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M-OPEN INFERENCE
• “All models are wrong but some are useful”

G. E. P. Box
• Cannot learn θ0 generating the data.
• Define parameter of interest by defining diver-

gence between model and sample distribution
of the data (Walker, 2013) (JSPI).

GENERAL BAYESIAN UPDATING
• The ‘true’ Bayes act of decision problem

(parametrised by θ):

θ∗ = argmin
θ

∫
X
`(θ, x)dG, (1)

where G(x) is the sample distribution of x.
• The traditional Bayesian builds a belief model

to approximate G(x).

Without a model, the General Bayesian’s pos-
terior beliefs (Bissiri, Holmes and Walker, 2016) (JRSSB)
must be close to:

• the prior (measured using KL-divergence).
• and the data (measured using expected loss).

The posterior minimising the sum of these is:

π(θ|x) ∝ π(θ) exp

(
−w

∑
i

`(θ, xi)

)
. (2)

BAYES AS GENERAL BAYES
If `(θ, x) = − log(f(x; θ)) then the general
Bayesian update recovers Bayes rule:

π(θ|x) ∝ π(θ)
∏
i

{f(xi; θ)}. (3)

• Bayesian updating is learning about the param-
eter which minimises the KL-divergence to the
sample distribution of the data.
• But as f(x; θ)→ 0, − log(f(x; θ))→∞.
• Results in an (implicit) desire to correctly cap-

ture the tail behaviour of the underlying pro-
cess in order to conduct principled inference.

ROBUST BAYESIAN ONLINE CHANGEPOINT DETECTION (BOCPD)
Standard BOCPD (e.g. Knoblauch and Damoulas (2018)
(ICML))
• Detects Changepoints (CPs) online providing

full uncertainty quantification.
• Combines a run-length (time since last CP) pos-

terior and parameter posterior within segment.
• Use predictive density of next observation as

the run length likelihood.
• Outliers have low predictive density and cause

spurious CPs.
• Efficient recursion to update posterior online.

Robust BOCPD (Knoblauch, Jewson and Damoulas (2018)
(arxiv))
• Maintains full and principled uncertainty quan-

tification.
• Robustify run-length posterior using the β-

divergence score in place of the log-score.
• Can set hyperparameters such that one obser-

vation alone cannot declare a CP.
• Also use the β-divergence for the parameter

posterior.
• Propose a structured (quasi-conjugate) vari-

ational inference routine to conduct high-
dimensional inference for the β-Bayes online.

• Initialise β to give maximum influence to re-
gions where data is a priori expected to arrive.

• Update β online using a higher level loss.
• Could possibly be extended to Robust Bayesian

model selection using a loss function on the
prior predictive.

Synthetic example
Five-dimensional Vector Autoregression (VAR)
with one dimension injected with t4-noise.
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Figure 1: Maximum A Posteriori (MAP) CPs of ro-
bust (standard) BOCPD shown as solid (dashed) verti-
cal lines. True CPs at t = 200, 400. In high dimensions
it becomes increasingly likely that the model’s tails are
misspecified in at least one dimension.

‘well-log’ dataset
Univariate data seeking to detect changes in rock
strata.

80000

100000

120000

140000

Nu
cle

ar
 R

es
po

ns
e

0

1000

0 500 1000 1500 2000 2500 3000 3500 4000
Time

0

1000

ru
n 

le
ng

th
s

10 117 10 102 10 87 10 72 10 57 10 42 10 27 10 12

Figure 2: Maximum A Posteriori (MAP) segmentation
and run-length distributions of the well-log data. Ro-
bust segmentation depicted using solid lines, CPs addi-
tionally declared under standard BOCPD with dashed
lines. The corresponding run-length distributions for
robust (middle) and standard (bottom) BOCPD are
shown in greyscale. The most likely run-lengths are
dashed.

London Air Pollution
Dataset recording Nitrogen Oxide levels across 29
stations in London modelled using spatially struc-
tured Bayesian VARs.
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Figure 3: On-line model posteriors for three different
VAR models (solid, dashed, dotted) and run-length dis-
tributions in greyscale with most likely run-lengths for
standard (top two panels) and robust (bottom two pan-
els) BOCPD. Also marked are the congestion charge
introduction, 17/02/2003 (solid vertical line) and the
MAP segmentations (crosses).

A PRINCIPLED ALTERNATIVE
• Each divergence d(·, ·) has a corresponding loss

function `d(·, ·)
• Equation (2) allows for principled belief up-

dating for parameter minimising divergences
other than KL-divergence (Jewson, Smith and
Holmes, 2018) (Entropy)

π(d)(θ|x) ∝ π(d)(θ) exp

(
−

n∑
i=1

`d(xi, f(·; θ))

)
.

(4)
• Not a pseudo or approximate posterior as pre-

viously thought.
• w = 1 as doing model based inference with a

well-defined divergence.
• Principled justification allows the divergence

to become a subjective judgement alongside
prior and model.
• Represents how strongly you believe in your

model (especially its tails).
• Decouples belief elicitation and robustness.
• Decision theoretic reasons for Total Vari-

ation (TV), Hellinger (Hell) or alpha-
divergences, but these require a density
estimate.
• Alternatively the β-divergence with loss

`β(θ, x) =
1

1 + β

∫
Y
f(y; θ)β+1dy − 1

β
f(x; θ)β .

(5)

SIMPLE DEMONSTRATION
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Figure 4: Left: Posterior predictive distributions fitting
N (µ, σ2) to g = 0.9N (0, 1)+0.1N (5, 52) using the KL-
Bayes , Hell-Bayes, TV-Bayes , alpha-Bayes (α = 0.75)
and beta-Bayes (α = 0.5). Right: The influence (Kurtek
and Bharath, 2015) (Biometrika) of removing one of 1000
observations from a t(4) distribution when fitting a
N (µ, σ2) under the beta-Bayes for different values of
β.


