Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with β-Divergences
 Jack Jewson ${ }^{1}$,
 Theodoros Damoulas ${ }^{1,2,3}$
 j.eblauch@warwick.ac.uk
 .damoulas@warwick.ac.uk
 University of Warwick, Department of Statistics
 University of Warwick, Department of Computer Science ${ }^{5}$ The Alan Turing Institute

The Problem

Inference in non-stationary data through Bayesian On-line Changepoint De Inference in non-stationary data through Bayesian

Figure 1: Left: Standard BOCPD on 5-dimensional AR(1) with 3 true changepoints. Right: BOCPD's sequential inference cannot distinguish outliers and changepoints.

The Solution

Jewson, Smith and Holmes (2018) introduce generalized Bayes Theorems for optimal belief updating under different divergences. For model m with density f_{m}, this takes the form

$$
\begin{aligned}
\pi_{m}^{D}\left(\boldsymbol{\theta}_{m} \mid \boldsymbol{y}_{\left(t-r_{t}\right): t}\right) & \propto \pi_{m}(\theta) \exp \left\{-\sum_{i=t-r_{t}}^{t} \ell^{D}\left(\boldsymbol{\theta}_{m} \mid \boldsymbol{y}_{i}\right)\right\} \\
\ell^{\mathrm{KLD}}\left(\boldsymbol{\theta}_{m} \mid \boldsymbol{y}_{t}\right) & =-\log \left(f_{m}\left(\boldsymbol{y}_{t} \mid \boldsymbol{\theta}_{m}\right)\right. \\
\ell^{\beta}\left(\boldsymbol{\theta}_{m} \mid \boldsymbol{y}_{t}\right) & =-\left(\frac{1}{\beta_{\mathrm{p}}} f_{m}\left(\boldsymbol{y}_{t} \mid \boldsymbol{\theta}_{m}\right)^{\beta_{\mathrm{p}}}-\frac{1}{1+\beta_{\mathrm{p}}} \int_{\mathcal{Y}} f_{m}\left(\boldsymbol{z} \mid \boldsymbol{\theta}_{m}\right)^{1+\beta_{\mathrm{p}}} d \boldsymbol{z}\right)
\end{aligned}
$$

$D=$ Kullback-Leibler Divergence (KLD) recovers the traditional Bayes The orem; setting $D=\beta$ yields robust updates via the β-Divergence ($\beta \mathbf{D}$).

Figure 2: Left: Influence functions for different β and the KLD. Right: $\epsilon=0.0$

The Result

Following Knoblauch \& Damoulas (2018), BOCPD is written as

$$
r_{t}\left|r_{t-1} \sim H\left(r_{t}, r_{t-1}\right) \quad m_{t}\right|\left\{r_{t}=0\right\} \sim q\left(m_{t}\right)
$$

which enables efficient recursive and doubly robust inference via

$$
\begin{align*}
& \left.f_{m_{t}}^{\beta_{\mathrm{p}}} \boldsymbol{y}_{t} \mid \boldsymbol{y}_{\left(t-r_{t}\right):(t-1)}, r_{t}\right)=\int_{\Theta} f_{m_{t}}\left(\boldsymbol{y}_{t} \mid \boldsymbol{\theta}_{m_{t}}\right) \pi_{m}^{\beta_{\mathrm{p}}}\left(\boldsymbol{\theta}_{m} \mid \boldsymbol{y}_{\left(t-r_{t}\right): t}\right) d \boldsymbol{\theta}_{m_{t}} \\
& p^{\beta_{\mathrm{rIm}}}\left(\boldsymbol{y}_{1: t}, r_{t}, m_{t}\right) \propto \sum_{m_{t-1}, r_{t-1}}\left\{e^{-\ell_{\mathrm{rlm}}^{\beta_{\ln }\left(\boldsymbol{\theta}_{m} \mid \boldsymbol{y}_{\left.t-r_{t-1}\right):(t-1)}\right)} p^{\beta_{\mathrm{Im}}}\left(\boldsymbol{y}_{1:(t-1)}, r_{t-1}, m_{t-1}\right)} H\left(r_{t}, r_{t-1}\right) q^{\beta_{\mathrm{IIm}}}\left(m_{t} \mid \boldsymbol{y}_{1:(t-1)}, r_{t-1}, m_{t-1}\right)\right\} . \tag{7}
\end{align*}
$$

REDUCING FDR TO 0\% ON REAL WORLD DATA

Outliers in the well \log data are usually excluded to avoid outliers being mislabelled as changepoints, but robust BOCPD achieves 0\% FDR without such preprocessing

Figure 3: Top: well log data and changepoints found with robust BOCPD as solid lines. Additional changepoints found with standard BOCPD as dotted lines. Middle: Robust run-length posterior in grayscale, with
emphasized maximum. Bottom: Standard run-length posterior in gravscale, with emphasized maximum.

London's Congestion Charge

BOCPD on 29 Air Pollution sensors in London. The robust version finds the Congestion Charge introduction date while the moderate problem dimension renders the standard version fragile.
 Figure 4: All Panels: Introduction of London's Congestion Charge as vertical line. Panels 1-3: Nitrogen Oxide measurements across London for $3 / 29$ analyzed stations. Panels 4-5: On-line model posterior and
run-length posteriors of standard BOCPD with detected changepoints marked as crosses (x) and emphasized maximum run-length. Panels 6-7: On-line model posterior and run-length posteriors of robust BOCPD with detected changepoints marked as crosses (\times) and emphasized maximum run-length.

The Alan Turing Institute OxWaSp

Thm. 1: Robustness Guarantee
Q: Why not simply use Student's t errors instead?
(A) Can not robustify asymmetric/discrete/... problems;
(C) Provides no robustness in changepoint posteriors (!)

The β-D trivially solves (A-B). Thm. 1 shows (C) is also not an issue as

$$
\frac{p\left(r_{t+1}=r+1 \mid \boldsymbol{y}_{1: t+1}, r_{t}=r, m_{t}\right)}{p\left(r_{t+1}=0 \mid \boldsymbol{y}_{1: t+1}, r_{t}=r, m_{t}\right)} \geq 1 .
$$

Figure 5: Top: 200 observations from the well log data. Middle: Gaussian $\beta \mathbf{D}$ run-length posterior. Bottom: Student's t_{5} KLD run-length posterior.

Thm. 2: Efficient Approximation
One gets a closed form ELBO for the structural variational approximation

$$
\widehat{\pi}_{m}^{\beta_{p}}\left(\boldsymbol{\theta}_{m}\right)=\underset{\pi_{m}^{\mathrm{km}}\left(\boldsymbol{\theta}_{m}\right)}{\operatorname{argmin}}\left\{\operatorname{KL}\left(\pi_{m}^{\mathrm{KLD}}\left(\boldsymbol{\theta}_{m}\right) \| \pi_{m}^{\beta_{\mathrm{p}}}\left(\boldsymbol{\theta}_{m} \mid \boldsymbol{y}_{\left(t-r_{t}\right): t}\right)\right)\right\} .
$$

This means it is solvable with standard optimizers. $\widehat{\pi}^{\beta_{p}}(\boldsymbol{\theta})$ is also ate as it (I) is exact as $\beta_{\mathrm{p}} \rightarrow 0$ and (II) captures parameter dependence.

OPTIMAL CHOICE OF β

β is initialized to maximize influence of observations at a prespecified point and optimized on-line to minimize prediction error
$\beta_{t}=\beta_{t-1}+\gamma_{t} \cdot \nabla_{\beta_{t-1}} L\left(\boldsymbol{y}_{t}-\widehat{\boldsymbol{y}}_{t}\left(\beta_{t-1}\right)\right)$

Figure 6: Initializing β by choosing a point of maximum influence

Key References

CODE

VIDEO

