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Model



Many time series exhibits discrete regime shifts.
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Figure 1: Pseudo-interest rate time series.



We model the regime as a Markov jump process.
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Figure 2: The corresponding trajectory of the regime.
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Figure 3: A 2-state Markov jump process.

Since the exponential distribution is memoryless, Y is Markovian. More
generally, \;; gives the transition rate from state 7 to j.



The diffusion process arises as a limit in discrete time.

Consider the process that evolves according to

Viee =V =pV, Y xe+ o(V,,Y) x Wy, —W,) (1)
- —_— — U7 U9 -
process increment instant drift instant volatility ~ Brownian increment

Under [conditions], there is a limiting process as ¢ — 0. We write
aV, = p(V,, Y,) dt + o(V;, ;) dW, 2

We parameterize the instantaneous drift 1, and volatility o, in terms of a
vector 6.

Intractable likelihood problem!

(v vy, Yy, 0) typically not available!



We discretely observe the diffusion process.
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Figure 4: What we see: Discrete observations v, on the path of V. Goal:
Sample from posterior m(6,y, A|v,) for some prior 7(0,y, \)!



Inference Strategy



We want to design an MCMC algorithm targeting the posterior on
(0,9, ), s.t.:

= it targets the exact posterior, and the Markov chain central limit
theorem applies - estimates are unbiased, standard error decays
according to O(computational budget71/2).

= it is model agnostic in principle - plug in py and o, and you're good
to go.

= it is an "algorithm for the people” - no supercomputers required!



1. transform V to a process X with a tractable dominating measure.

2. augment with the missing data - the bridges between observations
vy and Y - such that conditional updates are “easy”!

3. devise an infinite-dimensional Gibbs sampler with updates
(parameters|missing) and (missing|parameters).

4. carry out the updates based on finite information, using Barker's
algorithm in conjunction with Bernoulli factories and the Exact
algorithms.



Simplified setting and notation.
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Figure 5: Event times; observations 7, = 0 and 7, = s and jumps 7,

= for simplicity: assume that oy is constant in ¥ and we observe V' at
times 0 and s.

= event times 7 consist of observation times {0, s} and intervening
jump times. Denote consecutive jump times 7 ~ 7.

= ancillary quantities are denoted by «.

= random variables in upper case, realizations thereof in lower case.

= | skip inference for A\, which is conditionally conjugate.



Event time augmentation.

Suppose we observe V' at times 7. Then by the Markov property

7T(”r\()|“07 Yio,s)> 0) = H m(vz|v;, 5, 0) (3)

(T~T)ET Jaw of ordinary diffusion!

i.e. we can apply tools from ordinary diffusion inference to address the
terms w(vz|vs, ys, 0).



Dominating measure.

Define the Lamperti transform

v
t da

ag(a)

(4)

Mo(v,) =

and the reduced process X, = 1y(V,) with induced measure X, o and
SDE
dX, = 0y(X,, Yy) dt + dW, (5)

Then, by the Girsanov theorem and under [conditions],

dX,. .0 ’
T’yﬂ(x(%,ﬂ) = aexp _/ ©o(21, Yz) 4 (6)
T5 " 271 <5Z(It=yt>+azt69<xt’yt>>

Wiener measure
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Diffusion path augmentation.

Changing the dominating measure to Leb X WI%I;, obtain augmented
transition density
Ky e 6
77(37(+,%]|37+7y+a 0) = ”(;Ti(x(i—,ﬂ) ()

w.rt. LebxW,, .
5T

Switch to non-centered parameterization to ensure irreducibility:

W) = 2~ 1o(0:) — 2= () —mp(v3)), €T (8)

Such that Z,. .., = we(X(;E;,m;)) is a standard Brownian bridge under
wx;_,z; ° ng =B. NOW,
dX,;__’ . g
T2 2421 |05 U1 6) = a—gg 7= (W (2(0,0))s o (02) (9)
w.r.t. Leb x B
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Infinite dimensional Gibbs sampler.

Put it all together:

W(Q»/\ah»mvo) O(W(Us,h|1)0,y,9) 7T(y|)\) 7T(9)7T(/\) (10)

augmented posterior aug trans density regime prior param prior
(v, hlvg, y, 0) = H T(V3, 25,7 V3 Y3, 0) (11)
NN )

w.r.t. (Leb x B)!7I=1 e
H = V10,51 Y Zjo,s\r (12)

augmentation set

We can now define an ergodic Gibbs sampler:

(missing|param) : = m(h,y|vy, v5, 0, A) o< 7(h, vs|vg, y, O)m(y|A)  (13)
(param|missing) :  w(0|vgy, vs, b, y) o T(h,vs|vy, Y, 0)w(0) (14)

The second update is of particular interest!
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What to do about the path integral?

The augmented transition density contains an integral over a rough path:
nS
A R By (P RALY D
0

Can't evaluate in finite time! Multiple possible approaches...

= Pseudo-marginal method, using unbiased estimators of the
exponentiated path integral.

= even more augmentation...
= Here: Combine Barker's algorithm with Bernoulli factories! Keeps

the state space as is.
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Methods




Barker’s algorithm.

Let 7(a) be a target density. Propose update a' according to x(a'|a).
The Metropolis algorithm accepts with probability

min {1, el ”(aw (16)

r(atla) m(a)

But there are other options! Barker's algorithm accepts with probability

k(ala®)m(al)
k(afla)m(a) + k(alat)m(al)

(17)

This results in higher asymptotic variance for a given proposal! So why
bother?
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Enter the 2-coin algorithm.
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Figure 6: Probability flow diagram of the 2-coin algorithm.

Suppose we can generate coins with probability p; and p,. Then, the
2-coin algorithm generates coins with odds
C1P1
€1P1 + CaPo
This is an example of a Bernoulli factory.

Notice!

(18)

runtime — oo as py,py — 0!
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2-coin within Barker within Gibbs...

Assume there exist c,o(l,, <pg such that

@Jé(z(+,%)ay+) < oW (2),95) < 902)(2@,%)7%)7 telr,7) (19)
Barker acceptance odds for parameter proposal 67 ~ x(01|0) update are

a m(h,vs|vg,y,0%)  w(0T) x(0)01)
1—a  a(ho,lvgy,0 =8 - =619 (20)

_ 7
likelihood ratio prior odds  proposal odds

i exp [ [T @b (2500 u5) — gt (Wi (2,), v5) dt
_ H Ci [T"af (%) ot \<t ] (21)
C.

(i~F)er T eXp [f: Soé(z(i-ﬁ-)a y:) — po(wy ' (20),9;) dt}

€(0,1)
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Poisson coin within 2-coin within Barker within Gibbs.

Let 0 < f(t) < f1 for t € [0, s]. Simulate a unit intensity Poisson process
on [0, s] x [0, f1]. Then

Pr [all points above the graph of f] = exp {—/ f(t) dt} (22)
0

So we only need to interpolate f at a finite set of times. Apply this
within a 2-coin algorithm to simulate coins with probability

exp l/ @ﬁ)(zw,%)»yﬂ — oWy ' (20),93) dt] (23)



Designing 2-Coin Algorithms




Naive 2-coin algorithms don’t scale.

Regardless of IGT — 9|, under standard conditions

S5—00

S
lim exp [/ @(ﬁ(z(ﬁ;)’%) — @o(wp'(2¢),y;)dt| =0 (24)
0
almost surely, so the 2-coin algorithm slows down as the time series

extends. But there are various two-coin algorithms resulting in the same

coin probability...
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An alternative 2-coin algorithm.

Rearrange terms...

exp [f: ‘Pér (Z(+,%)a Y:) — Pyt (W&-l(zt)» Y:) dt}

T _
“r exp UT 05212 ¥2) — oW (2,), ) dt}

ot exp = [T 0V (g1 (w5t (20), 92) — ol (), 92)) ]

= 7 (25)
¢ exp [= [ OV (¢pwy (2), 45) — @0t (it (), 7)) ]
By the mean value theorem and the Cauchy-Schwarz inequality,
Pot (W5f1<zt>» ;) — eo(wy ' (2), us) (26)
< sup  |Vopp(wy'(2,),7)] |07 — 6 (27)
convhull[6,0],¢
-0  as |6t — 6] — 0 (28)
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Bounding the new path integral.

We have to find

sup Wa@a(we_l(zt)y Z/+)‘ (29)
convhull[07,0],¢

Vopo(wy'(2,),y;) is usually not concave, so we take a symbolic
approach. To find sup f(a), solve for

sup {f(a) : f'(a) = 0} (30)

If f(a) =0 doesn't have an analytical solution, expand to f =g+ h,
and bound

sup f <supg+suph (31)

by finding roots of ¢’ and h’. Expressions are complicated even for simple
models - use computer algebra systems to do the heavy lifting!
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Simulation Study




Back to our data.
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Consider a generalized CIR model with SDE
AV, = By, (ny, — V) AV, + V" aw, (32)
Where V, > 0 almost surely. A priori
B1s B, 11, pig ~ log N [0, 1] (33)

Posterior is invariant to label inversions!
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Parameter traces.
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Regime inference.
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Figure 8: Posterior density of jump times in Y. Red lines correspond to the
ground truth.



In conclusion.

Our exact algorithm is slowed down...

= by dependence between Y and 6 due to Gibbs sampling.

= by large or variable drift, slowing down the 2-coin algorithm.

But other methods have the same downsides!

= integration of the posterior wrt Y is intractable even for tractable
diffusions, so some form of conditional updating is unavoidable.

= accuracy of approximate methods degrades when drift is variable.
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Outlook




Open questions.

Work in progress...

= finish algorithm for general o, (V,,Y,).

= apply to real data (misspecification!).

= benchmark against pseudo-marginal implementation.

= which rate of posterior contraction gives a scalable algorithm?
= MAP estimation for Y.

= try more than 2 states.
Important, but probably intractable...

= optimal scaling. Tradeoff between 2-coin and MCMC efficiency!
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Stay tuned for the pre-print!
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