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Executive Summary.

Abstract: We design an election forecasting engine that delivers
probability statements for arbitrary electoral scenarios. It accommodates
data at different levels of granularity, an evolving party landscape and
local seat assignment rules. We use the engine to forecast recent Spanish
general elections.
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Motivation



Mainstream electoral forecasting ignores uncertainty.
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Pollsters overstate confidence when acknowledging uncer-
tainty.

Pollsters assume trivial sampling models, e.g. for a given party:

v︸︷︷︸
vote count

| p︸︷︷︸
voting propensity

, N︸︷︷︸
sample size

∼ Binomial[N, p] (1)

Implying sampling variance of the vote ratio:

Var[v/n] = p(1 − p)/N ≤ 1/(4N) (2)

Pollsters commonly use 1/(4N) to compute confidence intervals. If this
were accurate, could run large sample poll and save cost of election!
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Information of heterogeneous quality needs to be combined.
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Figure 1: Polls published up to 30 days before the 2008 Spanish general
election. How do we assess and merge them?

4



Approach



Generate a predictive distribution over seats.

●

●

●

●

P
S

O
E

P
P

P
od+

IU
C

s

40 80 120 160
National Seat Distribution

Figure 2: Marginals of predictive seat distribution for 2015 Spanish general
election.
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Where seat assignment is local, model locally.

Figure 3: Electoral map of 2015 Spanish general election. Parties that
concentrate their vote need fewer votes per seat!
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Use distinct models to address different geographical levels.

We observe

• Plentiful low-resolution data (generic national polls).
• Sparse high-resolution data (large-sample survey microdata).

Province increment model by Gelman and Lock (2010) decomposes
problem of generating local forecasts:

f( vj︸︷︷︸
vote province j

| P︸︷︷︸
lo-res

, Q︸︷︷︸
hi-res

) =

∫ 1

0
f(vj|v,Q)f(v|P)dv (3)

• f(v|P) models national vote.
• f(vj|v,Q) models local discrepancies.

Given local votes, seat allocation is deterministic!
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National Vote Forecasting



Given the generative model, the predictive follows.

Formulate a parametric model such that independently:

pk ∼ f(·| θ︸︷︷︸
params

, v) (4)

Given priors over v and θ, obtain the joint model:

f(v,P, θ) ∝ f(P|θ, v)︸ ︷︷ ︸
likelihood

× f(v|θ)︸ ︷︷ ︸
result prior

× f(θ)︸︷︷︸
param prior

(5)

∝ f(v|θ)× f(θ)×
∏

k
f(pk|θ, v) (6)

Finally, average over parameter uncertainty:

f(v|P) ∝
∫

f(v,P, θ)dθ (7)

8



Devise a generative model for polls.

Decompose prediction error of each poll:

pk = vl[k]︸︷︷︸
result elec l

+ γm[k]︸︷︷︸
bias pollster m

+ δl[k]︸︷︷︸
bias elec l

+ ϵl[k](t[k])︸ ︷︷ ︸
drift t days before elec l

+ ηk︸︷︷︸
noise

(8)

ηk ∼ N
[
0, σ2

η

]
(9)

• ϵl is a continuous-time stochastic process that allows for sentiment
shifts during sampling period

• vl is observed for training elections and unobserved for the test
election.
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Use hierarchical priors to regularize.

Pool all replicated parameters to a common prior:

vl ∼ N
[
µv, σ

2
v
]
, γm ∼ N

[
0, σ2

γ

]
, δl ∼ N

[
0, σ2

δ

]
(10)

In Stan simulations, location hyperparameters are commonly assigned a
Cauchy prior and scale hyperparameters a half-Cauchy prior, e.g.

µv ∼ St[0, 1, 1], σv ∼ Half-St[0, 1, 1] (11)

Different priors are possible for the sentiment drift process.
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The prior on the sentiment process controls its smoothness.

Desiderata for a prior f(ϵl) are:

• Sample paths should be (almost surely) continuous.
• Smoothness induces trending, which is desirable given that news do

not instantly propagate.
• Computational cost should be linear in length of sampling period.

Integrated Brownian Motion fulfills those requirements. Definition:

ϵl(t) = σϵ

∫ t

0
wl(s)ds (0 < s ≤ t) (12)

ϵl(0) = 0 (13)

where wl are independent Brownian motions. Hyperprior on σϵ will be
decisive in setting the stability of the process!
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Output for training election sentiment process.
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Figure 4: Inferred sentiment process for the April 2019 Spanish general
election (in sample).
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Output for test election sentiment process.
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Figure 5: Inferred sentiment process for the November 2019 Spanish general
election on election day (out of sample).
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Output for test election result.
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Figure 6: Inferred sentiment process for the November 2019 Spanish general
election on election day (out of sample).
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Local Vote Forecasting



Output for test election sentiment process.

Occasionally, pollsters publish their microdata. Can we improve on their
cooking?

study_id province_id municipality_size education ...

1 3117 1 city secondary ...
2 3117 1 city tertiary ...
3 3117 1 city secondary ...
4 3117 1 city secondary ...
.. ... ... ... ... ...

Table 1: Survey microdata published by CIS a couple weeks prior to a Spanish
general election.
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Post-stratification is a time-tested survey technique.

Survey responses consist of tuples may be grouped into strata according
to categorical variables xh:

( vn︸︷︷︸
vote indicator

, h[n]︸︷︷︸
stratum respondent n

) (14)

A simple vote estimate consists of the sample mean:

v̄ = N−1
N∑

n=1
vn (15)

If exact population frequencies f(h) are available from some source (e.g.
census), define the post-stratified estimator:

ṽ =
N∑

n=1
f(h[n])vn/Nh[n] =

H∑
h=1

f(h)× vh︸︷︷︸
votes stratum h

/ Nh︸︷︷︸
size stratum h

(16)
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Post-stratified estimates are resistant to some survey biases.

Suppose (vn, h[n]) are sampled according to:

f(vn|h[n])× g(h[n]), g(h[n]) ̸= f(h[n]) (17)

Then the sample mean estimator may be biased (from the tower
property):

E[v̄] = N−1
N∑

n=1
E[vn] = N−1

N∑
n=1

H∑
h=1

g(h)f(vn|h) =
H∑

h=1
g(h)f(vn|h) (18)

The post-stratified estimator is still unbiased (again from the tower
property):

E[ṽ] =
H∑

h=1
f(h)E[vh/Nh] =

H∑
h=1

f(h)f(vn|h) = f(vn) (19)

Holt and Smith (1979) give broad conditions where ṽ outperforms v̄ even
in the absence of sampling bias.
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Smoothing stratum counts reduces variance.

We have been using empirical frequencies vh/Nh to estimate f(vn|h[n]).
Noisy where Nh is small! Instead, smoothen by estimating parametric
logit model:

vn| xn︸︷︷︸
categorical scalar

∼ Bernoulli[p(xn)] (20)

p(xn) = expit[α+ βxn ] (21)

As usual, use hierarchical priors:

βxn ∼ N
[
0, σ2

β

]
(22)
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Non-stratified estimates.

5 10 15 20 25 30 35 40
outcome

0

10

20

30

40

50

pr
ed

ict
io

n

1

2

3
4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

27

28
29

30 32

33

34

35 36

37

38

39
40

41

42

43

44
45

46
47

48

49

50

51

52

1

2
3

4

5

6

7

8

9

10

1112
13

14

15

16

17

18
19

20

21

22

23
24

25

26

27
28

29

30

31

32
33

34
35

36

37

38

39

40

41

42

43

44

45

46
47

48

49
50

51

52

election = 2019-11-10

Figure 7: Raw microdata estimates for the 2019 Spanish general election.
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Post-stratified estimates.
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Figure 8: Post-stratified estimates for the 2019 Spanish general election using
variables province and previous vote.
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Final touches.

Formulate a parametric model such that independently:

qkj − qk︸ ︷︷ ︸
est prov inc poll k

∼ f(·| ϕ︸︷︷︸
params

, v, vj) (23)

Proceed with a simpler version of the national polls model, e.g.

qkj − qk = αj + β(vj − v) + ηk, ηk ∼ N
[
0, σ2

j[k]

]
(24)
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Results



Was it worth it?
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Figure 9: Marginals of predictive seat distribution for 2015 Spanish general
election and outcome (dot).
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What’s next?

• Generate forecast for recent elections with updated methodology.
• Conduct rigorous comparison for different time horizons (t - 5 days,

t - 10 days) with competing methods.
• Open questions: Best way to model sentiment process? Induce

negative correlation between parties?
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