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Appendix A: Proofs

Proof of Proposition 1

Let Z ~ H. Then
=E Zpi(%‘)@f] = E[Z"] ZE [pi(x)] = E[Z"].

Similarly, B {M;w] — E[Z"].
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which follows from the stationarity of p; (), p2(x), ps(z), . . .

Proof of Theorem 1

It is easy to show (see GS) that for any measurable set B

Corr(F,(B), Fy(B)) = (M +1) > Elpi(2)pi(y)]
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In this case, if © ¢ S(¢;) or y ¢ S(¢;) then

E[p;(z)pi(y)] = 0

Otherwise, let R\ = {j < ilz € S(¢;) andy € S(¢;)}, R = {j < i|z € S(¢;) and y ¢ S(:)}
and RES) ={j<ilx ¢ S(¢)andy € S(¢;)}
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The set {i|ly € S(¢;) or x € S(¢;)} must have infinite size since it is contained by the set {i|z €
S(¢;)} which has infinite size. Let ¢/, ¢}, @5, ... be the subset of ¢1, po, 3 for which {ily €
S(¢;) orx € S(¢;)} and define B, =1 (y € S(¢}) and x € S(¢})) then
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Proof of Theorem 3

Since (C, r,t) follows a Poisson process on R? x R? with intensity f(r), p(Ck|s € S(¢x) orv €

S(¢x),rk) is uniformly distributed on B,, (s) U B,, (v) and p(ri|s € S(éx)orv € S(¢y)) =
v(Bry, (5)UBy, (v)) (i)
Jv(Bry, (5)UBy, (v)) £ (1) dr,

= P S NS S(¢k)|8 € Sporv € S(d)k))
// p(Ck,rils € S(¢px) orv € S(¢y)) dCy dry,
B sﬂBrk(v)

_ Jv (B (s) N By, (v)) f(re) dr
Jv (B (s) U By, (v)) f(rs) dry

where v(-) is Lebesgue measure. Then

Proof of Theorem 4

The autocorrelation function can be expressed as f(ps si.) Where f(z) = 2(2E) /(1 + 2 7).

Then by Fad di Bruno’s formula
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where m; + 2mgy + 3mgz +--- +nm, =nwithm; > 0,7 =1,...,n,and so
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degree of differentiability of the autocorrelation function is equal to the degree of differentiability

is finite and non-zero for all values of n, the

Of ps 5+ We can write ps 1o, = (%‘ — )71 with a = 25 —ul. Now dkp;—;j“ = (k—=1)!(4p—a)~*

and lim,, g de22+ “ = (k—1)!(2p) % which is finite and non-zero. By application of Faa di Bruno’s
formula et : .
dr n! dmT T dia 1\
%ps’sﬂ N Z mylmelms! ... dam™ttma , H (dui j!)
{jlm;#0}
and the degree of differentiability is determined by the degree of differentiability of a. If p(r) ~
Ga(a,3) then %2 = —1 (%)% exp{—u/2} and £ = -1 (%)a_lexp{—u/Z} and it is easy to

show that % = Chu® " exp{—u/2} + ¢ where ¢ contains terms with power of x greater than
a —n + 1. If lim,_o u® exp{—u/2} is finite then so is lim,_ o u®™ exp{u/2} for k > 0 and so
the limit will be finite iff « —n+1>0,ie. « > n — 1.

Appendix B: Computational details

As we conduct inference on the basis of the Poisson process restricted to the set R, all quantities
(C,r,t,V,0) should have a superscript R. To keep notation manageable, these superscripts are not

explicitly used in this Appendix.

Updating the centres

We update each centre ', . .., C'x from its full conditional distribution Metropolis-Hastings ran-
dom walk step. A new value C! for the i-th centre is proposed from N(C;, 0% ) where o2 is chosen
so that the acceptance rate is approximately 0.25. If there is no z; such that x; € (C] —r;, Cl + 1)
or if there is one value of j such that s; = ¢ for which x; ¢ (C/ — r;, C] + ;) then a(C;, C}) = 0.

Otherwise, the acceptance probability has the form

H;‘L:I Hh<sj and C}ll—rh<27j<c}ll+’r‘h(1 - Vh)

a(Cy, Cz/) = Tn :
Hj:l Hh<8j and Ch*Th<xj<Ch+Th(1 - Vh)



Updating the distances

The distances can be updated using a Gibbs step since the full conditional distribution of 7 has a
simple piecewise form. Recall that d;;, = |x; — Cy| and let S = {j|s; > k}. We define S to
be a version of Sy where the element have been ordered to be increasing in d;, i.e. if i > j and
i,j € S then d;; > djy. Finally we define df = max[{Zmin — Ck, Ck — Tmax} U {dir|si = k}]
and m* be such that z; € S¢"¢ and x,,,» > df and z,,,~_; < d. Let [ be the length of S¢"?. The full

conditional distribution has density
f(Z) lf d}; <z S dszzﬁk

f*(Z) X f(2)<]. - Vk)i_m*+1 lf dsqrdk <z S dSq—r—cllk7 /l - m*, e ,l - ]. .
f(Z)(l - Vk)l_m*+1 le > dslordk

Swapping the positions of atoms

The ordering of the atoms should also be updated in the sampler. One of the K included atoms, say
(Vi, 0;, C;,r;), is chosen at random to be swapped with the subsequent atom (V; 1, 0;11, Cit1,7i11)-
If i < K, the acceptance probability of this move is min {1, (1 — V1) /(1 — V;)™+1} . If i = K,
then a new point (Vii1,0k+1, Ck11,7K11) is proposed from their prior and the swap is accepted
with probability min {1, (1 — Vk )™ }.

Updating ¢ and VV

The full conditional distribution of ; is proportional to 2(6;) [ .3 k(y;10:), where h is the density
function of /. We update V; from a Beta distribution with parameters 1+ »>7_, I(s; = i) and
M + Z?:l I(Sj > 1, |£L’j — Cz| < T’i).

Updating M

This parameter can be updated by a random walk on the log scale. Propose M’ = M exp(e) where
¢ ~ N(0,03%,) with 02, a tuning parameter chosen to maintain an acceptance rate close to 0.25.

The proposed value should be accepted with probability

A [Hfil(l _ V;):| - B(M")*K exp {—ﬂ(M/) i Ti} p(M’)
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where (M) is 3 expressed as a function of M, as in our suggested form

3 21 1+ M+e¢
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Posterior inferences on F’;

We are often interested in inference at some point £ € X about the distribution F;. We define
(V1,61), (Va,05),...,(V;,8;) to be the subset of (Vi,6:),(Vi,6s)...,(Vik,0k) for which |Z —
C;| < r;. Then

r=Y [0 I v) I (%) 3 i ITa -7
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N n; n
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where n; is a geometric random variable with success probability 1—p, 0](;') ~ H, Vj(i) ~ Be(1, M),
6~m ~ H and Vm ~ Be(1, M) for m > N. We calculate p in the following way. If z,,;,, < & <
Tmaz» define 7 so that z(;) < T < (41), where x(y), ..., x(y,) is an ordered version of xq, ..., z,,

then p = %cj where
B T(ig1) — T( . T —x _ T(it1) — T
q =(x41) — @)L (%) + (e —2)T ( 5 ()) — (241 —2)T (%)
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with Z(y) = [ f(r) dr and p*(y) = [} rf(r) dr. Otherwise if & < Zpuin,

G— o <%) t (B — ) (1 7 (xm_z—fv»
q~: 2/,6* (SU _;max> + (jf-%max) (1 _T (1: —;max>) .

We use a truncated version of F; with h elements which are chosen so that Z?Zl p; = 1 — e where
e 1s usually taken to be 0.001.

and if & > Tz



Model 2

This section is restricted to discussing the implementation when m(z) follows a Gaussian process

prior where we define P;; = p(x;, ;). We also reparametrise from u, to ¢; = o,

Updating v;|s
The full conditional distribution has the density

p(dy) ox gUS O TRL=ISIS) (ont 056,702 6y > Guain

where ¢y, = max {(y; — m(z))|s; =i,1 <j < n}. A rejection sampler for this full condi-
tional distribution can be constructed using the envelope

¢g.5(1—zl<sj=i,13jsm) bin < i < 2

h* sz X . .
( ) { Z0.5(1—Z I(sj:z,lgjgn)) exp{—0.5(¢i _ Z)/UQ} ¢Z > -
which can be sampled using inversion sampling. The acceptance probability is
a(¢) _ eXp{_O‘E)(Qbi - ¢min)/02} Qbmin < sz <z
’ (2)"77"" exp{—0.5(2 — din) [02} i > 2

z
and the choice z = 0 I(s; = 4,1 < j < n) maximizes the acceptance rate.

Updating o2

Using the prior Gamma(vy, 1), the full conditional distribution of o~ is again a Gamma distribu-
tion, where we define P = (P;)

3K n 1 & 1
o2~ Ga (Vl + T + 5, Vo + 5 ;@ + %m(x)Tplm(:L‘)> .

Updating m(z1), ..., m(z,)

It is possible to update m(x;) using its full conditional distribution. However this tends to lead to
slowly mixing algorithms. A more useful approach uses the transformation m(x) = C*z where
C* is the Cholesky factor of o, 2P~!, where z ~ N(0,I). We then update zj using their full
conditional distribution which is a standard normal distribution truncated to the region N, (y; —

Zk;ﬁj Cirzk — Vi yi — Zk;ﬁj Cirzk + Vi)



Updating w

We define w? = o0%/03. If w? follows a Gamma distribution with parameters aq and by then
the full conditional of o 2 follows a Gamma distribution with parameters ag + n/2 and by +
o2 m(x)" P~'m(z)/2. A similar updating occurs for the Generalized inverse Gaussian prior used

here.

Updating the Matern parameters

We update any parameters of the Matern correlation structure by a Metropolis-Hastings random
walk. The full conditional distribution of the parameters ((, 7) would be proportional to

|P|_1/2 exp {—U‘zw_Qm(x)TP_lm(x) } p(C, 7).



