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Abstract:  As an aggregate of cyclists, a peloton exhibits collective behavior similar to flocking birds or 
schooling fish. Positional analysis of cyclists in mass-start velodrome (track) races allows quantitative 
descriptions of peloton phases based on observational data. Data from two track races are analyzed. 
Peloton density correlates well with cyclists’ collective power output in two clear phases, one of low 
density, and one of high density. The low density “stretched” phase generally indicates low frequency 
positional-change and single-file synchronization. The high density “compact” phase may be further 
divided into two phases, one of which is a laterally (side-by-side) synchronized phase, and another is a 
high frequency and magnitude positional-change phase. Phases may be sub-divided further into 
acceleration and deceleration regimes, but these are not quantified here. A basic model of peloton division
and its implications for general flocking behavior are discussed.     
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1.1 Introduction

A peloton may be defined as a group of cyclists that are coupled together through the mutual energy 

benefits of drafting, whereby cyclists follow others in zones of reduced air resistance. Although the 

interactions among individual cyclists are in principle very simple -- each cyclist takes a turn leading and 

then returns to the pack -- the collective behavior of the peloton is very complex. This is characteristic for 

social interactions in general. These interactions usually involve only a few individuals at a time, yet may 

give rise to non-trivial global phenomena, like opinion formation, cultural dissemination, evolution of 

cooperation, and the emergence of hierarchy in initially egalitarian societies [1-4].    

Investigations of conceptually similar complex systems have a long tradition in condensed matter physics.

Among the most important features of complex systems is the emergence of phase transitions [5], which 

can be traced back to the Ising model [6]. In fact, the comprehensive understanding of the collective 

behavior of systems at phase transition points can be considered as a major intellectual revolution of 

statistical physics during the past century. Strong interactions between particles result in increasing 

correlation lengths, which render microscopic details of the system irrelevant from the viewpoint of its 
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macroscopic behavior. As a result, universality classes have been established in which seemingly very 

different systems behave identically. 

The parallelism between interactions between particles and spins and the interactions among living 

organisms is the motivation behind many applications of statistical physics methods and models to 

describe large-scale complex social and natural phenomena. The applications range from fractal growth 

[7,8] to correlations in economy [9] and animals on the move [10]. Here we wish to extend the scope of 

this theory to the collective behavior in bicycle pelotons, which to the avid cyclists among the readers will

be familiar as the stage for intriguing tactical and positional competition.  

1.1.1 Coupling model for cyclists in peloton

Peloton dynamics have been characterized by four major phases, and oscillations among phases were 

modelled as occurring within threshold ranges of a parameter called the “peloton convergence ratio” 

(“PCR”) [11]. The Peloton Convergence Ratio describes the coupled power-output relationship between 

two cyclists, one being in a non-drafting position, and the other being in a drafting position. The Peloton 

Convergence Ratio quantifies the power reduction benefits of drafting at a given speed.      
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In (1) Pqfront is the power output of the front rider at the given speed (the same power output that would be

required by the drafting (following) rider to maintain the speed set by the front rider, were the following

rider not drafting -- hence “required output”); D is the percentage of energy saved by drafting; P MSO is the

maximal sustainable output (MSO) of the drafting cyclist, subsequently defined in more detail. 

PCR is more simply described as a ratio of the following rider’s required output for the given speed,

minus  drafting  benefit  D,  over  her  maximum output,  where  the  speed  and  drafting  component  are

determined by the front rider. Differences in equipment, body frontal surface area or body position, are

ignored. 

The required output, as set by the non-drafting front rider, may exceed the maximal sustainable output of

the following rider.  However, the actual output of the following rider at the speed set by the front rider is

that which has been reduced by drafting benefit D.  When PCR <  1, the following rider’s actual output is

less than her maximal sustainable output, and she maintains the speed set by the front rider. When PCR



>  1, the required output exceeds the drafting rider’s actual output and her maximal sustainable output,

and the two riders will de-couple, as shown in Figure 1.  

For example, a drafting (following) cyclist  with a hypothetical maximum sustainable output of 349w

(based on the range of power outputs reported by [12]) on a flat, windless, course can maintain the speed

of a rider ahead (who may or may not also be drafting behind other riders) up to about 32 miles/h (51.8

km/h), above which a stronger rider will ride away from the weaker cyclist, when PCR >  1. On a 3%

grade, the same drafting cyclist will be able to maintain the speed of a rider ahead up to about 22 miles/h

(35.4 km/h), above which a stronger front rider will pull ahead. At grades of 10% or more the drafting

benefit is negligible due to low speeds, and a cyclist in front who is even marginally stronger than the

drafting cyclist, will pull ahead. 

Figure  1.  Illustration  of  the  application  of  the  peloton  convergence  ratio  (PCR),  demonstrating  the  effect  of
increasing slope on a drafting cyclist’s capacity to maintain the speed of a front cyclist.  Using an approximate
energy savings of 1% per 1.6 km/h (1% per miles/h) starting at 16.2 km/h (10 miles/h) to a maximum of 51.8 km/h
(32 miles/h), each point represents 1.6 km/h (1 mile/h), also corresponding to 1% energy savings by drafting below
PCR = 1.00.  Figure adapted from [11].

PCR may be calculated as a collective value for all drafting riders coupled to the front rider; it is a global 

parameter that correlates with collective changes in phase. Peloton density and cyclists’ positional change 

are similar collective parameters that correlate with change in phase.  Here “positional-change” refers to 

the change in relative order of the cyclists from the front of the group in the direction of motion, to the 

back. 

In summary, the following phases were earlier qualitatively identified [11]:



I. Relaxed (high density, low frequency positional-change): low PCR < 1. Cyclists proceed 
at comparatively low power outputs.

II. Convective (high density, high frequency positional-change): intermediate PCR < 1. 
Riders advance up peloton peripheries, passing riders in central positions where density is
high. Passing occurs in continuous rotation.

III. Synchronized (low density, low frequency positional-change): high PCR < 1. As riders 
approach maximal sustainable output, PCR approaches 1, and cyclists’ self-organize into 
single-file (one-behind-another).

IV. Disintegrated (very low density, low frequency positional-change): Riders de-couple and 
separate. PCR > 1.      

Confirmation of the convective phase has been shown by simulation [13]. Stop and go waves have been 

reported for cyclists in single-file [14]. Similarly, in [15] a speed-density model for bicycles, and mixed 

electric bicycle and bicycles was investigated.  However, [14, 15] do not consider the competitive 

dynamics of pelotons and their concomitant energetic demands and coupling due to drafting, and do not 

demonstrate mass-start peloton dynamics. As a result, there currently does not appear to be any 

independent empirical study demonstrating the dynamics of peloton phases. Here phase boundaries are 

indicated empirically as a function of cyclists’ variation in position and Peloton Convergence Ratio, 

according to data collected from two mass-start velodrome races. 

2.1   Methods

2.1.1 Data collection

Video data of mass-start track races during the British Columbia Provincial track championships (August 

23 - 25, 2013) were obtained by using a Sony Handycam 60x optical zoom hand-held camera. The 

camera operator stood on an adjustable platform, positioned centrally at the in-field of the 333.3 m 

outdoor Westshore Velodrome, located in the municipality of Colwood, British Columbia. The platform 

was raised to approximately 15 feet above ground level to reduce visual obstruction from tents and other 

objects present on the track in-field. The operator rotated the camera ensuring to the extent possible that 

all riders were continuously in the camera field-of-view.  Maximum platform height was not achieved due

to safety considerations, and some minimal obstruction between the camera and track from in-field tents 

remained.

The data analyzed here were collected from two races: the women’s 30 lap (10km) points race (on the 

morning of August 24, 2013) and the women’s 20 lap (6.66km) scratch race (on the afternoon of August 

25, 2013). Points races involve the accumulation of points by finishing order on designated laps. For the 

specific points race recorded, points were assigned to the top four riders every 6 th lap. Lapped riders 



receive negative value points. The winner is the rider with the greatest number of points accumulated. 

Scratch race finishing order is determined by the order on the final lap only. 

The women’s points race involved 14 competitors distributed by age as follows: 5 senior (>19yrs), 4 

(17-19yrs), 4 (15-17yrs), and 1 (13-15yrs). The women’s scratch race involved the same group of 

competitors (excepting two from the 15-17yrs category) for a total of 12 competitors.

Race speeds were calculated on the basis of two timing points, one positioned approximately one-third 

around the track at 133.3m (the location of a 200m remaining line on the track), and the other positioned 

at the start/finish line at 333.3m.  The speed data are of comparatively coarse granularity as a result; while

resolution for correlation between PCR and positional dynamics is not optimal, data and results are 

sufficient for useful analysis.

Among the various mass-start events held the weekend of the B.C. Championships (individually timed 

events were not considered for this study) the women’s points and scratch races were selected for analysis

for the reasons as follow. First, the numbers of competitors in these races were highest among all the 

mass-start events that weekend. In view of the hypothesis that larger pelotons, to some threshold number 

not reached in these cases, will provide more accurate data for the study of peloton collective motion, the 

data from these races were the best available. Secondly, the pelotons in these two races were sufficiently 

cohesive such that the groups generally stayed within the camera field-of-view for the majority of the 

duration of each race. By comparison, other mass-start races recorded that weekend had less cohesive 

groups, making it impossible to track all riders with a single camera. Thus, among the mass-start events 

recorded during the two days of racing events, those analyzed here yielded the most suitable data for the 

study of peloton dynamics.

Compared to road races or other kinds of mass-start bicycle races, such as mountain bike or cyclo-cross 

races, mass-start track races represent highly controlled conditions for the study of peloton dynamics. In 

mountain-bike and cyclo-cross races the courses are generally single-track, i.e., obstacles may force 

cyclists to ride single-file with limited passing opportunities. For such races it is not possible to observe 

the full scope of peloton dynamics. Pelotons larger than those studied here (e.g. those observed in road 

races, which may include 50 riders or more) would provide useful data for the understanding of peloton 

dynamics. However for road races the topography, width, and circuitousness of the course are entirely 

variable, making data acquisition difficult. As a result of their uniform topography, track races permit 



convenient data collection, which may be obtained from a central in-field location. Distances and speeds 

are also easily measured.  Moreover, the bowl-shape of the velodrome reduces wind effects.

2.1.2 Determining cyclists’ relative positions 

The video data were analyzed visually for the entire duration of both races to determine the cyclists’ 

relative positions. Position data were obtained by uniquely identifying the cyclists and recording the 

change in relative ordering among them. From the moment of crossing the start line at the 

commencement, data points were derived second-to-second for each cyclist (2):

                                               P = (Cahead / Ctotal) / Δt                        (2)

Here P is position; Cahead is the number of riders ahead, discounting those cyclists aligned laterally (those 

directly beside or behind up to approximately half a bicycle-length); Ctotal is the total number in the group;

Δt is the period between observations, in seconds. Here positional data were generated via (2) by counting

(for each cyclist) the number of cyclists ahead, dividing that result by the total number of riders in the 

group (14 in the points race, and 12 in the scratch race). Measurements were made on a second-to-second 

basis (Δt=1s).

In [16] a positional-change method was used to study the dynamics of sheep flocks.  This involved the 

observing the changes in displacements of individual sheep, relative to the centroid of the flock. Other 

positional-change analysis methods have been used to study flocking dynamics, e.g., those involving 

changes in domains of danger relative to predation risk [17, 18], however it appears the positional-change

method indicated by (2) is novel in the context of flocking dynamics.  

Broadly applicable, (2) yields a positional ratio that may be used to draw comparisons between different 

flocking systems (independent of the flock sizes). A drawback is that relative lateral positions are not 

accounted for. Nonetheless, while precise relative lateral positions are not indicated by this method,  

periods of lateral alignment are revealed in the positional-change curves, as shown in Figures 2 to 5.  A 

further limitation of (2) is that, outside of the peleton context, flocking behavior rarely occurs in mean 

straight-line trajectories for sufficiently long periods to obtain data accurately representative of such 

positional-changes. In such cases, however, a correction for mean trajectory may allow (2) to be applied 

to the dynamics of more general flocking situations, particularly those in two-dimensions.

                                                          
2.1.3 Drafting parameter (D)



For the parameter D, a simplified speed-varying estimate of 1% per (miles/h) may be applied, which

approximately tracks empirically obtained results in [19]. A more comprehensive estimate for the drafting

parameter is given in [20]. In [20] an equation is derived based on analysis and data given in [21], and

derives the drafting benefit  as  a  ratio of cyclists’ power  requirements in  drafting positions to  power

requirements in non-drafting positions. This value is 0.62 adjusted for by wheel spacing parameters which

we do not apply here, since wheel spacing is continually changing, and difficult to measure from the

video data. Further power output parameters were applied as set out in [22].

Aerodynamic drag due to changes in cyclist positions [23] and wheel spacing [20] are additional factors

that  should  be  considered  in  the  estimation  of  D.  Consequently  the  estimates  for  D used  here  are

adequate for our purposes,  although future studies should consider increasingly accurate and realistic

estimates for D.

2.1.4 Maximal sustainable output (MSO)

Broadly speaking, an athlete’s MSO is the maximum power output sustainable for a given period of time. 

Typically an athlete’s absolute maximum output along with three domains of sub-maximal output, are 

considered [24]. The measurement of thresholds representative of such MSO domains varies in the 

literature [25]. For example, a sprint effort where the absolute maximum output is achieved has been 

defined as the period for which peak power output is attained within 5-10s of all-out effort [24, 26]; 

others describe sprints with duration of 15s [27] or as long as 30s [28]. Domains of sub-maximal 

physiological output have been described as moderate, heavy, and severe [24]. Boundaries for these are 

variously described involving lactate or gas exchange thresholds (boundary between moderate and 

heavy), or critical power (boundary between heavy and severe); the upper limit of severe is determined by

the work rate that results in attainment of maximal oxygen uptake [24]. Alternative descriptions include 

fatigue or exhaustion thresholds according to metabolic, neuromuscular, or psychological indicators [29]. 

Also, fatigue alters MSO. Fatigue has been defined as a reversible, exercise-induced reduction in maximal

power output, even though the task can be continued [30]. Because of frequent opportunity to recover 

while drafting, or during short-term periods not requiring pedalling (e.g., downhill) bicycle racing is 

especially conducive to alternations between short term periods of high output, with periods of recovery 

due to reversible fatigue. Cycling races therefore naturally involve collective MSO fluctuations. This may

be generalized to all competitive events characterized by bursts of near-maximal efforts followed by 

recovery, as well as collective animal behaviours such as migration, resource scavenging, and escape 

from predators.



Generally research regarding the power capacity drop experienced during recovery is limited. However, 

[31] reported a 28% power reduction between 10s and 20s of a sprint relative to the first 10s. A similar 

percentage capacity drop was reported in [32, 33] during 10s recovery periods following 5 second sprints,

while much greater recovery was achieved after 30s of rest. This indicates that recovery increases 

significantly between 10s and 30s of recovery time, resulting in a lower than 28% average capacity drop 

over a 30s recovery period. For our purposes, an estimated 28 % capacity drop is applied and counted for 

15 seconds following a sprint, with no consideration of a changing rate over that period and assuming that

maximal recovery occurs after 15s. In reality the cyclists may not have approached maximal recovery 

after 15s, but the duration provides a reasonable value for this study.

While power capacity falls during recovery periods, successive maximal efforts, following recovery 

periods, also result in incremental reductions in power output capacity over succeeding efforts. 

Reductions in successive sprint outputs typically develop rapidly after the first sprint [33].  The study in 

[34] found that repeated 6s sprints with 30s recovery intervals result in reductions of maximal power 

capacity for succeeding sprint efforts at ~94%, ~92%, and ~89% of the initial maximum effort measured. 

For this study, accurate physiological data regarding individual maximal sustainable output profiles were 

not obtained. Consequently, for the purposes of this study, reasonable approximations demonstrate 

changing maximal sustainable outputs during the course of a race, and the effects upon PCR and phases 

of aggregate peloton dynamics. In addition to the limitation in accurate maximal sustainable output data 

in this study, speed data (being derived from only two timing points per lap) are also coarse-grained. Thus

changes in peloton dynamics that correlate to changes in speed and PCR are demonstrated with relatively 

low resolution. However, if our objective is to show a relationship between changing Peloton 

Convergence Ratio and phases, then (1) must account for a dynamic maximal sustainable output. 

Despite the absence of accurate MSO data, there is good correlation between power output and track race 

speeds.  Since track topography does not vary, speed data may be used for a reasonable approximation of 

MSO instead of the power output parameter (the preferred indicator). While cyclists do ascend and 

descend on the banked curves, these changes occur over relatively short distances (in the range of several 

meters) so we make the reasonable assumption that, overall, deceleration experienced during ascent will 

offset the acceleration experienced during descent. Also, bicycle angles are maintained at approximately 

90 degrees relative to the track surface while cornering; approximately constant velocity is maintained 

around curves [35]. Moreover, despite some ambient wind that could possibly affect speeds on the 



windward straightaways, the wind shelter provided by the velodrome is quite favourable, so wind effects 

are ignored for the purposes of this study.

For this study, therefore, speed and duration associated with certain speed ranges are used to approximate 

MSOs. The following describes the MSO model applied for the purpose of this study.

A physiological threshold framework is applied which divides cyclists’ power output capacity into five 

ranges [36], as set out below:    

1. Explosiveness (5s)
2. Lactic tolerance (30s)
3. Maximal aerobic power (~5min)
4. Anaerobic threshold (20 to 60 min)
5. Endurance (up to several hours).

There are three primary physiological ranges applicable to the durations of the points and scratch races 

studied, two of which correspond to the ranges of [36], and one that corresponds to a recovery period. A 

fourth factor is the reduction in capacity over successive efforts.

The first physiological range is indicated by apparent maximum efforts sustained for 12s in the points 

race (51.4 km/h) and 15s in the scratch race (53.2 km/h). These durations are intermediary to the 

explosiveness and lactic tolerance ranges of [36]. For this study, this intermediate maximal effort is 

referred to as an “MSO1” event and represents the upper range of maximal efforts achievable by the 

competitors in this study (Tables 1 and 2). Explosiveness (peak power efforts of up to 5 seconds) is not 

identified in the data here. 

It is convenient here that all the cyclists’ maximum sprint speeds are obtained from 200m sprint 

time-trials during the same weekend as the points and scratch races here [37]. This indicates that the top 

speeds reached in the points (51.4 km/h) and scratch (53.2 km/h) races are indeed close to the cyclists’ 

sprint maxima, and that these top speeds can be applied as benchmark absolute maximal sustainable 

outputs (MSO1). The 200m sprint time average was 14.26s, indicating that for the races studied here, a 

reasonable approximation for the maximal sustainable output sprint time is15 seconds. In the points race, 

MSO1 events were attained during 4 sprint periods, 3 of durations <15s and one of duration 17s (Table 2). 

The second physiological range applied is a recovery period, referred to as an “MSOR” event. These 

correspond to the reported a 28% power reduction in capacity between 10s and 20s of a sprint relative to 



the first 10s [31], and similar values [32, 33]. These events are thus calculated as being 72% of an MSO1 

event (Table 2) up to 15s following an MSO1 event, as discussed. 

The third physiological range applied is maximal aerobic power, those efforts of durations in the range 

30s to ~5min, as noted in [36]. These are referred to as MSO2 events (Table 1).

The fourth factor involves reductions in output capacity over successive efforts. Where subsequent MSO1 

efforts occurred within < 30 seconds of a previous MSO1 event, a reduced MSO1 value was applied 

according to the successive fractional outputs indicated in [32], whereby succeeding sprint efforts are 

multiplied by 0.94, 0. 92, and 0.89 of the initial maximum effort measured. These are referred to as 

MSOred events. One MSOred was detected in the points race, no MSOred were detected in the scratch race 

(Table 2). 

In applying reduction values, maximal efforts of 6s are involved in [34]; here MSO1 efforts > 6s are 

applied, meaning that the cyclists in this study likely recovered at a significantly different rate than those 

in the [34] study.  In turn, reductions in successive efforts are likely significantly different than those in 

the [34] study. However, these reduction values represent reasonable approximations in order to 

demonstrate the principle of capacity reductions that are expected to occur among competitors in 

mass-start bicycle races.  

Maximal 
sustainable 
output 
threshold

Points Scratch 

Sprint (lactic 
tolerance) 
(“MSO1”)

For speeds between 48kmh and 51.4km/h of <=

30s, 51.4 km/h is MSO1.

For speeds between 43.5km/h and 53.2km/h of 

<= 30s, 53.2 km/h is MSO1.

Recovery 
MSO 
(“MSOR”)

72%a of MSO1 of 51.4kmh (747wb) = 537.8 W 
(45.8 km/h). Four MSOR periods were counted 
(Table 2).

72%a of MSO1 53.2 km/h (832Wb) = 599W 
(47.6km/h). One MSOR period was counted of 
15s (9:04 min – 9:18 min) following a 13s 
sprint at 48km/h (Table 2). 

Max aerobic 
power MSO 
(“MSO2”).

Highest speed sustained for >= 30s but < 5min  

was 48km/h. All periods of the race other than 

for MSO1 and MSOR have been counted as 

MSO2 using 48km/h. 

Highest speed sustained for > = 30s but < 5min 

was 43.5km/h.  All periods of the race other 

than for MSO1 and MSOR have been counted as

MSO2 using 43.5km/hc.

Max aerobic 
power MSOR

Since speeds were achieved for < 5min, no 

recovery MSO is observed. 

Since speeds were achieved for < 5min, no 

recovery MSO is observed. 

Anaerobic 
threshold &
endurance 

Race not sufficiently long for these to be 

measured.

Race not sufficiently long for these to be 

measured.



MSO

Table 1. The different ranges of maximal sustainable output (MSO) applied to calculations of Peloton Convergence 
Ratio (PCR) in this study. aApplying [31-33] 28% reduction in power output during  ~15 second recovery periods is 
used.  bGiven constant race conditions, speeds may be correlated to power output; power output is calculated using 
parameters from [38] and based on rider and bicycle weight of 69kg. cIncludes one event of 19s, between 8:06 min 
and 8:25 min which is included in this category.  

Sprint period
MSO1 speed

(km/h) [actual
speed]

power at
actual speed
(W) (Pspeed)

MSOR

Recovery
period

Recovery
Power (W)

(Pspeed*.72)

MSO speed
at Recovery

Power (km/h)
[actual speed]

Po
in

ts

1 3:03 – 3:16 51.4 747 3:17 – 3:32 537.84 45.8 [39.9]

2 12:04-12:14 51.4  [48] 614 12:15 –
12:24

442.1 42.72 [43.5]e

3 12:25 -12:42 48.32d [45] 512 12:43-12:58 368.64 40.04  [39.9]

4 14:53-15:04 51.4 [48] 614 15:05 - 15:20 442.1 42.72 [43.5]e

S
cr

at
ch

1 8:51 – 9:03 53.2 [48] 614 9:04 – 9:18 537.84 45.8 [36.8]

2 10:27 – 10:41 53.2 [53.2] 823 none   

3 10:42 – 10:45 53.2 [51.4] 747 none   

Table 2. Points and scratch races MSO1 and MSOR periods. d MSOred (51.4km/h *0.94) as a subsequent sprint 
occurring within 30s of previous [34]. eActual speed may be higher than MSO since, for all but the front rider, actual
power output in drafting positions is reduced according to Peloton Convergence Ratio; although any instance of the 
front rider exceeding MSO suggests error in the data, here the error is comparatively small and supports the method 
used in determining a reasonable approximation of MSO.

3.1 Results and discussion

3.1.1 K-means analysis indicates stretched and compact phases

To identify phases and phase boundaries, using NCSS statistical software [39], k-means cluster analysis 

of density (sums of all cyclists’ position values, second-to-second) versus Peloton Convergence Ratio 

produced reasonable phase delineations.  Here density is indicated by 1/d, where d is the sum of the 

positional-change values, second-to-second (Table 3). Density 1/d is therefore lower in the stretched 

formations, and higher in compact formations. 

Different cluster combinations of group density, variations between cyclist position, PCR and speed, and 

different descriptive statistical parameters such as variance, mean, standard deviation for aggregate 

positional-change values for each race were evaluated. Comparison of Pearson correlation coefficients for

density-PCR versus those for density-speed indicate a higher correlation of density with PCR than with 



speed (points: 0.602; scratch: 0.412) than density -speed (points: 0.568; scratch: 0.307), providing 

evidence that the density-PCR is a dominant and appropriate correlate for cluster analysis.

Figures 3 and 5 show positional-change curves for all riders in the two races for entire race durations. 

Changes in peloton density 1/d are visually apparent, and single-file stretching is indicated in regions 

where curves run horizontally parallel. Visually there is correspondence between higher PCR and speed 

and peloton stretching. The data are isolated into statistical groupings according to the density, PCR, 

and/or speed variables, as shown in Figures 3 and 5. 

Phase distinctions are more readily apparent for the points race data. This may be due to the points race 

format in which points are awarded every six laps, and the consequent predictable speed increases 

preceding these points laps. The average speeds for both races were similar (points: 38.7km/h; scratch 

37.1km/h), but the points race contained 6 periods for which speeds equalled or exceeded 48km/h, 

corresponding to points laps (the scratch race contained two such periods). Thus for the scratch race, 

riders tended to maintain speeds closer to the average for longer periods with lower overall speed, leading

to extended mid-range phase activity. 

While the points race format allows predictable phase changes preceding points laps there are clearly 

periods of acceleration occurring on non-points laps, as shown in Figures 2 and 4.  This supports the 

hypothesized self-organized nature of these events, despite a rigid race format. Cyclists accelerate in this 

way as a tactic to divide the field before sprint points (or before the finish). The precise timings of such 

accelerations are not predictable. Indeed, the data indicates acceleration and deceleration periods of 

unpredictable duration and occurrence, for both the scratch race and the points race.



Figure 2.  Women’s 30-lap points race, competitors’ positional-change from start to finish. Heavy blue curve is 
speed; heavy black curve is Peloton Convergence Ratio (PCR). 

Figure 3. Points race data sorted using k-means clustering of PCR and density. Vertical lines indicate cluster 
boundaries 1-3. Clusters are also shown in the row at graph bottom.   



Figure 4. Women’s 20-lap scratch race: competitors’ positional-change from start to finish. Yellow arrow indicates 
period of lateral (side-by-side) synchronized riding, where each of three main horizontal lines represents 
approximately 4 riders proceeding laterally across the track, as shown approximately in Figure 1b.

Figure 5. Scratch race data sorted using k-means of density and PCR. Minimal distinction is observed in PCR and 
speed between clusters 2 and 3, although cluster 3 exhibits higher mean  density (Table 3), and contains a period in 
which riders exhibit low-output lateral (side-by-side) synchronized riding, indicated by the yellow arrow. Visually, a 
similar phase appears to the left of the first vertical bar at the boundary between cluster 1 and cluster 2, although 
given its higher PCR and speed, it is grouped in phase 1. Arguably these regions of lateral synchronization comprise 
a separate phase.



Scratch race Points race

cluster 1 2 3 1 2 3
fdensity

d
5.09 5.14 4.27 0.64 0.495 0.52

PCR 0.64 0.52 0.51 6.37 5.53 6.19

speed 42.15 32.44 32.42 45.68 33.77 37.11

count 305 186 154 307 316 326

Table 3. Means for k-means clusters sorted for scratch and points races.f These values are used to determine density 
1/d.

Thus the points race cluster results indicate a strong distinction between a compact, high density 1/d 

phase, and stretched phase. This phase distinction is somewhat less clear in the clusters shown for the 

scratch race, while the cluster means indicate some correspondences among low density 1/d (stretching), 

higher PCR and speeds. Since reasonable correlation between stretching and high PCR (and speed) occurs

in two types of racing conditions – one in the points race where high speeds are predicted to precede 

points laps, and the second in the scratch race, where periods of high speed occur unpredictably – there is 

sufficient evidence to conclude that the stretched phase is a separate phase from a higher density 1/d – 

compact - phase.

3.1.2 Dividing the compact phase into a synchronized phase and convective or disordered phase

The cluster analysis is less clear in distinguishing among the constituent sub-phases of the compact 

condition. However, lagged cross-correlation analysis of variance and density indicate correlations among

lagged versions of the variables that were not revealed previously by the k-means cluster analysis. Here 

variance is the variance in the usual statistical sense, of riders’ position values, with respect to their mean 

(on a second-to-second basis, as usual).  The lagged correlations are shown in Figure 6. A significant 

positive correlation lag appears for both races, indicating that density 1/d may remain stable for periods 

while cyclists’ rates of positional-change vary. This is evident in the periods of lateral synchrony indicated

by the yellow arrow in Figures 4 and 5; also in Figure 5, where the period following the yellow arrow 

region exhibits an obvious increase in frequency of positional-change but sustains approximately the 

same density 1/d, as indicated by the cluster mean density. The relatively low Pearson correlation between

variance-PCR (points: 0.153; scratch 0.104) and variance-speed (points: 0.134; scratch: 0.118) may also 

explain why no additional resolution is added to the cluster analysis by including variance and density 

together, while the comparatively high cross-correlation for density-PCR and density-speed indicates a 

distinction between a compact synchronized phase, and a compact high frequency positional-change 



phase. Compact, high frequency positional-change change phases may exhibit convective motion, or 

disordered, non-convective motion, although these distinctions have not been quantified here.

    



Figure 6. Lagged correlations between variance and density in the points and scratch races. Points race shown in left
column; scratch race in right column. Peak correlations: 0.409 for points race at lag point 14; 0.215  for scratch race 
at lag point 17. 

3.1.3 Basic mechanics of a peloton phase transition

It may assist understanding of peloton dynamics to illustrate the basic mechanics of peloton phase 

transitions. Figure 7a shows a compact disordered (or convective) phase. In this phase, riders pass on 

perimeters due to high internal density 1/d, while riders in the central region move effectively backward 

(shown by short straight arrow). The curved arrows show the directions of cyclists at the perimeters, and 

the long straight arrow shows the direction of the peloton.  

In Figure 7b, as speeds increase such that cyclists approach maximal sustainable output, the direction of 

collective motion shifts as cyclists seek optimal drafting positions.  At the transition between a compact 

and a stretched phase, speeds are sufficiently high such that cyclists can no longer pass around peloton 

perimeters or sustain a non-drafting position (or if they can, it is energetically very costly do to so) and a 

phase transition occurs. In Figure 7c, the phase transition is complete, resulting in a stretched formation. In

Figures 7b and 7c, the green arrows depict gap formation.

In Figure 7b cyclist B is at PCR > 1 relative to cyclist A. If riders behind B are at PCR < 1 relative to A, 

they may maintain contact with the peloton by laterally shifting towards drafting positions (or passing, if 

it is not too energetically costly). In Figure 7c, however, it will be more difficult for following riders to 

pass A since, even if they are at PCR < 1 while drafting, some must pass in a non-drafting position which 

may result in reaching PCR > 1 in doing so. Peloton divisions may occur in both Figures 7b and 7c, but 

are more likely to occur in Figure 7c. As a peloton slows its pace, a phase transition will occur in the 

opposite direction by general convective motion as riders pass others on peloton peripheries. 



Figure 7. Illustrating a peloton phase transition: a) curved arrows indicate direction of cyclists’ motion as riders pass
on peripheries; short straight arrow indicates effective direction of motion of cyclists moving backward relative to 
those passing on peripheries; long arrow indicates actual direction of peloton motion; b) curved arrows indicate 
effective direction of motion for riders at PCR > 1 relative others at the head of the group; green arrow indicates gap
formation between riders at PCR > 1 relative to each other; c) stretched formation in which it is too energetically 
costly for riders to pass on peripheries; green arrow indicates gap formation between rider A at PCR > 1 to the rider 
ahead. 

3.1.4  Phase symmetry 

The illustration in Figure 7 also indicates phase symmetry: the compact convective process occurs in both

directions: cyclists’ deliberate forward movement to achieve front positions during an acceleration period 

generates convection or a disordered state, but the convective motion may also occur during collective 

deceleration as fresher riders pass fatiguing ones. Similarly, a backward convection may occur during a 

transition to a stretched state during acceleration.

In certain conditions and in view of varying rates of fatigue and recovery, cyclists within a comparatively 

broad range of physiological capacities and maximal sustainable outputs and temporary PCR may be 

moving backward and forward simultaneously within a peloton. These reasons for constant motion within

the peloton are in addition to constant smaller adjustments at lower scales, including braking and 

accelerating to avoid collisions.  During periods of collective fatigue, cyclists decelerate and phases 

appear to be sustained at slower speeds, until cyclists recover and then resume phases through an 

acceleration period.  



The data indicates phase symmetry between acceleration and deceleration periods, in that phases retain 

PCR and density 1/d characteristics but during opposite directions in speed. Thus a compact phase, 

characterized by low positional-change and high density1/d, appears to have a counterpart refractory 

phase at higher speed but occurs after a short-term period of high power output when cyclists are resting 

and regenerating energetic resources. Further work is required to quantify this. Also, further analysis is 

required to clearly demonstrate empirically the presence of convective motion. More precise maximal 

sustainable outputs and timing data may reveal acceleration/deceleration phase symmetry more 

accurately.

          
3.1.5  Peloton divisions                     
                 
The mechanism for the division of a peloton into sub-pelotons provides insight into the genesis of group 

divisions within other biological systems, and how such groups may diverge and ultimately propagate 

independently. 

Peloton phases may be unstable at high aggregate power outputs, particularly in the stretched phase.  

Separation between riders occurs where PCR > 1, but the relative size of the peloton allows riders at PCR 

> 1 to stay within the group accordingly:

        )SS(
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=

pcrp

last
gap

(3)

Where Tgap is the time required for a given rider to reach the back of the pack, as shown in Figure 9; Dlast 

is the distance between that rider's current position and the last rider in the pack; Sp is the current average 

speed of the peloton as determined by the front rider; Spcr>1 is the speed of the given rider at PCR > 1 

(whose speed must be slower than the pack).  



Figure 8. Illustrating a peloton division: Rider A is PCR > 1 relative to the rider ahead, and decelerates relative to 
the group. The green arrow indicates increasing separation between rider A and the rider ahead.  Tgap is the distance 
between rider A and the rear-most drafting position in the peloton; Tgap increases as the peloton lengthens. Because a 
peloton consists of many riders (e.g. the Tour de France consists of ~ 200 riders), even when riders exceed their 
maximal sustainable outputs, all is not lost if the pace slows before they are separated from the group. 

If a rider is at Peloton Convergence Ratio > 1 for t > Tgap, he or she will separate from the group; more 

than one rider at t > Tgap, and the peloton divides in groups.  If a group elongates, as in Figures 2a and 8c, 

Tgap is increased. Hence, in addition to or complementary to other causes of swarming behavior [40] 

among collectives in which energy savings mechanisms exist, (3) models how group divisions occur and 

suggests why larger groups may confer an evolutionary advantage and a wider range of physiological 

heterogeneity than smaller groups.

This illustration models elements of cyclists’ continually changing positions within a peloton, and 

explains why it is advantageous to stay near the front of the peloton, why a larger pack is advantageous 

for all riders, and why weaker riders may maintain pace with a peloton for an entire race.



4.1 Summary and Outlook 

By deriving positional-changes (2) from video data from two mass-start track cycling races, important 

parameters were obtained that illuminate the dynamic interrelations among cyclists’ positions over time. 

Despite the coarse-grained timing available for the speed data and simplifying assumptions used in the 

evaluation of parameters maximal sustainable output (MSO) and drafting parameter D, analysis of the 

data allowed evidence to be obtained of two primary phases: a stretched, low density 1/d phase, and high 

density 1/d phase. The stretched phase occurs in the highest range of Peloton Convergence Ratio (PCR) 

and speed, and is indicated by low frequencies and magnitudes of positional-change. 

The high density1/d  phase may be divided into two further phases, one which exhibits lateral synchrony 

and occurs for intermediate PCR values, and another that is characterized by a similar density1/d  but 

occurs at higher frequencies and magnitudes of positional-change. The evidence for a convective phase 

(in the sense of cyclists passing on periphery) has not yet been demonstrated from the data. However, the 

frequent re-ordering of cyclists during this phase (as indicated by high frequency variations in the 

positional-change variable) may include convective motion. Refined methods to identify specific 

positional-change trajectories are required to empirically reveal convective motion. Further, given the 

relatively small peloton sizes observed here, it is not clear whether sufficiently many riders were present 

in order for clear convective motion to develop.  

In summary, the evidence supports the following phase descriptions:

I. Relaxed (“compact”): high density 1/d  low frequency-magnitude positional-change; 
intermediate values of PCR < 1. Cyclists proceed at comparatively low power outputs; 
lateral synchronization is present.

II. Disordered (“compact”): high density 1/d, high frequency-magnitude positional-change; 
low to mid range PCR < 1.

III. Stretched: low density 1/d, low frequency-magnitude positional-change; high PCR < 1; 
single-file synchronization is present.

Examples of high density 1/d  phases can be seen in the scratch race video youtube.com/watch?

v=citOvtaksVA at 1:45-2:10  (phase I) and 7:20-7:35 (phase II).  Examples of the low density 1/d (phase 

III) can be seen in the video youtube.com/watch?v=citOvtaksVA at 4:55 – 5:10 and 7:50 – 8:10.  

In addition to increasing our understanding of peloton dynamics specifically, the study of peloton phase 

dynamics provides understanding of general processes underlying separation of individuals or subgroups 

from larger collectives, in the presence of energy savings mechanisms. As such, an understanding of 



peloton dynamics may well shed light on the role of energy savings mechanisms within evolutionary 

processes. For example, further study of maximal aerobic capacity and range of heterogeneity and energy 

savings within different kinds of biological collectives, such as in [41] for fish schooling dynamics, may 

provide further insight into the evolutionary implications of the phase dynamics and collective behavior 

of pelotons. Similar studies may be undertaken for a variety of biological systems.
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