Principles and Practice of Data Analysis

for Reproducible Research in R

The DRY Principle

Heather Turner

Department of Statistics, University of Warwick

2016-09-28

The DRY Principle

Analysis/reporting often involves performing very similar tasks, e.g.
fitting different models to same data, fitting same model to different
variables, etc.

A simple solution is to copy-paste code chunks and modify as necessary,
however this has the following problems

» tedious to update, e.g. for new variable

> prone to error, e.g typos/not making all required modifications

» verbose code - harder to see what code is doing and what has

changed

Good coding practice follows the DRY principle: Don’t Repeat Yourself.

DRY Strategies

There are several techniques to avoid repeated code.

Some are methods are available for particular classes of objects, e.g.

» update to update the call in a model object, e.g. "1m", and re-fit

> %+% to create a "ggplot" based on different data
Then there are techniques that can be applied to R chunks in general

» chunk reuse in rmarkdown/knitr documents

» custom functions to parameterize a chunk of R code

» apply/mapping functions to apply a function to different subsets of
data

> iteration to repeat a chunk of code iterating over indices/elements
of an object

Updating Models

Using update we can re-fit a model, only specifying the parts that need
to change, e.g. to exclude an outlier, we could run

mod2 <- update(modl, subset = id != 36)

To modify the formula, we can use . to refer to everything that was
there before, e.g.

mod2 <- update(modl, . ~ . - education + income)
mod2 <- update(modl, scoreF ~ .)

Updating ggplots

library(rio)

library(ggplot2)

r_community <- import("Rcommunity.txt")

p <- ggplot(r_community, aes(x = Group, y = Percentage, fill = Gender)) +
geom_bar (stat = "identity", position = "stack") + coord_flip() +
scale_x_discrete(expand = c(0,0)) +
scale_y_continuous(expand = c(0,0)) +
scale_fill_manual (values = c("#FF8ASF", "#1768A8"),

na.value = "grey80") +
x1lab(NULL) +
theme (panel.background = element_blank(),
panel.grid.major = element_blank(),
axis.title.x = element_blank(),
legend.title = element_blank())

Updating ggplots

R Journal Editors

R Foundation
2016

GSoC Students
2015

GSoC Mentors
2015

Core contributors.

°

ISC proposers
2016

Updating ggplots

us_census <- import("us_census.txt")
p 4+% us_census

Software developers.
and programmers

Social scientists

Mathematical science.
occupations

Life and physical scientists

Financial specialists

Updating ggplots
For the data replacement to work, the new data must contain equivalent
columns with the same names: here we require Group, Gender,
Percentage

head(us_census, 4)

Group Gender Freq Margin of error Percentage
1 Financial specialists f 656609 11416 0.474
2 Financial specialists m 729150 11629 0.526
3 Social scientists f 185321 7025 0.627
4 Social scientists m 110445 4848 0.373

When running similar analyses on different data sets, it can make sense
to rename variables as necessary to have common names across the data
sets.

Changes to the theme, including titles for the legend, axis etc, can be
added, e.g.

p %*% us_census +
ylab("Percentage")

Chunk Reuse

Code chunks in rmarkdown and knitr documents can be referenced to
re-run the code at another point in the document, e.g.

**{r import}

library(dplyr)

car <- import("car_income.txt")
car <- as_data_frame(car)

*7 " {r model}
mod <- glm(purchase ~ income + age, family = "binomial", data = car)
round (coef (summary (mod)), 2)

{r age-factor}
car <- mutate(car, age = factor(age))

> {r model-factor, ref.label = "model"}

Chunk Reuse

##
##
##
##

##
##
##
##
##
##
##
##

Estimate Std. Error z
(Intercept) -4.74
income 0.07
age 0.60
Estimate
(Intercept) -5.65
income 0.09 0
age?2 0.99 1
age3d 1.80 1
age4 4.28 2
ageb 3.26 2
ageb -12.84 2399.

2
0.
0.

Std. Error z
2.

10
03
39

65

.04
.59
.83
.24
.06

55

value Pr(>|z|)

-2.25
2.41
1.53

value
-2.13
2.14
0.62
0.98
1.91
1.58
-0.01

0.
0.
0.

02
02
12

Pr(>|zl)

0.
.03
.53
.33
.06
.11
.00

= O O O O O

03

Custom Functions

The most general way to repeat a task is to write a function to perform
that task.

This has several advantages over the previous approaches

» can be used for any task you can write R code for
» can be used to run the task the first time
» can define arguments to change any aspect of the R code

» can externalize in script or package to use in different
analyses/reports

Function Structure

A function has two main components, the arguments (inputs to the
function) and the body (code implementing actions of function)

For example, the following takes the arguments x and col and plots a
boxplot

horizBoxplot <- function(x, col){
boxplot(x, col = col, horizontal = TRUE)

}

horizBoxplot (rnorm(100), col = "blue")

Specified Arguments

horizBoxplot <- function(x, col = "blue"){
boxplot(x, col = col, horizontal = TRUE)
}

x and col are specified arguments. The user can pass objects to these
arguments using their names or by supplying unnamed in the right order

horizBoxplot(col = "red", x = rnorm(100))
horizBoxplot (rnorm(100), "red")

col has the default value "blue" which will be used if the user does not
pass a value to this argument. x has no default value so the function
fails if this argument is not specified

horizBoxplot(col = "red")

Error in boxplot(x, col = col, horizontal = TRUE): argument "x" is
missing, with no default

Unspecified Arguments

horizBoxplot <- function(x, col = "blue", ...){
boxplot (x, col = col, horizontal = TRUE, ...)
}

. allows unspecified arguments to be passed to the function. This
device is used by functions that work with arbitrary numbers of objects,
e.g. sum. Here it is used to pass on further arguments to boxplot, e.g.

horizBoxplot (rnorm(100), notch = TRUE)

Return Values and Side-effects

The display of the boxplot is a side-effect: a change outside the function
that occurs when the function is run. Other examples include writing to
files or printing output.

Functions also return a value, by default, this is the object created by the
last line of code, e.g.

res <- horizBoxplot(rnorm(100), col = "blue")
str(res)

List of 6
¢ stats: num [1:5, 1] -2.035 -0.4 0.164 0.766 2.437

names: chr "1"

$n : num 100
¢ conf : num [1:2, 1] -0.0203 0.3481
¢ out : num [1:2] -2.6 -2.19
$ group: num [1:2] 1 1
$

Custom ggplot

Suppose we wish to convert the following code for a horizontal ggplot to
a function

ggplot(car, aes(x = factor(1), y = income)) +
geom_boxplot () + coord_flip() +
theme (axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank())

In interactive use, we can specify aesthetic mappings to aes using
expressions involving variable names.

To define the mappings using function arguments, we can pass strings to
aes_string

ggHorizBoxplot <- function(data, string){
data$x <- factor(l)
ggplot (data, aes_string(x = "x", y = string)) +
geom_boxplot () + coord_flip() +
theme (axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank())

Custom ggplot

ggHorizBoxplot(car, "income")

income

car <- mutate(car, logIncome = log(income))
ggHorizBoxplot (car, "logIncome")

3s
logincome

Custom Data Processing

The following code finds the frequencies for each level of the age factor
car W>h

group_by (age) %>%
summarize (Freq = n())

A tibble: 6 x 2

age Freq
<fctr> <int>
1 1 4
2 2 8
3 3 11
4 4 5
5 5 4
6 6 1

Custom Data Processing

Like ggplot2, dplyr functions use expressions of variables that are
evaluated in a data frame.
The demonstrates the "rename trick" to get around this

freqTable <- function(data, string){
data %>%
rename_(x = string) %4>
group_by (x) %>%
summarize (Freq = n())
}
freqTable(car, "age")

A tibble: 6 x 2

x Freq
<fctr> <int>
1 1 4
2 2 8
3 3 11
4 4 5
5 5 4
6 6 1

Converting Code to a Function

A good rule of thumb is if you find yourself copy-pasting a chunk of code
more than two/three times, convert it to a function.

In RStudio, select the code to convert, go to the Code menu and choose
Extract Function. The code will be wrapped in a function and objects
undefined by the code will be turned in arguments

extractedFunction <- function(car, income) {
ggplot(car, aes(x = factor(l), y = income)) +
geom_boxplot() + coord_flip() +
theme (axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank())

Both arguments and code may need editing to get a working function!

Externalizing Function Code

To declutter your script and enable the functions to be used in other
scripts, put functions in a separate .R file and source in, e.g.

source ("customFunctions.R")

Even for short functions it is worth adding some comments to your code
so that you remember what it does

groupFreq <- function(data, var){
data %>%
rename_(x = var) %>
group_by_(x) %W>%
summarize (Freq = n())

lteration

Wrapping up code in a function means that repeating a similar action
requires only a line or two of new code. However if we want to use the
function many times, we're back to the problems of copy-paste.

The purrr package (with three ‘r's!) provides functions to map objects
to function arguments, so the function can be run with different
arguments and the results returned in a convenient form.

lteration on One Argument for Side Effect

Suppose we want to produce a horizontal boxplot for multiple variables
in a data frame.
Since we are only interested in the side-effect (plot) we use the walk

function. This "walks" along the elements of a vector or list, using each
element in turn as the first argument to our function.

library(purrr)
car <- mutate(car, age = as.numeric(age))
walk(select(car, -purchase), horizBoxplot)

lteration on n'th Argument
To iterate over an argument other than the first, we can specify all
preceding arguments

walk(c("red", "green"),

horizBoxplot, x =

car$income)

Alternatively we can define an anonymous function on the fly

walk(c("red", "green"),

function(el) horizBoxplot(car$income, col = el))

Another alternative is to use pwalk as shown later.

lterating on One Argument for Return Value

A ggplot only displays when the object is printed. Therefore to display
the result of ggHorizPlot for multiple variables we must collect the
return value and then print.

map is equivalent to walk, but collects the return values in a list

res <- map(c(income = "income", age = "age"),
ggHorizBoxplot, data = car)

res$income

res$age

lterating on One Argument for Return Value

Often we will want to combine the results in a more convenient data
structure.

For example, we can read in multiple data files and combine in a single
data frame using map_df

football <- map_df (c(2008-9° = "2008-9.tsv", ~2009-10" = "2009-10.tsv"),
import, .id = "Season")
head(football, 2)

Season Home Away Home Score Away Score
1 2008-9 Sto Hul 1 1
2 2008-9 Wig Hul 1 0

The functions map_lgl, map_chr, map_int, map_dbl, work in a similar
way to combine results in a logical /character/integer/numeric vector.

lterating on One Argument for Return Value

The examples so far have iterated over the elements of a vector or the
vectors in a data frame (a special case of a list).

To iterate over other objects, rather than create a (large) list of the
objects it is better to iterate over their names, using get to get each
object as necessary

datasets <- c("r_community", "us_census")

nobs <- map_int(datasets, function(x) nrow(get(x)))
nobs

[1] 14 10

lterating on Multiple Arguments

The walk and map# functions all have p* equivalents to iterate on

multiple arguments in parallel, e.g. pwalk, pmap.

All the p* functions iterate over a list, where each element corresponds
to a function argument to iterate on. This gives another way to iterate

on the n’th argument: by name, e.g.

pwalk(list(border = c("red", "green")),
horizBoxplot, x = car$income)

- o

20 40 60 80 20 40 60

Only compulsory additional arguments need be specified.

lterating on Multiple Arguments

The extension to multiple arguments is straight-forward:

pwalk(list(col = c("blue", "orange"),
border = c("red", "green")),
horizBoxplot, x = car$income)

lterating on Multiple Arguments

The cross_d from purrr is useful when we want to iterate over all
combinations of variables

fac <- list(patient = c("A", "B", "C"),
sample = c("Blood", "Synovium"))

fac <- cross_d(fac)

fac

A tibble: 6 x 2
patient sample

#H# <chr> <chr>
1 A Blood
2 B Blood
3 C Blood
4 A Synovium
5 B Synovium
6 C Synovium

lterating on Multiple Parameters

The crossed variables can then be mapped to function arguments with
the same name

readData <- function(patient, sample){
nm <- pasteO("Patient_", patient, "_", sample, "_TCRB.tsv")
as_data_frame (import (nm))

}

TCRB <- pmap_df(fac, readData, .id = "Group")

id <- as.numeric(TCRB$Group)

TCRB <- bind_cols(slice(fac, id), TCRB)

head (TCRB, 2)

A tibble: 2 x 8
patient sample Group count frequencyCount cdr3Length

<chr> <chr> <chr> <int> <dbl> <int>
1 A Blood 1 320 0.0247 48
2 A Blood 1 319 0.0247 42

... with 2 more variables: nucleotide <chr>, aminoAcid <chr>

