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THE PROBLEM
Inference in non-stationary data through Bayesian On-line Changepoint De-
tection (BOCPD) fails for high dimensions and outliers.
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Figure 1: Left: Standard BOCPD on 5-dimensional AR(1) with 3 true changepoints.
Right: BOCPD’s sequential inference cannot distinguish outliers and changepoints.

THE SOLUTION
Jewson, Smith and Holmes (2018) introduce generalized Bayes Theorems
for optimal belief updating under different divergences. For model m with
density fm, this takes the form

πDm(θm|y(t−rt):t) ∝ πm(θ) exp
{
−
∑t

i=t−rt`
D(θm|yi)

}
(1)

`KLD(θm|yt) = − log (fm(yt|θm) (2)

`β(θm|yt) = −
(

1

βp
fm(yt|θm)βp − 1

1 + βp

∫
Y
fm(z|θm)1+βpdz

)
(3)

D = Kullback-Leibler Divergence (KLD) recovers the traditional Bayes The-
orem; setting D = β yields robust updates via the β-Divergence (βD).
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Figure 2: Left: Influence functions for different β and the KLD. Right: ε = 0.05
contaminated data and its KLD and βD (β = 0.5) posterior predictive distributions

THE RESULT
Following Knoblauch & Damoulas (2018), BOCPD is written as

rt|rt−1 ∼ H(rt, rt−1) mt|{rt = 0} ∼ q(mt) (4)
θmt

∼ πmt
(θmt

) yt ∼ fmt
(yt|θmt

) (5)

which enables efficient recursive and doubly robust inference via

f
βp
mt(yt|y(t−rt):(t−1), rt) =

∫
Θ

fmt
(yt|θmt

)π
βp
m (θm|y(t−rt):t)dθmt

(6)

pβrlm(y1:t, rt,mt) ∝
∑

mt−1,rt−1

{
e−`

βrlm(θm|y(t−rt−1):(t−1))pβrlm(y1:(t−1), rt−1,mt−1)

H(rt, rt−1)q
βrlm(mt|y1:(t−1), rt−1,mt−1)

}
. (7)

REDUCING FDR TO 0% ON REAL WORLD DATA
Outliers in the well log data are usually excluded to avoid outliers being mislabelled as change-
points, but robust BOCPD achieves 0% FDR without such preprocessing.
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Figure 3: Top: well log data and changepoints found with robust BOCPD as solid lines. Additional change-
points found with standard BOCPD as dotted lines. Middle: Robust run-length posterior in grayscale, with
emphasized maximum. Bottom: Standard run-length posterior in grayscale, with emphasized maximum.

LONDON’S CONGESTION CHARGE
BOCPD on 29 Air Pollution sensors in London. The robust version finds the Congestion Charge
introduction date while the moderate problem dimension renders the standard version fragile.
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gen Oxide measurements across London for 3/29 analyzed stations. Panels 4–5: On-line model posterior and
run-length posteriors of standard BOCPD with detected changepoints marked as crosses (×) and emphasized
maximum run-length. Panels 6–7: On-line model posterior and run-length posteriors of robust BOCPD with
detected changepoints marked as crosses (×) and emphasized maximum run-length.

THM. 1: ROBUSTNESS GUARANTEE
Q: Why not simply use Student’s t errors instead?
(A) Can not robustify asymmetric/discrete/. . . problems;
(B) Models outliers as part of the DGP;
(C) Provides no robustness in changepoint posteriors (!)
The β-D trivially solves (A–B). Thm. 1 shows (C) is also not an issue as

p(rt+1 = r + 1|y1:t+1, rt = r,mt)

p(rt+1 = 0|y1:t+1, rt = r,mt)
≥ 1. (8)
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Figure 5: Top: 200 observations from the well log data. Middle: Gaussian βD
run-length posterior. Bottom: Student’s t5 KLD run-length posterior.

THM. 2: EFFICIENT APPROXIMATION
One gets a closed form ELBO for the structural variational approximation

π̂
βp
m (θm) = argmin

πKLD
m (θm)

{
KL
(
πKLD
m (θm)

∥∥∥πβp
m (θm|y(t−rt):t)

)}
. (9)

This means it is solvable with standard optimizers. π̂βp
m (θm) is also attractive

as it (I) is exact as βp→ 0 and (II) captures parameter dependence.

OPTIMAL CHOICE OF β
β is initialized to maximize influence of observations at a prespecified point
and optimized on-line to minimize prediction error:

βt = βt−1 + γt · ∇βt−1L(yt − ŷt(βt−1)) (10)
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Figure 6: Initializing β by choosing a point of maximum influence
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