Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with β -Divergences

Jeremias Knoblauch^{1,3} Jack Jewson¹, Theodoros Damoulas^{1,2,3} j.knoblauch@warwick.ac.uk j.e.jewson@warwick.ac.uk t.damoulas@warwick.ac.uk

THE PROBLEM

Inference in non-stationary data through Bayesian On-line Changepoint De-tection (BOCPD) fails for high dimensions and outliers.

Figure 1: Left: Standard BOCPD on 5-dimensional AR(1) with 3 true changepoints. **Right:** BOCPD's sequential inference cannot distinguish outliers and changepoints.

THE SOLUTION

Jewson, Smith and Holmes (2018) introduce generalized Bayes Theorems for optimal belief updating under different divergences. For model m with density f_m , this takes the form

$$\pi_{m}^{D}(\boldsymbol{\theta}_{m}|\boldsymbol{y}_{(t-r_{t}):t}) \propto \pi_{m}(\boldsymbol{\theta}) \exp\left\{-\sum_{i=t-r_{t}}^{t}\ell^{D}(\boldsymbol{\theta}_{m}|\boldsymbol{y}_{i})\right\}$$
(1)
$$\ell^{\text{KLD}}(\boldsymbol{\theta}_{m}|\boldsymbol{y}_{t}) = -\log\left(f_{m}(\boldsymbol{y}_{t}|\boldsymbol{\theta}_{m})\right)$$
(2)
$$\ell^{\beta}(\boldsymbol{\theta}_{m}|\boldsymbol{y}_{t}) = -\left(\frac{1}{\beta_{p}}f_{m}(\boldsymbol{y}_{t}|\boldsymbol{\theta}_{m})^{\beta_{p}} - \frac{1}{1+\beta_{p}}\int_{\mathcal{Y}}f_{m}(\boldsymbol{z}|\boldsymbol{\theta}_{m})^{1+\beta_{p}}d\boldsymbol{z}\right)$$
(3)

D = Kullback-Leibler Divergence (KLD) recovers the traditional Bayes Theorem; setting $D = \beta$ yields robust updates via the β -Divergence (β D).

Figure 2: Left: Influence functions for different β and the KLD. Right: contaminated data and its **KLD** and βD ($\beta = 0.5$) posterior predictive distr

THE RESULT

Following Knoblauch & Damoulas (2018), BOCPD is written as

$$egin{aligned} r_t | r_{t-1} &\sim H(r_t, r_{t-1}) &m_t | \{ r_t = 0 \} &\sim q(m_t) \ oldsymbol{ heta}_{m_t} &\sim \pi_{m_t}(oldsymbol{ heta}_{m_t}) &y_t &\sim f_{m_t}(oldsymbol{y}_t |oldsymbol{ heta}_{m_t}) \end{aligned}$$

which enables efficient recursive and doubly robust inference via

$$\begin{split} {}^{\beta_{\mathbf{p}}}_{m_{t}}(\boldsymbol{y}_{t}|\boldsymbol{y}_{(t-r_{t}):(t-1)},r_{t}) = & \int_{\Theta} f_{m_{t}}(\boldsymbol{y}_{t}|\boldsymbol{\theta}_{m_{t}})\pi_{m}^{\beta_{\mathbf{p}}}(\boldsymbol{\theta}_{m}|\boldsymbol{y}_{(t-r_{t}):t})d\boldsymbol{\theta}_{m_{t}} \\ p^{\beta_{\mathbf{r}\mathbf{lm}}}(\boldsymbol{y}_{1:t},r_{t},m_{t}) \propto & \sum_{m_{t-1},r_{t-1}} \left\{ e^{-\ell^{\beta_{\mathbf{r}\mathbf{lm}}}(\boldsymbol{\theta}_{m}|\boldsymbol{y}_{(t-r_{t-1}):(t-1)})} p^{\beta_{\mathbf{r}\mathbf{lm}}}(\boldsymbol{y}_{1:(t-1)},r_{t-1},m_{t-1}) \\ & H(r_{t},r_{t-1})q^{\beta_{\mathbf{r}\mathbf{lm}}}(m_{t}|\boldsymbol{y}_{1:(t-1)},r_{t-1},m_{t-1}) \right\}. \end{split}$$

¹University of Warwick, Department of Statistics ²University of Warwick, Department of Computer Science ³The Alan Turing Institute

REDUCING FDR TO 0% ON REAL WORLD DATA

:
$$\epsilon = 0.05$$
 ributions

(6)

(7)

140000 130000

Figure 3: **Top:** well log data and changepoints found with **robust** BOCPD as solid lines. Additional change-points found with **standard** BOCPD as dotted lines. **Middle: Robust** run-length posterior in grayscale, with emphasized maximum. **Bottom: Standard** run-length posterior in grayscale, with emphasized maximum.

LONDON'S CONGESTION CHARGE

BOCPD on 29 Air Pollution sensors in London. The robust version finds the Congestion Charge introduction date while the moderate problem dimension renders the standard version fragile.

Figure 4: All Panels: Introduction of London's Congestion Charge as vertical line. Panels 1–3: Nitrogen Oxide measurements across London for 3/29 analyzed stations. **Panels 4–5:** On-line model posterior and run-length posteriors of standard BOCPD with detected changepoints marked as crosses (\times) and emphasized maximum run-length. Panels 6–7: On-line model posterior and run-length posteriors of robust BOCPD with detected changepoints marked as crosses (\times) and emphasized maximum run-length.

The Alan Turing Institute

Outliers in the well log data are usually excluded to avoid outliers being mislabelled as change-points, but robust BOCPD achieves 0% FDR without such preprocessing.

Figure 5: **Top**: 200 observations from the well log data. **Middle**: Gaussian βD run-length posterior. **Bottom**: Student's t_5 **KLD** run-length posterior.

THM. 2: EFFICIENT APPROXIMATION

One gets a closed form ELBO for the structural variational approximation $\widehat{\pi}_{m}^{\beta_{\mathbf{p}}}(\boldsymbol{\theta}_{m}) = \operatorname*{argmin}_{\pi^{\mathrm{KLD}}(\boldsymbol{\theta}_{m})} \left\{ \mathrm{KL}\left(\pi_{m}^{\mathrm{KLD}}(\boldsymbol{\theta}_{m}) \left\| \pi_{m}^{\beta_{\mathbf{p}}}(\boldsymbol{\theta}_{m} | \boldsymbol{y}_{(t-r_{t}):t}) \right) \right\}.$ (9)

This means it is solvable with standard optimizers. $\widehat{\pi}_m^{\beta_p}(\boldsymbol{\theta}_m)$ is also attractive as it (I) is exact as $\beta_p \rightarrow 0$ and (II) captures parameter dependence.

Optimal choice of β

 β is initialized to maximize influence of observations at a prespecified point and optimized on-line to minimize prediction error: $\beta_t = \beta_{t-1} + \gamma_t \cdot \nabla_{\beta_{t-1}} L(\boldsymbol{y}_t - \widehat{\boldsymbol{y}}_t(\beta_{t-1}))$ (10)

KEY REFERENCES

Adams, R.P. & JC. MacKay, D. J. C. Bayesian online changepoint detection. arXiv preprint arXiv:0710.3742, 2007. Bissiri, P.G., Holmes, C. C. & Walker, S. G. A general framework for updating belief distributions. Journal of the Royal Statistical Society: Series B, 78(5). pp.1103-1130, 2016. Fearnhead, P. & Liu, Z. On-line inference for multiple changepoint problems. *Journal of the Royal Statistical Society: Series B*, 69 (4), pp. 589–605, 2007.

Jewson, J., Smith, J.Q. & Holmes, C. Principles of Bayesian Inference Using General Divergence Criteria. Entropy, 20(6), pp.442–467, 2018. Knoblauch, J. & Damoulas, T. Spatiotemporal Bayesian On-line Changepoint Detection with Model Selection. Proceedings of the 35th International Conference on Machine Learning, 2018.

