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Model



Many time series exhibits discrete regime shifts.
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Figure 1: Pseudo-interest rate time series.
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We model the regime as a Markov jump process.
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Figure 2: The corresponding trajectory of the regime.

𝑌 (𝜏0) 𝑌 (𝜏1) 𝑌 (𝜏2) ...
Exp(𝜆𝑌 (𝜏0)) Exp(𝜆𝑌 (𝜏1)) Exp(𝜆𝑌 (𝜏2))

Figure 3: A 2-state Markov jump process.

Since the exponential distribution is memoryless, 𝑌 is Markovian. More
generally, 𝜆𝑖𝑗 gives the transition rate from state 𝑖 to 𝑗.
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The diffusion process arises as a limit in discrete time.

Consider the process that evolves according to

𝑉𝑡+𝜖 − 𝑉𝑡⏟
process increment

= 𝜇(𝑉𝑡, 𝑌𝑡)⏟
instant drift

×𝜖 + 𝜎(𝑉𝑡, 𝑌𝑡)⏟
instant volatility

× (𝑊𝑡+𝜖 − 𝑊𝑡)⏟⏟⏟⏟⏟
Brownian increment

(1)

Under [conditions], there is a limiting process as 𝜖 → 0. We write

d𝑉𝑡 = 𝜇(𝑉𝑡, 𝑌𝑡) d𝑡 + 𝜎(𝑉𝑡, 𝑌𝑡) d𝑊𝑡 (2)

We parameterize the instantaneous drift 𝜇𝜃 and volatility 𝜎𝜃 in terms of a
vector 𝜃.

Intractable likelihood problem!
𝜋(𝑣𝑡+𝜖|𝑣𝑡, 𝑦𝑡, 𝜃) typically not available!
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We discretely observe the diffusion process.
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Figure 4: What we see: Discrete observations 𝑣𝑠 on the path of 𝑉 . Goal:
Sample from posterior 𝜋(𝜃, 𝑦, 𝜆|𝑣𝑠) for some prior 𝜋(𝜃, 𝑦, 𝜆)!
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Inference Strategy



Desiderata.

We want to design an MCMC algorithm targeting the posterior on
(𝜃, 𝑦, 𝜆), s.t.:

• it targets the exact posterior, and the Markov chain central limit
theorem applies - estimates are unbiased, standard error decays
according to 𝒪(computational budget−1/2).

• it is model agnostic in principle - plug in 𝜇𝜃 and 𝜎𝜃 and you’re good
to go.

• it is an “algorithm for the people” - no supercomputers required!
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Strategy.

1. transform 𝑉 to a process 𝑋 with a tractable dominating measure.
2. augment with the missing data - the bridges between observations

𝑣𝑠 and 𝑌 - such that conditional updates are “easy”!
3. devise an infinite-dimensional Gibbs sampler with updates

(parameters|missing) and (missing|parameters).
4. carry out the updates based on finite information, using Barker’s

algorithm in conjunction with Bernoulli factories and the Exact
algorithms.
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Simplified setting and notation.

τ0 = 0 τ1 τ2 = s

Figure 5: Event times; observations 𝜏0 = 0 and 𝜏1 = 𝑠 and jumps 𝜏1

• for simplicity: assume that 𝜎𝜃 is constant in 𝑌 and we observe 𝑉 at
times 0 and 𝑠.

• event times 𝜏 consist of observation times {0, 𝑠} and intervening
jump times. Denote consecutive jump times .𝜏 ∼ ..𝜏 .

• ancillary quantities are denoted by 𝑎.
• random variables in upper case, realizations thereof in lower case.
• I skip inference for 𝜆, which is conditionally conjugate.
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Event time augmentation.

Suppose we observe 𝑉 at times 𝜏 . Then by the Markov property

𝜋(𝑣𝜏\0|𝑣0, 𝑦[0,𝑠], 𝜃) = ∏
( .𝜏∼..𝜏)∈𝜏

𝜋(𝑣..𝜏 |𝑣 .𝜏 , 𝑦 .𝜏 , 𝜃)⏟⏟⏟⏟⏟⏟⏟
law of ordinary diffusion!

(3)

i.e. we can apply tools from ordinary diffusion inference to address the
terms 𝜋(𝑣..𝜏 |𝑣 .𝜏 , 𝑦 .𝜏 , 𝜃).
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Dominating measure.

Define the Lamperti transform

𝜂𝜃(𝑣𝑡) = ∫
𝑣𝑡 d𝑎

𝜎𝜃(𝑎) (4)

and the reduced process 𝑋𝑡 = 𝜂𝜃(𝑉𝑡) with induced measure 𝕏𝑥0,𝑦,𝜃 and
SDE

d𝑋𝑡 = 𝛿𝜃(𝑋𝑡, 𝑌𝑡) d𝑡 + d𝑊𝑡 (5)

Then, by the Girsanov theorem and under [conditions],

d𝕏𝑥 .𝜏,𝑦 .𝜏,𝜃
d𝕎𝑥 .𝜏⏟

Wiener measure

(𝑥( .𝜏,..𝜏]) = 𝑎 exp
⎡⎢⎢
⎣

− ∫
..𝜏

.𝜏
𝜑𝜃(𝑥𝑡, 𝑦 .𝜏)⏟⏟⏟⏟⏟

2−1(𝛿2
𝜃(𝑥𝑡,𝑦𝑡)+𝜕𝑥𝑡 𝛿𝜃(𝑥𝑡,𝑦𝑡))

d𝑡⎤⎥⎥
⎦

(6)
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Diffusion path augmentation.

Changing the dominating measure to Leb × 𝕎𝑥 .𝜏,𝑥..𝜏 , obtain augmented
transition density

𝜋(𝑥( .𝜏,..𝜏]|𝑥 .𝜏 , 𝑦 .𝜏 , 𝜃)⏟⏟⏟⏟⏟⏟⏟
w.r.t. Leb × 𝕎𝑥 .𝜏,𝑥..𝜏

= 𝑎
d𝕏𝑥 .𝜏,𝑦 .𝜏,𝜃

d𝕎𝑥 .𝜏
(𝑥( .𝜏,..𝜏]) (7)

Switch to non-centered parameterization to ensure irreducibility:

𝜔𝜃(𝑥𝑡) = 𝑥𝑡 − 𝜂𝜃(𝑣 .𝜏) − 𝑡 − .𝜏
..𝜏 − .𝜏 (𝜂𝜃(𝑣..𝜏) − 𝜂𝜃(𝑣 .𝜏)), 𝑡 ∈ [ .𝜏, ..𝜏) (8)

Such that 𝑍(𝑥 .𝜏,𝑥..𝜏) = 𝜔𝜃(𝑋(𝑥 .𝜏,𝑥..𝜏)) is a standard Brownian bridge under
𝕎𝑥 .𝜏,𝑥..𝜏 ∘ 𝜔−1

𝜃 = 𝔹. Now,

𝜋(𝑣..𝜏 , 𝑧( .𝜏,..𝜏)|𝑣 .𝜏 , 𝑦 .𝜏 , 𝜃)⏟⏟⏟⏟⏟⏟⏟⏟⏟
w.r.t. Leb × 𝔹

= 𝑎
d𝕏𝑥 .𝜏,𝑦 .𝜏,𝜃

d𝕎𝑥 .𝜏
(𝜔−1

𝜃 (𝑧( .𝜏,..𝜏)), 𝜂𝜃(𝑣..𝜏)) (9)

11



Infinite dimensional Gibbs sampler.

Put it all together:

𝜋(𝜃, 𝜆, ℎ, 𝑦|𝑣0)⏟⏟⏟⏟⏟⏟⏟
augmented posterior

∝ 𝜋(𝑣𝑠, ℎ|𝑣0, 𝑦, 𝜃)⏟⏟⏟⏟⏟⏟⏟
aug trans density

𝜋(𝑦|𝜆)⏟
regime prior

𝜋(𝜃)𝜋(𝜆)⏟
param prior

(10)

𝜋(𝑣𝑠, ℎ|𝑣0, 𝑦, 𝜃)⏟⏟⏟⏟⏟⏟⏟
w.r.t. (Leb × 𝔹)|𝜏|−1

= ∏
.𝜏∼..𝜏∈𝜏

𝜋(𝑣..𝜏 , 𝑧( .𝜏,..𝜏)|𝑣 .𝜏 , 𝑦 .𝜏 , 𝜃) (11)

𝐻 = 𝑉𝜏\{0,𝑠} ∪ 𝑍[0,𝑠]\𝜏⏟⏟⏟⏟⏟⏟⏟
augmentation set

(12)

We can now define an ergodic Gibbs sampler:

(missing|param) ∶ 𝜋(ℎ, 𝑦|𝑣0, 𝑣 ̄𝑠, 𝜃, 𝜆) ∝ 𝜋(ℎ, 𝑣 ̄𝑠|𝑣0, 𝑦, 𝜃)𝜋(𝑦|𝜆) (13)
(param|missing) ∶ 𝜋(𝜃|𝑣0, 𝑣 ̄𝑠, ℎ, 𝑦) ∝ 𝜋(ℎ, 𝑣 ̄𝑠|𝑣0, 𝑦, 𝜃)𝜋(𝜃) (14)

The second update is of particular interest!
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What to do about the path integral?

The augmented transition density contains an integral over a rough path:

𝜋(ℎ, 𝑣 ̄𝑠|𝑣0, 𝑦, 𝜃) = 𝑎 exp [− ∫
𝑠

0
𝜑𝜃(𝜔−1

𝜃 (𝑧𝑡), 𝑦𝑡) d𝑡] (15)

Can’t evaluate in finite time! Multiple possible approaches...

• Pseudo-marginal method, using unbiased estimators of the
exponentiated path integral.

• even more augmentation...
• Here: Combine Barker’s algorithm with Bernoulli factories! Keeps

the state space as is.
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Methods



Barker’s algorithm.

Let 𝜋(𝑎) be a target density. Propose update 𝑎† according to 𝜅(𝑎†|𝑎).
The Metropolis algorithm accepts with probability

min [1, 𝜅(𝑎|𝑎†)
𝜅(𝑎†|𝑎)

𝜋(𝑎†)
𝜋(𝑎) ] (16)

But there are other options! Barker’s algorithm accepts with probability

𝜅(𝑎|𝑎†)𝜋(𝑎†)
𝜅(𝑎†|𝑎)𝜋(𝑎) + 𝜅(𝑎|𝑎†)𝜋(𝑎†) (17)

This results in higher asymptotic variance for a given proposal! So why
bother?
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Enter the 2-coin algorithm.

start

𝐶0

return 1 𝐶1 𝐶2 return 0

𝑐1
𝑐1+𝑐2

𝑐2
𝑐1+𝑐2

1−𝑝1𝑝1
1−𝑝2

𝑝2

Figure 6: Probability flow diagram of the 2-coin algorithm.

Suppose we can generate coins with probability 𝑝1 and 𝑝2. Then, the
2-coin algorithm generates coins with odds

𝑐1𝑝1
𝑐1𝑝1 + 𝑐2𝑝2

(18)

This is an example of a Bernoulli factory.
Notice!
runtime → ∞ as 𝑝1, 𝑝2 → 0!
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2-coin within Barker within Gibbs...

Assume there exist 𝜑↓
𝜃, 𝜑↑

𝜃 such that

𝜑↓
𝜃(𝑧( .𝜏,..𝜏), 𝑦 .𝜏) ≤ 𝜑𝜃(𝜔−1

𝜃 (𝑧𝑡), 𝑦 .𝜏) ≤ 𝜑↑
𝜃(𝑧( .𝜏,..𝜏), 𝑦 .𝜏), 𝑡 ∈ [ .𝜏, ..𝜏) (19)

Barker acceptance odds for parameter proposal 𝜃† ∼ 𝜅(𝜃†|𝜃) update are

𝛼
1 − 𝛼 = 𝜋(ℎ, 𝑣𝑠|𝑣0, 𝑦, 𝜃†)

𝜋(ℎ, 𝑣𝑠|𝑣0, 𝑦, 𝜃)⏟⏟⏟⏟⏟⏟⏟
likelihood ratio

× 𝜋(𝜃†)
𝜋(𝜃)⏟

prior odds

× 𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)⏟

proposal odds

(20)

= ∏
( .𝜏∼..𝜏)∈𝜏

𝑐†
̇𝜏

𝑐 ̇𝜏

exp [∫
..𝜏

.𝜏 𝜑↓
𝜃†(𝑧( .𝜏,..𝜏), 𝑦 .𝜏) − 𝜑𝜃†(𝜔−1

𝜃† (𝑧𝑡), 𝑦 .𝜏) d𝑡]

exp [∫
..𝜏

.𝜏 𝜑↓
𝜃(𝑧( .𝜏,..𝜏), 𝑦 .𝜏) − 𝜑𝜃(𝜔−1

𝜃 (𝑧𝑡), 𝑦 .𝜏) d𝑡]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
∈(0,1)

(21)
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Poisson coin within 2-coin within Barker within Gibbs.

0 s
φ↓

φ↑

Let 0 ≤ 𝑓(𝑡) ≤ 𝑓↑ for 𝑡 ∈ [0, 𝑠]. Simulate a unit intensity Poisson process
on [0, 𝑠] × [0, 𝑓↑]. Then

Pr [all points above the graph of 𝑓] = exp [− ∫
𝑠

0
𝑓(𝑡) d𝑡] (22)

So we only need to interpolate 𝑓 at a finite set of times. Apply this
within a 2-coin algorithm to simulate coins with probability

exp [∫
..𝜏

.𝜏
𝜑↓

𝜃(𝑧( .𝜏,..𝜏), 𝑦 .𝜏) − 𝜑𝜃(𝜔−1
𝜃 (𝑧𝑡), 𝑦 .𝜏) d𝑡] (23)
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Designing 2-Coin Algorithms



Naive 2-coin algorithms don’t scale.

Regardless of ∣𝜃† − 𝜃∣, under standard conditions

lim
𝑠→∞

exp [∫
𝑠

0
𝜑↓

𝜃(𝑧( .𝜏,..𝜏), 𝑦 .𝜏) − 𝜑𝜃(𝜔−1
𝜃 (𝑧𝑡), 𝑦 .𝜏) d𝑡] = 0 (24)

almost surely, so the 2-coin algorithm slows down as the time series
extends. But there are various two-coin algorithms resulting in the same
coin probability...
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An alternative 2-coin algorithm.

Rearrange terms...

𝑐†
̇𝜏

𝑐 ̇𝜏

exp [∫
..𝜏

.𝜏 𝜑↓
𝜃†(𝑧( .𝜏,..𝜏), 𝑦 .𝜏) − 𝜑𝜃†(𝜔−1

𝜃† (𝑧𝑡), 𝑦 .𝜏) d𝑡]

exp [∫
..𝜏

.𝜏 𝜑↓
𝜃(𝑧( .𝜏,..𝜏), 𝑦 .𝜏) − 𝜑𝜃(𝜔−1

𝜃 (𝑧𝑡), 𝑦 .𝜏) d𝑡]

= 𝑐†
̇𝜏

𝑐 ̇𝜏

exp [− ∫
..𝜏

.𝜏 0 ∨ (𝜑𝜃†(𝜔−1
𝜃† (𝑧𝑡), 𝑦 .𝜏) − 𝜑𝜃(𝜔−1

𝜃 (𝑧𝑡), 𝑦 .𝜏)) d𝑡]

exp [− ∫
..𝜏

.𝜏 0 ∨ (𝜑𝜃(𝜔−1
𝜃 (𝑧𝑡), 𝑦 .𝜏) − 𝜑𝜃†(𝜔−1

𝜃† (𝑧𝑡), 𝑦 .𝜏)) d𝑡]
(25)

By the mean value theorem and the Cauchy-Schwarz inequality,

𝜑𝜃†(𝜔−1
𝜃† (𝑧𝑡), 𝑦 .𝜏) − 𝜑𝜃(𝜔−1

𝜃 (𝑧𝑡), 𝑦 .𝜏) (26)
≤ sup

convhull[𝜃†,𝜃],𝑡
∣∇𝜃𝜑𝜃(𝜔−1

𝜃 (𝑧𝑡), 𝑦 .𝜏)∣ ∣𝜃† − 𝜃∣ (27)

→ 0 as ∣𝜃† − 𝜃∣ → 0 (28)
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Bounding the new path integral.

We have to find

sup
convhull[𝜃†,𝜃],𝑡

∣∇𝜃𝜑𝜃(𝜔−1
𝜃 (𝑧𝑡), 𝑦 .𝜏)∣ (29)

∇𝜃𝜑𝜃(𝜔−1
𝜃 (𝑧𝑡), 𝑦 .𝜏) is usually not concave, so we take a symbolic

approach. To find sup 𝑓(𝑎), solve for

sup {𝑓(𝑎) ∶ 𝑓 ′(𝑎) = 0} (30)

If 𝑓 ′(𝑎) = 0 doesn’t have an analytical solution, expand to 𝑓 = 𝑔 + ℎ,
and bound

sup 𝑓 ≤ sup 𝑔 + sup ℎ (31)

by finding roots of 𝑔′ and ℎ′. Expressions are complicated even for simple
models - use computer algebra systems to do the heavy lifting!

20



Simulation Study



Back to our data.
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Consider a generalized CIR model with SDE

d𝑉𝑡 = 𝛽𝑌𝑡
(𝜇𝑌𝑡

− 𝑉𝑡) d𝑉𝑡 + 𝑉 3/4
𝑡 d𝑊𝑡 (32)

Where 𝑉𝑡 > 0 almost surely. A priori

𝛽1, 𝛽2, 𝜇1, 𝜇2 ∼ log N [0, 1] (33)

Notice!
Posterior is invariant to label inversions!
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Parameter traces.
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Figure 7: Traces for 𝜃, colored by regime state.
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Regime inference.
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Figure 8: Posterior density of jump times in 𝑌 . Red lines correspond to the
ground truth.
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In conclusion.

Our exact algorithm is slowed down...

• by dependence between 𝑌 and 𝜃 due to Gibbs sampling.
• by large or variable drift, slowing down the 2-coin algorithm.

But other methods have the same downsides!

• integration of the posterior wrt 𝑌 is intractable even for tractable
diffusions, so some form of conditional updating is unavoidable.

• accuracy of approximate methods degrades when drift is variable.
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Outlook



Open questions.

Work in progress...

• finish algorithm for general 𝜎𝜃(𝑉𝑡, 𝑌𝑡).
• apply to real data (misspecification!).
• benchmark against pseudo-marginal implementation.
• which rate of posterior contraction gives a scalable algorithm?
• MAP estimation for 𝑌 .
• try more than 2 states.

Important, but probably intractable...

• optimal scaling. Tradeoff between 2-coin and MCMC efficiency!
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Stay tuned for the pre-print!
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