Z influence variable Y. Inhibitors Xi and Yi act on
proteins X and Y respectively (see text for details).

3.11. A toy example. We now illustrate the foregoing interventional models and the mod-
ifications to the DBN that they induce by considering a toy, three-node protein phospho-
rylation example. The causal graph G is illustrated in Figure S1: Proteins X and Z act as
kinases for protein Y, with kinase inhibitors against X and Y (“Xi” and “Yi” respectively)
available. Experimental conditions include no inhibitors, inhibitor Xi only, inhibitor Yi only
and both inhibitors together. Below we show how the model for Y, conditional on parent
set γ(Y) = {X,Z}, is modified under various intervention schemes. The vector observations
x,y, z with components indexed by c ∈ {0,Xi,Yi,Xi + Yi} are taken to be phospho-protein
levels, with x, z observed at a certain time t and y at the following time t + 1, such that
the former are potential predictors for the latter. Without accounting for interventions we
have the familiar model for y (as in main text Equation 3; here rows in the design matrix
correspond to experiments c and columns to the parents).

y0
yXi

yYi

yXi+Yi

 = X0α+


x0 z0
xXi zXi

xYi zYi

xXi+Yi zXi+Yi

β + ε.

When perfect(-out) interventions are assumed, this equation becomes
y0
yXi

yYi

yXi+Yi

 = X0α+


x0 z0
0 zXi

xYi zYi

0 zXi+Yi

β + ε,

since inhibitor Xi prevents X from influencing the phosphorylation state of Y. Since the
inhibitor Yi targets the kinase domain of Y, but may nonetheless allow phosphorylation of Y,
the model does not force Y to be unphosphorylated.

For fixed effect (-out) interventions the parameter vector β is extended to include an additional
parameter: 

y0
yXi

yYi

yXi+Yi

 = X0α+


x0 0 z0
xXi 1 zXi

xYi 0 zYi

xXi+Yi 1 zXi+Yi

β + ε.
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For perfect interventions with fixed effect interventions (again in “-out” form) the model
becomes: 

y0
yXi

yYi

yXi+Yi

 = X0α+


x0 0 z0
0 1 zXi

xYi 0 zYi

0 1 zXi+Yi

β + ε.

Finally, for mechanism change (-out) interventions we have:
y0
yXi

yYi

yXi+Yi

 = X0α+


x0 0 z0
0 xXi zXi

xYi 0 zYi

0 xXi+Yi zXi+Yi

β + ε.

Given our focus on kinase inhibitors, we considered only “-out” interventions above. For
comparison, perfect-in interventions, which act upon the parents of a protein instead of its
children, (see for example Eaton and Murphy, 2007) produce the model:[

y0
yXi

]
= X0α+

[
x0 z0
xXi zXi

]
β + ε.

Note that for ‘-in’ forms of the intervention it is inhibitor Yi which directly affects Y rather
than inhibitor Xi.
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4. Supplementary Figures.
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Figure S2. The prior network elicited from experts at the Netherlands cancer Institute, used in main text
Figures 4 and 5.
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Figure S3. ‘True’ network used to generate the simulated timecourse data for Figure 3 of main text. For each
intervention model 4 timecourses were generated: node A was inhibited in timecourses 2 & 4; node C in 3 &
4. The intervention models were compared using ROC curves with respect to their ability to reconstruct this
network from the 4 simulated timecourses.
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Figure S4. Posterior median signalling networks for cell lines AU565 and BT474 with Perfect and fixed effect
interventions (top) and with no interventions (bottom). Unconnected proteins are omitted. Edges highlighted in
green show the differences between the networks.
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