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OBJECTIVES
1. Demonstrate lack of robustness in traditional

Bayesian inference.
2. Introduce Bayesian updating using a loss func-

tion.
3. Propose a more robust Bayesian update to be

used in the M -open world.

BACKGROUND
The Bayesian decision problem:

• choose a decision d ∈ D,
• in order to minimise `(d, x),
• against some future unknown x ∈ X ,

Bayesian statistics provides the tools to solve.

• Savage:

– probabilities are beliefs,
– preferences are loss functions,
– the optimal decision minimises the expected

loss.

• Inference is a decision problem where the deci-
sion is a probability distribution [1].
• The log-score is local and proper.
• Kullback-Leibler (KL) divergence dKL(g||f), is

the expected log-score of deciding f when g is
the truth.
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GENERAL BAYESIAN UPDATING
• Decision problem (parametrised by θ)
• The ‘true’ Bayes act:

θ∗ = argmin
θ

∫
X
`(θ, x)dG, (1)

where G(x) is the true data generating density.
• The traditional Bayesian builds a belief model

to approximate G(x).

Without a model, the General Bayesian [2] poste-
rior must be close to:

• the prior (measured using KL-divergence)
• and the data (measured using expected loss)

The posterior minimising the sum of these is:

π(θ|x) ∝ exp{−w
∑
i

`(θ, xi)}π(θ) (2)

• High posterior mass is assigned to parameters
minimising the loss given the data.
• The data is used to empirically integrate over
G(x).

BAYES AS GENERAL BAYES
If `(θ, x) = − log(f(x; θ)) then the general
Bayesian update recovers Bayes rule, in agree-
ment with [1]:

π(θ|x) ∝
∏
i

{f(xi; θ)}π(θ) (3)

THE SOLUTION: HELLINGER BAYES

• Why use non-robust inference methodology for
a decision problem?

• Appeal to general Bayesian updating to min-
imise a more robust divergence to the truth.

• Minimising a divergence equivalent to minimis-
ing a score [3].

Hellinger (H) divergence a robust approximation
to KL in minimum discrepancy estimation [4].

d2H(g, f) = 1−
∫ √

g(z)f(z)dz (4)

The H-divergence:

• Bounds Total-Variation both above and below.

• Bounded under contamination.
• Closeness in H-divergence means expected util-

ity estimates will be absolutely close.

Bayesian updating using the score associated with
the H-divergence (H-Bayes) is:

π(θ|x) ∝ exp{w
n∑
i=1

(

√
fθ(xi)√
gn(xi)

)}π(θ). (5)

where gn(·) is some non-parametric density esti-
mate from the data.

• We contribute a foundational proposal for
Bayesian updating using robust divergences
that is valid in the M -open world.

DEMONSTRATION

Figure 1: Posterior predictives: traditional Bayesian
statistics (red) and H-Bayes (green), against the truth
(black) and the approximating model (broken black).
ε = 0.1 (left) and ε = 0.01 (right). A Kernel density
estimate (KDE) estimates the true density.

E.g. 1: ε-contamination. Consider approximating
genuine data generating function be g:

g = (1− ε)N (0, 1) + εN (µ, σ2), (6)

with model f :
f = N (0, 1). (7)

E.g. 2: Over-dispersed Poisson. Approximating g:

g = NB(s = 1

4
, µ = 1), (8)

with model f :
f = Poi(λ). (9)

Figure 2: Posterior predictives produced by traditional
Bayesian statistics (red) and H-Bayes (green) , against
the truth (black). The empirical mass function estimates
the true mass function.

HELLINGER BAYES ISSUES
• No longer using Bayes rule, so need to correctly

setw to ensure the H-Bayes posterior maintains
probabilistic meaning.
• No longer have the likelihood principle or

Bayesian additivity. Can rationalise when the
model is wrong.
• Need to be aware of the bias and variance

trade-off in any density estimation technique.

THE PROBLEM
“If preferences are described by the log score,
one should beware of approximating by 0” [1]

• As x→ 0, − log(x)→∞.
• Severe penalty for predicting an observed

event to have probability close to 0.
• Results in a desire to correctly capture the tail

behaviour of the data generating process.
• Important for pure inference problems [1].
• In the M -open world the model is never cor-

rect.
• Leads to Bayesian updating being very non-

robust.
• e.g. under ε-contamination the KL-divergence

is unbounded. (see ‘Demonstration’)
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NEXT...
• Explore the power of H-Bayes updating under

more general misspecification, targeting linear
models.


