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What does it mean to ‘learn’ about...

a) visualisation?
b) visualisation in R?



Lecture >
Design
Perceptual Biases
Software

Lab >

1. Base graphics
2. Ggplot2
3. Grid graphics
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Fig. 3. Changes in the usage of four leading
statistical programs from 1990 to 2013. Gray circles
indicate the program JMP, blue circles indicate the
program R, red circles indicated the program SAS, and
green circles indicate the program SPSS. Data are the
proportion of total papers in seven top ecology
journals utilizing each technique.



How we organise and
present information
matters a lot!



http://vrf.wpengine.netdna-cdn.com/wp-content/uploads/2014/08/organized-02.jpg
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http://www.bbc.co.uk/programmes/b016812j Lyne, AG & Smith, FG. (1990) Pulsar Astronomy. Cambridge University Press.
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preventable diseases like
typhus killed ten times
more troops than battle

wounds



For my wife Melinda and me, the problem of global health inequity became visible 15 years ago, when we saw a

simple pie chart in the newspaper breaking down the major causes of death among children.

One of the bigger slices of the
pie, representing 500,000 dead
children annually, was labelled:

rotavirus.

Our reaction was somewhere
between disbelief and disgust.
How could we not have seen even

the barest outlines of this tragedy?

That rotavirus slice in the pie chart set us on fire.

... all of a sudden it didn’t seem like there was any time to waste

We decided to do everything we could to get the vaccine out to every child who needed it.

http://www.gatesfoundation.org/media-center/speeches/2013/01/bill-gates-dimbleby-lecture






Design visualisation systems
that maximise

cognitive & scientific productivity
[after Ware 2013, G11.1]



The best example of
visualisation...



Anscombe’s Quartet

| 1l 1] v

X Y X Y X Y X Y
10.0 8.04 10.0 9.14 10.0 7.4¢6 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.9¢6 14.0 8.10 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 15.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

http://en.wikipedia.org/wiki/Anscombe's quartet#fcite note-Anscombe-1
Anscombe, F. J. (1973). American Statistician 27 (1): 17-21.




Anscombe’s Quartet

13.0 7.58
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mean (y) = 7.5
var (y) = 4.1
cor(x,y) = 0.816

Linear regression line
- Y = 0.5x+3

note-Anscombe-1

Anscombe, F. J.

(1973).

American Statistician 27 (1):

17-21.
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Anscombe’s Quartet
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http://en.wikipedia.org/wiki/Anscombe's quartet#fcite note-Anscombe-1
Anscombe, F. J. (1973). American Statistician 27 (1): 17-21.
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Anscombe, F. J. (1973). American Statistician 27 (1): 17-21.
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‘Small Multiples’...

Data are partitioned into a series of plots rather than a single plot.
Reduces ‘confusion’... Increases ‘salience’.

“visually enforcing comparisons...” .

Tufte, Edward (1990). Envisioning Information.

Graphics Press.



Lin

0

This design
doesn’t
necessarily work
for all data...



a) Same
design but the
data values
are increased
by 100

b) Scales
fitted to the
range of each
data set

c) Single plot
with symbols
in black and
white

d) Single plot
with symbols
designed
based on
pre-attentive
processing

e) Surface
plot using
Excel default
formatting
options
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1. Visualisations can reveal.
2. Design is data-dependent
3. There are >1 possibilities
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[1] https://fathom.info/traces/

[2] http://www.stefanieposavec.co.uk/-everything-in-between/#/entangled-word-bank/
[3-6] see Viegas & Wattenberg (2015)

[3] Tufte1990

[4] Tufte 1990

[5] http://www.informationisbeautifulawards.com/showcase/113-arab-spring

[6] http://www.thefunctionalart.com/2015/02/redesigning-circular-timeline.html

[7] http://www.scmp.com/infographics/article/1284683/irags-bloody-toll

[8] https://www.youtube.com/watch?v=Ybwh4lejYO4



An example of
NOwW science
leads design...



e Each of the steps make the purple square more difficult to find.

Smaller More
scale data

/7

Less

clustering
- 7

A
A_Iterna'Five °® °® ‘.'.
dimensions ° ee °
® e® 9%
LY 4 s.aa 8 ®
2 <
©oanee” t 22 P
Fre i o GM " gl &
o e o b 39%% o S§eo%
; P oF o8 o 5‘
=II EEEEEEE B .‘ . . .. ' . .

Random data to grouped data set = 1.2 to 2 time quicker

Random ‘large’ data set to ‘smaller’ grouped data set = 8 times quicker

Gramazio C, Schloss, K, Laidlaw D. The relation between visualization size, grouping, and user performance.

IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis). 2014; 20(12): 1953-1962.
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Figure 3 | Best substitute crops at mean time of crossing for maize for
RCP8.5. A substitute is defined in a given pixel as a crop that by 2100 does
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All visualisations
are inevitably
blased...



I War and disaster
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] Unintentional injuries
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[ Other non-communicable
diseases

I Musculoskeletal disorders
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I Chronic respiratory
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I Maternal disorders
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Nick Golding @ NickGolding_ - Dec 2
This figure in a recent paper made my eyes hurt - any suggestions
to better visualise these proportions? pic.twitter.com/uMix0Sv9E1
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A host of effects can reduce a user’s ability to
e compare values in bar charts.

Distractors &
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A host of effects can reduce a user’s ability to
e compare values in bar charts. Q e Unstacking and aligning the bar graphs
When combined produces ‘Small multiples’, which simplifies
difficult comparisons.
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Disability-adjusted life years (DALYs) for 291 diseases and i

injuries in 21 regions, 1990-2010: a systematic analysis for
the Global Burden of Disease Study 2010
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Summary

Background Measuring disease and injury burden in populations requires a composite metric that captures both  Lonceraoaz: 380: 2197223
mortality and the prevalence and severity of il health. The 1990 Global Burden of Disease study proposed  Tris eniine pebiication has been

disability-adjusted life years (DALYs) to measure disease burden. No comprehensive update of disease burden  comerted. The comecbedwersion

worldwide incorporating a systematic reassessment of disease and injury-specific epideminlogy has been done ~ riapPTtatielnctcm

. : r . N Febnuary 22, 2013
since the 1990 study. We aimed to calculate disease burden worldwide and for 21 regions for 1990, 2005, and :;cummpmxsnm
2010 with methods to enable meaningful comparisons over time. 055, 2058, 2060, 2063,

and 753

Methods We calculated DALYs as the sum of years of life lost (YLLs) and years lived with disability [YLDs). DALYs  see speciat Report page 2067
were calculated for 291 causes, 20 age groups, both sexes, and for 187 countries, and aggregated to regional and e ticles pages T, 2095,
global estimates of disease burden for three points in time with strictly comparable definitions and methods. YILs 719 2184 2163 and 3724
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Grammar makes language expressive. A language consisting of words

and no grammar (statement = word) expresses only as many ideas as there are
words. By specifying how words are combined in statements, a grammar
expands a language’s scope...



Grammar makes language expressive. A language consisting of words

and no grammar (statement = word) expresses only as many ideas as there are

words. By specifying how words are combined in statements, a grammar

expands a language’s scope...
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http://docs.ggplot2.org/current/

ggplot

A

theme

coord

stat

facet

geom_

aes

data_

Design, looks, formatting

The shape of the plot, flat,
round, map..

Data transformations and
processing

Multiple plots and subsetting
of data

Shapes, symbols, geometric
objects

‘aesthetics’.. how the data 1is
mapped to the visuals

.. data ..



ggplot2 Base Graphics

Average bill for 2 people Average Bill for Two-Person Meal

15 = 15 =
10~ 10 -
z
3
b
s -
.
D -
ol Lunch Dinner
Lul'l:h Dmlnrr
Time of day
geplot(data=dat, aes(x=time, y=total bill, fill=time)) + par(las=1)
gzom_bar(colour="black"”, fill="#DD8888", width=.8, barplot(dat$total_bill,
stat="identity") + names.arg=dat$time,
guides(fill=FALSE) + col="#AFCaCB",
x1lab("Time of day"™) + ylab({"Total bill™) + border=FALSE,
gegtitle("Average bill for 2 people”) main="Average Bill for Two-Person Meal")

http://flowingdata.com/2016/03/22/comparing-ggplot2-and-r-base-graphics/



cgplot(data=dat, aes(x=time, y=total bill, fill=time)) +
geom_bar(colour="black™, fill="#DD8888", width=.8,
stat="identity") +
guides(fill1=FALSE) +
xlab("Time of day™) + vlab("Total bill"™) +
gotitle("Average bill for 2 people™)



dat <- data.frame(
time = factor(c("Lunch","Dinner"), levels=c("Lunch","Dinner")),
total_bill = ¢(14.89, 17.23)

)

ggplot(data=dat, aes(x=time, y=total_bill, fill=time)) +
geom_bar(colour="black", fill="#DD8888", width=.8, stat="identity") +
guides(fill=FALSE) +
xlab("Time of day") + ylab("Total bill") +
ggtitle("Average bill for 2 people") +
facet_wrap(~time, ncol=2)



cgplot(data=dat, aes(x=time, y=total bill, fill=time)) +
geom_bar(colour="black™, fill="#DD8888", width=.8,
stat="identity") +
guides(fill1=FALSE) +
xlab("Time of day™) + vlab("Total bill"™) +
gotitle("Average bill for 2 people™)

par{las=1)

barplot({dat$total bill,
names.arg=dat%time,
col="#AFCBCE",

border=FALSE,
main="Average Bill for Two-Person Meal™)



1.5.4 Not a Book of Virtues

This system is capable of producing some hideous graphics. There is nothing
in its design to prevent its misuse. We will occasionally point out some of
these instances (e.g., Figure 9.235). That the system can produce such graphics
1s simply a consequence of its basis on the mathematical rules that determine
the meaning of graphs, rather than on the ad hoc rules we sometimes use to
produce graphics. These rules are not based on personal preferences but rather
on the mathematics and perceptual dimensions underlying the graphics we
draw in practice. These rules are just as capable of producing graphics for ['5A
Today as for Scientific American.



Today’s Lab

In this lab you will be introduced to the three main ways of creating graphic in R — using ‘base’
graphics, the ‘ggplot’ package and ‘grid’ graphics. There are six scripts which have the instructions,
directions and questions as comments. You will not complete them alll The goals are:

to orientate you with the structure of the different methods (a broad, but shallow overview),
encourage you to defy the defaults and show you how to make visuals your own,

introduce some design and computational thinking,

and give you a spring board to become an independent learner.

Remember (as | should have said in the lecture) not all the visuals we will produce make sensel Some
examples are just show you alternatives, or signposts things you may consider later on. Except for the
jpeg, all the data is contained in the scripts. Do not linger too long on looking at the data. That is what
the visualisations are for. Please use the scripts in this order...

1.

oW

6.

anscombe.R

anscombelayouts.R

truncated.R

piecharts.R

anscombeGGplot.R

ukkD.R| (also using ukko5.jpg, download this and save it)

Don’t feel like you have to learn every command, every argument and every method. We all look
everything up all the time. The key is to know enough that you can articulate your question. Most
questions are already answered on the internet.



QUESTIONS?






This book does not contain discussions about
which sort of plot is most appropriate for a
particular sort of data, nor does it contain
guidelines for correct graphical presentation.
In fact, instructions are provided for

producing types of plots that are generally
disapproved of...



correlation



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.20, NO.12, DECEMBER 2014 1943

Ranking Visualizations of Correlation Using Weber’s Law

Lane Harrison, Fumeng Yang, Steven Franconeri, Remco Chang

Abstract— Despite years of research yielding systems and guidelines to aid visualization design, practitioners still face the challenge
of identifying the best visualization for a given dataset and task. One promising approach to circumvent this problem is to leverage
perceptual laws to quantitatively evaluate the effectiveness of a visualization design. Following previously established methodologies,
we conduct a large scale (n=1687) crowdsourced experiment to investigate whether the perception of correlation in nine commonly
used visualizations can be modeled using Weber's law. The resulis of this experiment contribute to our understanding of information
visualization by establishing that: 1) for all tested visualizations, the precision of correlation judgment could be modeled by Weber's
law, 2) correlation judgment precision showed striking variation between negatively and positively correlated data, and 3) Weber
models provide a concise means to quantify, compare, and rank the perceptual precision afforded by a visualization.

Index Terms—Perception, Visualization, Evaluation

+



Which of these graphs is best for noticing correlations between variables?
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Which of these graphs is best for noticing correlations between variables?

e O b=kl

Which has the higher level of correlation?
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correlations correlations
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were no better than
assessing correlation

than random guesses.
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ubiquitous but are poor
for displaying
correlations, especially
negative correlations
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Below this line, the graphs
were no better than Donut
assessing correlation
than random guesses.
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e “Stacked” graphs all performed
poorly despite being frequently
found in software and reports.
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Which graph is best for noticing differences in correlation?
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Whatis an orderedline graph?

e

In line graphs both data
categories are ordered by

time, chronology or an other

sorting variable.

\m.// Orderediine graphs differ as
/ one ofthe data categories is

ordered by size.
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Only three graphs allowed
usersto judge any type of
correlation better than
random guesses.

Whilst line Graphs are
ubiquitous they are poor for
displaying correlations,
especially negative
correlations

“Stacked” graphs all
performed poorly despite
being frequently found in
software and reports.

Stacked line graphs show
/’\/\_ each data category with its
A value added to all the previous

categories across the x-axis.



Which graph is best for noticing differences in correlation?
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Whatis an orderedline graph?

Stacked line graphs show
/’\/\\_ each data category with its
aTou value added to all the previous

categories across the x-axis.

In line graphs both data
avd categories are ordered by

/Jva time, chronology or an other

sorting variable.

\m.// Orderediine graphs differ as
/ one ofthe data categories is

ordered by size.
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* Line graphs are surprisingly ineffective!
e Scatter plots are simple but precise.

e Design for the task(s) and the data
(small multiples?)
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