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Problem

"essentially, all models are wrong, but some are useful"
George E. P. Box

In applied statistics a model, or group of models, are built based on expert judgements in order
to provide the most realistic representation of a real world process.

The goal of the statistician is then to produce the best inference or predictions.

My goal is to look at how the statistician can make best use of these models

We desire

·

·

·

·

Robust priors

Robust model selection

Robust parameter updating

-

-

-
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Outline

Look at the foundations of Bayesian statistics

Demonstrate the lack of robustness exhibited by classical Bayesian statistics

Propose an alternative to classical Bayesian statistics designed to improve the robustness.

Demonstrate the advantages and limitations of this new method

·

·

·

·
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Decision theory

A decision maker (DM) is faced with making some decision , that can be evaluated against
some future unknown observation(s) 

The consequences of taking decision  and observing outcome  are characterised by a loss
function 

The DM wants to minimise their loss function (or equivalently maximise their utility)

We will call this a decision problem

· d ∈ D

X ∈ X

· d X

ℓ(d,X)

·

·
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Savage Axioms

Savage axioms:

A DM's beliefs can be represented by probabilities

Their preferences by a utility function.

Bayesian stats updates prior beliefs after data is observed, and finds the optimal decision as the
one maximising the expected utility function (minimising the expected loss).

·

·

·
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Bayesian Inference

Bernardo and Smith (2001):

Bayesian inference is a decision problem for which the decision is to quote a probability belief
distribution.

The utility function associated with quoting a probability distribution must be proper and local

The only proper local score function is

·

·

·

ℓ(f(⋅), x) = − log(f( ))∑
i

xi
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However…

The DMs true beliefs over future unknowns should encompass every possibly bit of information
available at the time and may take a lifetime to write down.

Instead beliefs over the data generating process are only ever going to be an approximation of
the DM's true beliefs, usually using some convenient probability distribution and hopefully
capturing the DM's important beliefs.

If our model for the data will be misspecified compared to our true beliefs, is only considering
inference a good idea?

Should we be using inferential tools in a decision making context?

·

·

·

·

7/28
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General Bayesian updating

Bissiri, Holmes, and Walker (2016):

If we have a decision problem, a prior and some data, but no model, a Bayesian update must still
be possible.

The goal is to find the optimal decision (parametrised by ) as:

The posterior resulting from such an update should minimise a combination of the KL-
divergence from the prior, and the expected loss of the data. 

The corresponding posterior is:

Where traditional Bayes builds a predictive model to 'best' approximate , general Bayes
simply uses the empirical distribution of the observed data.

·

· θ

(x) = arg ∫ ℓ(θ(x),x)d (x)θ̂ min
θ(x)

F0

·

·

π(θ|x) ∝ exp(−w ℓ(θ, ))π(θ)∑
i=1

n

xi

· (x)F0
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General Bayes: Pros and Cons

Pros:

Cons:

No longer reliant on a model and therefore robust to misspecifications

Parameter no longer needs to index a probability distribution, can do Bayesian updating on
anything, directly on a decision for example.

·

·

Don't have the structure of a model, i.e. the ability to use this posterior to produce a predictive

No longer using Bayes rule for conditional probability so need to be careful to correctly set 
such that our posterior maintains a probabilistic meaning.

·

· w
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General Bayesian updating: an example

Model free Bayesian clustering:

Fixed number fo clusters 

We directly do inference on the cluster allocations 

Minimise the squared error loss:

where  is the mean (center) of cluster .

· K

· ∈ {1, … ,K}Ci

·

ℓ(C,x) = ( −∑
k=1

K

∑
i=1

nk

x
(k)
i x̄(k) )2

x̄(k) k
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Bayes as General Bayes

- An illustration that if a DM's utility function over a predictive distribution is characterised by the
log-score then they should quote the Bayesian predictive distribution.

If we consider doing general Bayes in order to do inference on a parameter  then we want to
use the local, proper, log-score:

This results in the general Bayesian update equivalent to the traditional Bayesian update:

· θ

ℓ(θ, ) = − log(f( ; θ))xi xi

·

π(θ|x) ∝ exp(−w − log(f( ; θ)))π(θ) = f( ; θ)π(θ)∑
i=1

n

xi ∏
i=1

n

xi
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Divergence, Scores and Entropy

Dawid (2007):

Considers inferential decision problems. Aiming to produce a predictive distribution minimising
some loss function when used to predict future data.

Defines:

The divergence between two probability distributions,  and , associated with loss function 
 is the expected loss incurred for believing the data was distributed according to  when it

was actually distributed according to .

·

·

a DM's expected score of quoting probability distribution  when  is true, 

the entropy of data generating distribution , 

the divergence between probability distributions, 

- f g

S(G,F ) := [ℓ(F ,X)]EX∼G

- g H(G) = S(G,G) := [ℓ(G,X)]EX∼G

- D(G,F ) := S(F ,G) − H(G)

· g f

ℓ(⋅,x) f

g
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Minimising the KL-divergence

If we consider attempting Bayesian inference then our divergence function of quoting  when 
is true is:

· f g

D(G,F ) = ∫ −g(x) log(f(x))dx − ∫ −g(x) log(g(x))dx = (G,F )dKL

So the traditional Bayesian predictive distribution minimises the KL-divergence between it and
the truth.

And the KL-divergence has the interpretation as the expected penalty for incorrectly predicting
the true data generating probabilities

In reality we don't know what the truth is so minimising the empirical log-score on the data set
provides a proxy for minimising the KL-divergence.

·

·

·

13/28
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Problems with KL

The log-score focuses on the tails of the distribution by heavily penalising observations that
would have been predicted with low probability .

This is considered important for inference purposes but the tails might be less relevant for more
general decision problems.

This results in Bayesian statistics not being very robust to either small samples or misspecified
models

The Bayesian predictive focuses on capturing the tail behaviour of the observed data and this
may result in poor predictive performance for the bulk of the data.

·
log(x) = ∞limx→0

·

·

·

14/28
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epsilon-contamination

Consider producing a predictive distribution for modelling the height of people in China

You collect a sample of 10,000 people

In your sample was Chinese Basketball player Yao Ming

·

·

·
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epsilon-contamination (cont.)

Consider the following toy example.

where  is the normal density, mean , variance 

Genuine data generating distribution.·

g = (1 − ϵ)N (0, 1) + ϵN (μ, (μ))σ2

And lets say we have built a model that captures the majority of the population really well·

f = N (0, 1)

The KL divergence between  and  can be written as:· g f

(g,f)dKL = ((1 − ϵ)h(x, 0, 1) + ϵh(x,μ, (μ)))∫
∞

−∞
σ2

⋅ log(((1 − ϵ)h(x, 0, 1) + ϵh(x,μ, (μ))))dxσ2

− ((1 − ϵ)h(x, 0, 1) + ϵh(x,μ, (μ))) log(h(x, 0, 1))dx∫ ∞

−∞
σ2

h(x;μ,σ) μ σ2
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epsilon-contamination (cont.)

- Therefore as  and even if , the KL-divergence will tend to . Consider the following
two illustration: ,  1) , 2) 

The bottom equation reduces to:·

−[log( ) − − ]
1

2π
−−√

(1 − ϵ)

2

ϵ( (μ) + )σ2 μ2

2

μ → ∞ ϵ → 0 ∞

μ = 10 σ = 10 ϵ = 0.1 ϵ = 0.01
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A little game

Do you think you can guess which the KL minimiser (to the black line) is in each case?·

18/28
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KL under misspecification

We have a model that correctly captures the majority of the population but we have a
misspecification in the tails.

What does the KL minimiser look like? (all Bayesian inference done in stan see WRUG 02/03/17
for more)

·

·

19/28
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Classical solutions

Or more recently

Fit heavy tailed distributions e.g. Cauchy, Student's-t (see Berger et al. (1994))

Frequentist M-estimators, for example a 'Huber-type' loss, can use general Bayes or pseudo-
likelihoods (Greco, Racugno, and Ventura (2008)) for a Bayesian implementation

·

·

ℓ(θ,x) = (θ − x min(1, ))2 k

(θ − x)2

Tempering the likelihood to slow the learning, 'safebayes' (Grünwald and Ommen (2014))·

20/28
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Heavy tails

So lets try and fit a Cauchy distribution rather than a Gaussian distribution·

21/28
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Total-Variation

But… We are no longer have a strictly convex problem and the loss function is not differentiable.

Our idea: What if we use general Bayes to find the predictive that is closer to the truth in terms
of some other divergence that is more robust than KL

The gold standard would be close in Total-Variation:

·

·

Bounded under contamination

Minimising TV, minimise the chances/consequences of a Dutch-Book

Ensures accuracy of expected utility estimates

-

-

-

TV ( || ) = ∫ | (x) − (x)|dxF0 Fθ f0 fθ

22/28
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Hellinger Divergence

where  is some density estimate aimed to approximate the true sampling density 

Consider the Hellinger divergence as a surrogate divergence for the Total-Variation·

J. Smith (1995) show that the Hellinger divergence can bound the Total-Variation both above
and below

Hooker and Vidyashankar (2014) implement in a Bayesian way justifying it as an
approximation to the KL

-

-

( || ) = ∫ ( − dx = 1 − ∫ dxH 2 F0 Fθ (x)f0

− −−−√ (x)fθ
− −−−√ )2 (x) (x)f0 fθ

− −−−−−−−√

We therefore propose the following Bayesian update:·

π(θ|X) ∝ exp(w( ))π(θ)
(x)fθ

− −−−√

(x)gn
− −−−−√

(x)gn (x)f0
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Bayesian coherence and the likelihood
principle

The likelihood principle says: The likelihood is sufficient for the data

Bayesian coherence says: Our posterior looks the same if we update in one go or sequentially

Locality: demands our models are only scored based on the predicted probabilities of observed
data

All three are abandoned under misspecification, due to the introduction of an empirical
estimate:

·

·

·

·

If the model is wrong the likelihood is no longer sufficient for the data, there is more
information in the data

Follows from abandoning the likelihood principle. There is more information in the data
when viewed together

Don't want to score a model solely on predictions we know are not correct

-

-

-

24/28
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The Hellinger under contamination

25/28
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What must a robust update satisfy?

Demands:

Issues:

Proper: It must converge to the correct minimiser and this be the truth if the model is correct.

Posteriors must have probabilistic meaning: Bayesian stats correctly updates prior uncertainty to
posterior uncertainty in light of data using Bayes rule, we no longer have Bayes rule so need to
make sure our posterior uncertainty means something. i.e. that the posterior is extracting the
'correct' amount of information in the data

Robust: Need to be able to show more general robustness properties.

·

·

·

To ensure we get convergence to the desired minimiser the the density estimate must be
carefully chosen. For small samples KDEs have biases! How will we come up with a density
estimate in a predictor response scenario like linear regression?

Need to think carefully about how to set the learning rate. Above  arbitrarily. Shouldn't be
able to learn faster than a Bayesian armed with the truth.

·

· w = 1

26/28
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Further work

Being robust when you update is useless if your starting model is not.

Hellinger not the only divergence, there are many others to be explored.

Need to explore performance in more involved examples - linear regression for treatment
assignment

Updating is not the only element of the Bayesian machine.

·

·

·

Robust prior specification

Robust model selection

-

-

27/28
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