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The M-open world

• M-closed world: There exists a parameter θ0 such that the data
X ∼ f(·; θ0)

• M-open world:

“All models are wrong but some are useful”
G. E. P. Box

• The model is misspecified vs the sample distribution of the data.
• Cannot learn θ0 generating the data.
• Define parameter of interest by defining divergence between
model and sample distribution of the data (Walker, 2013) (JSPI).
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General Bayesian Updating

• Decision problem (parametrised by θ).
• The ‘true’ Bayes act:

θ∗ = argmin
θ

∫
X
ℓ(θ, x)dG, (1)

where G(x) is the sample distribution of x.
• The traditional Bayesian builds a belief model to approximate
G(x).

• But this belief model will inevitably be misspecified - M-open
world.
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General Bayesian Updating

• Given a prior and a loss function, an updating of beliefs in light
of data must be possible even without a model.

• In such a scenario the General Bayesian’s posterior beliefs
(Bissiri, Holmes and Walker, 2016) (JRSSB) must be close to:

• the prior (measured using KL-divergence).
• and the data (measured using expected loss).

• The posterior minimising the sum of these is:

π(θ|x) ∝ π(θ) exp
(
−w

∑
i

ℓ(θ, xi)
)
. (2)
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Bayes as General Bayes

If ℓ(θ, x) = − log(f(x; θ)) then the general Bayesian update recovers
Bayes rule:

π(θ|x) ∝ π(θ)
∏
i

{f(xi; θ)}. (3)

• Bayesian updating is learning about the parameter which
minimises the KL-divergence to the sample distribution.

• But as f(x; θ) → 0, − log(f(x; θ)) → ∞.
• Results in an (implicit) desire to correctly capture the tail
behaviour of the underlying process.

• In order conduct principled inference in the M-open world, the
DM is currently forced to worry about how robust the tails of
their model are.
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ϵ-contamination
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Figure 1 – Posterior predictive distribution fitting N (µ, σ2) to
g = 0.9N (0, 1) + 0.1N (5, 52) using the traditional Bayesian updating
(KL-Bayes ).
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A Principled Alternative

• Each divergence d(·, ·) has a corresponding loss function ℓd(·, ·)
• General Bayesian updating therefore allows for principled belief
updating for parameters minimising divergences other than
KL-divergence (Jewson, Smith and Holmes, 2018) (Entropy)

π(d)(θ|x) ∝ π(d)(θ) exp
(
−

n∑
i=1

ℓd(xi, f(·; θ))
)
. (4)

• Not a pseudo or approximate posterior as previously thought
(Hooker and Vidyashankar, 2014 (Test), Ghosh and Basu, 2016 (AISM)) .

• w = 1 as doing model based inference with a well-defined
divergence.
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The divergence as a subjective judgement

• Principled justification allows the divergence to become a
subjective judgement alongside prior and model.

• Represents how strongly you believe in your model (especially
its tails).

• Decouples belief elicitation and robustness.
• Decision theoretic reasons for Total Variation (TV),
Hellinger (Hell) or α-divergences, but these require a density
estimate.

• Alternatively the β-divergence with loss

ℓβ(θ, x) =
1

1+ β

∫
Y
f(y; θ)β+1dy− 1

β
f(x; θ)β . (5)
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Figure 2 – Posterior predictive distributions fitting N (µ, σ2) to
g = 0.9N (0, 1) + 0.1N (5, 52) using the KL-Bayes , Hell-Bayes, TV-Bayes ,
alpha-Bayes (α = 0.75) and beta-Bayes (α = 0.5).
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Influence under the β-divergence
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Figure 3 – The influence (Kurtek and Bharath, 2015) (Biometrika) of removing one
of 1000 observations from a t(4) distribution when fitting a N (µ, σ2) under
the beta-Bayes for different values of β.
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Bayesian On-line Changepoint Detection (BOCPD)

e.g. Knoblauch and Damoulas (2018) (ICML)

• Quantify change-point uncertainty with a run length posterior

π(KL)(rt = t− l|x1:t) ∝p(rl = 0, x1:l)
t∏
i=l

p(ri|ri−1)
t∏
i=l

p(KL)(xi|xl:i−1)

=π0(rt = t− l) exp
(
−

t∑
i=l

− log
(
p(KL)(xi|xl:i−1)

))
(6)

• Uses the predictive density of next observation as the run
length likelihood.

• Outliers have low predictive density and cause spurious CPs
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Robust BOCPD

Knoblauch, Jewson and Damoulas (2018) (arxiv)

• Maintains full and principled uncertainty quantification with
robust run length posterior

π(β)(rt = t− l|x1:t) ∝ π0(rt = t− l) exp
(
−

t∑
i=l

ℓβ(ri, xi)
)
.

• Can set hyperparameters such that one observation alone
cannot declare a CP.

• Propose a structured (quasi-conjugate) variational inference
routine to conduct high-dimensional parameter posterior
inference using the β-divergence on-line.

• Initialise β to give maximum influence to regions where data is
a priori expected to arrive and update β on-line using a higher
level loss.
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Synthetic example

Five-dimensional Vector Autoregression (VAR) with one dimension
injected with t4-noise.
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Figure 4 – Maximum A Posteriori (MAP) CPs of standard BOCPD shown as
dashed vertical lines. True CPs at t = 200, 400. 13



Synthetic example

Five-dimensional Vector Autoregression (VAR) with one dimension
injected with t4-noise.
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Figure 5 – Maximum A Posteriori (MAP) CPs of robust (standard) BOCPD
shown as solid (dashed) vertical lines. True CPs at t = 200, 400. 14



London Air Pollution

Dataset recording Nitrogen Oxide levels across 29 stations in London
modelled using three spatially structured Bayesian VARs.
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Figure 6 – most likely run-lengths for standard BOCPD. Also marked are the
congestion charge introduction, 17/02/2003 (solid vertical line) and the MAP
segmentations (crosses).
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London Air Pollution

Dataset recording Nitrogen Oxide levels across 29 stations in London
modelled using three spatially structured Bayesian VARs.
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Figure 7 – most likely run-lengths for robust BOCPD. Also marked are the
congestion charge introduction, 17/02/2003 (solid vertical line) and the MAP
segmentations (crosses).
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Further Work

• Theory/Axioms why you should not update beliefs using the
KL-divergence.

• Formalise quasi-conjugate variational inference for further
families, estimating equations, guarantees on performance.

• Robust Bayesian model selection, run-length posterior similar
to model selection posterior.

• Other application areas - open to ideas!
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