

ME

Ecology	Ecology \&	Postdoc	Res.Fellow	\geq
B S c	Evolution	Microsoft Research	Oxford	0
U EA	PhD, Leeds	Cambridge	2020 science	

SCIENCE

SOFTWARE

VISUALISATION

ALBUM COVER

STATISTICAL GRAPHICS

What does it mean to 'learn' about...

a) visualisation?
b) visualisation in R?

Lecture >

Design
Perceptual Biases
Software

1. Base graphics
2. Ggplot2
3. Grid graphics

Fig. 3. Changes in the usage of four leading statistical programs from 1990 to 2013. Gray circles indicate the program JMP, blue circles indicate the program R, red circles indicated the program SAS, and green circles indicate the program SPSS. Data are the proportion of total papers in seven top ecology journals utilizing each technique.

How we organise and present information matters a lot!

Jocelyn Bell Burnell

Discovery of pulsars

http://www.bbc.co.uk/programmes/b016812j

Lyne, AG \& Smith, FG. (1990) Pulsar Astronomy. Cambridge University Press.

APRIL 1855 тo MARCH 1856

DLAERAM er xhb CAUSES or MORTAJITY

in the ARMY in the EAST.
APRIL 1854 20MARCH 1855.
 badelines andarng than.

preventable diseases like
typhus killed ten times more troops than battle wounds

For my wife Melinda and me, the problem of global health inequity became visible 15 years ago, when we saw a simple pie chart in the newspaper breaking down the major causes of death among children.

One of the bigger slices of the pie, representing 500,000 dead children annually, was labelled: rotavirus.

Our reaction was somewhere between disbelief and disgust. How could we not have seen even the barest outlines of this tragedy?

That rotavirus slice in the pie chart set us on fire.

all of a sudden it didn't seem like there was any time to waste

We decided to do everything we could to get the vaccine out to every child who needed it.

Pretty

Design visualisation systems

that maximise
cognitive \& scientific productivity
[after Ware 2013, G11.1]

The best example of visualisation...

Anscombe's Quartet

I		II		III		IV	
x	y	x	y	x	y	x	y
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Anscombe's Quartet

1		11		III		IV	
x	y	x	y	x	y	x	y
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

$$
\begin{aligned}
& \operatorname{mean}(x)=9 \\
& \operatorname{var}(x)=11 \\
& \operatorname{mean}(y)=7.5 \\
& \operatorname{var}(y)=4.1 \\
& \operatorname{cor}(x, y)=0.816 \\
& \operatorname{Linear} \text { regression line } \\
& \rightarrow Y=0.5 x+3
\end{aligned}
$$

Anscombe's Quartet

I		II		III		IV	
x	y	x	y	x	y	x	y
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Anscombe's Quartet

I		II		III		IV	
x	y	x	y	x	y	x	y
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Anscombe's Quartet

I		II		III		IV	
x	y	x	y	x	y	x	y
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Anscombe's Quartet

I		II		III		IV	
x	y	x	y	x	y	x	y
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Anscombe's Quartet

I		II		III		IV	
x	y	x	y	x	y	x	y
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

'Small Multiples'...

Data are partitioned into a series of plots rather than a single plot. Reduces 'confusion'... Increases 'salience'. "visually enforcing comparisons..."

Tufte, Edward (1990). Envisioning lnformation
Graphics Press

This design doesn't necessarily work for all data...

a) Same design but the data values range of each are increased by 100

c) Single plot with symbols in black and white

d) Single plot with symbols designed based on pre-attentive processing

e) Surface plot using Excel default formatting options
a

b

c

1. Visualisations can reveal. 2. Design is data-dependent 3. There are >1 possibilities
a.i a.ii
b.i
b.ii

c. i
c.ii

d. i

d.ii

[1] https://fathom.info/traces/
[2] http://www.stefanieposavec.co.uk/-everything-in-between/\#/entangled-word-bank/
[3-6] see Viegas \& Wattenberg (2015)
[3] Tufte1990
[4] Tufte 1990
[5] http://www.informationisbeautifulawards.com/showcase/113-arab-spring
[6] http://www.thefunctionalart.com/2015/02/redesigning-circular-timeline.html
[7] http://www.scmp.com/infographics/article/1284683/iraqs-bloody-toll
[8] https://www.youtube.com/watch? $\mathrm{v}=\mathrm{Ybwh4lejYO4}$

An example of how science leads design...
a Each of the steps make the purple square more difficult to find.

Random data to grouped data set $=1.2$ to 2 time quicker
Random 'large' data set to 'smaller' grouped data set $=8$ times quicker
a Each of the steps make the purple square more difficult to find.
Smaller
scale

b 'Small multiples' negates the need for complicated colour and symbol schemes, allowing the patterns to be set in context.

Gramazio C, Schloss, K, Laidlaw D. The relation between visualization size, grouping, and user performance.
IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis). 2014; 20(12): 1953-1962.
a Each of the steps make the purple square more difficult to find.
Smaller
scale

b 'Small multiples' negates the need for complicated colour and symbol schemes, allowing the patterns to be set in context.

Gramazio C, Schloss, K, Laidlaw D. The relation between visualization size, grouping, and user performance.
IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis). 2014; 20(12): 1953-1962.
b 'Small multiples' negates the need for complicated colour and symbol schemes, allowing the patterns to be set in context.

Important patterns are still observable in small graphics.

Figure 3 | Best substitute crops at mean time of crossing for maize for RCP8.5. A substitute is defined in a given pixel as a crop that by 2100 does not require transformation. a, Map of best substitutes. Green areas indicate that two crops or more can be potential substitutes on a continuous scale. Dark grey areas indicate that no substitution is possible, whereas light grey areas indicate no substitution is needed. b, Percentage area (from total area

Figure 3 | Best substitute crops at mean time of crossing for maize for RCP8.5. A substitute is defined in a given pixel as a crop that by 2100 does not require transformation. a, Map of best substitutes. Green areas indicate that two crops or more can be potential substitutes on a continuous scale. Dark grey areas indicate that no substitution is possible, whereas light grey areas indicate no substitution is needed. b, Percentage area (from total area

Figure 3 | Best substitute crops at mean time of crossing for maize for RCP8.5. A substitute is defined in a given pixel as a crop that by 2100 does not require transformation. a, Map of best substitutes. Green areas indicate that two crops or more can be potential substitutes on a continuous scale. Dark grey areas indicate that no substitution is possible, whereas light grey areas indicate no substitution is needed. \mathbf{b}, Percentage area (from total area

Figure 3 | Best substitute crops at mean time of crossing for maize for RCP8.5. A substitute is defined in a given pixel as a crop that by 2100 does not require transformation. a, Map of best substitutes. Green areas indicate that two crops or more can be potential substitutes on a continuous scale. Dark grey areas indicate that no substitution is possible, whereas light grey areas indicate no substitution is needed. \mathbf{b}, Percentage area (from total area

All visualisations are inevitably biased...

Nick Golding @_NickGolding_ Dec 2
This figure in a recent paper made my eyes hurt - any suggestions
to better visualise these proportions? pic.twitter.com/uMixOSv9E1

Nick Golding @_NickGolding_ Dec 2
This figure in a recent paper made my eyes hurt - any suggestions to better visualise these proportions? pic.twitter.com/uMix0Sv9E1
> "It looks like a
> fruit salad
> with lots of
> watermelon..."

Esther, aged 10.

A host of effects can reduce a user's ability to compare values in bar charts.

Distractors \&
Tall Distractors

Talbot J, Setlur V, Anand A._Four Experiments on the Perception of Bar Charts. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis). 2014; 20(12): 2152 - 2160.

A host of effects can reduce a user's ability to compare values in bar charts.

Distractors \&
Tall Distractors

b

When combined in stacked graphs different comparisons will have different biases.

Talbot J, Setlur V, Anand A._Four Experiments on the Perception of Bar Charts. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis). 2014; 20(12): 2152 - 2160.

A host of effects can reduce a user's ability to compare values in bar charts.

Distractors \&
Tall Distractors

Reduced Size

Distractors

When combined in stacked graphs different comparisons will have different biases.

C Unstacking and aligning the bar graphs produces 'Small multiples', which simplifies difficult comparisons.

Talbot J, Setlur V, Anand A._Four Experiments on the Perception of Bar Charts. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis). 2014; 20(12): 2152 - 2160.

A host of effects can reduce a user's ability to compare values in bar charts.

Distractors \&
Tall Distractors

Reduced Size

Distractors

When combined in stacked graphs different comparisons will have different biases.

C Unstacking and aligning the bar graphs produces 'Small multiples', which simplifies difficult comparisons.

If specific comparisons are important then they should
d be shown using the data order or separate graphics.

Talbot J, Setlur V, Anand A._Four Experiments on the Perception of Bar Charts. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis). 2014; 20(12): 2152 - 2160.

http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(12)61689-4/fulltext

Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010

ChristopherJL Murraył末, Theo Vos, Rafoed Lozana, Mohsen Naghavi Abraham DFlaxman CatherineMichaud Majid Ezzati Kenji Shibuya, JoshuaA Salomon SafaA bddla*,
 LaunieM Anderson*, Kathyn GAndrews", Chaless Atkinson*, Larry M Baddaur', Adil N Bahalim*, Suzanne Baker-Callot, LopeH Barero", DavidH Batels*, Maria-Glaria Basínez*,
 JamesA Block*, Hannah Blencowet, Jed D Blore*, Fiona Blytht, lan Bollige", A udrey Bonaventuret, Soufiene Boufoust, Pupert Bourne*, Michel Boussinesq", Tascnee Praithwaite*, Carol Brayne ${ }^{*}$, Lisa Aridgett", Simon Arookert, Peter Brookst, Traolach SBrugha*, Oaire Bryan-Hancock*, Chiara Bucelo', Rochelle Buchbindert, Geoffrey Budklet, ChristineM Budke*, Michoel Burch', Pete Burney', Roy Burstein', Bianca Calatria*, Benjamin Campbell', ChaviesE Canter*, Helene Carabin', Jonathan Carapetis*, LaretoCarmona*, ClaudiaCella*, Fiona Chatson*, HongleiChen*, AndewTai-Ann Cheng', David Chou*, Sumeet S Chugh*, lucECoffeng', Steven D Cdan*, Samantha Calquhoun", K Ellicott Cdson*, Jahn Condon*, Myle D Connar*, LeslieT Cooper*, Matthew Carrieret, MonicaCortinowis*, Karen Courvile deVaccarot, Wiliam Cousert, Benjamin CCowiet, Michael H Criquit, MaritaCrosst, Kaustubh CDabhadkar*, Manu Dahiya*, Nabila Dahodwala*, James Damsere Derry', Goodara Danoe", Adrian Davis*, Diego DeLeo", Lavisa Degenhardt', Rabert Delavalle* Allyne Delossantos", Julie Denenberg*', Sarah Derrett', Don C Des Jarlais", Samath D Dharmanatne ${ }^{*}$,Mukesh Dherani', Cesar Diaz-Torne*, Helen Ddk', ERay Darsey', Tim Driscallt', Herbert Dubert, BethEbel*, KarenEdmond", AlexisElbar*, SuadEltahir Ali*, Hally Erskine*, Patriciaj Erwin", PatriciaEspindala*, Stalin EEwaigbokhant, FarshadFarzodfart,

 RichardF Gillum", Gerhard Gmelt, Diego Gonzalez-Medina*, Richard Gosselin', Rebecca Grainger*, Bridget Grant", Justina Groeger* Francis Guillemin', David Gunnel**,
 Hideki Higashi', CatherineHilv*', BunoHoen*, Howard Hoff man', PeteJ Hoter*, Damian Hoy", JohnJ Huang*, Sydney Elbewnusi*, KathrynH Jacabsent, Spencer L James*, DeborahJarvist, Rashmi Jasasariat, Sudhajayaaman", Nicolejohns", Jost BJonas", Ganesan Karthikeyan", Nichalas Kassebaum", NontoKawakami", AndeKeren*, Jon-Poul Khoo", ChalesH King*, LisaMarieKnowt on", Olive Kobusingye", Addqo Karanteng", RitaKnishnamuithi", Francine Laden", Ratilal Lalloo*, LouraL Laslett", Tim Lathlean*,
 Summer Lockett Ohno ${ }^{*}$, RonanLyons*, JacquelineMabwejano*, Michael FMadntyre*, Reza Malekzadeh*, Leslie Mallinger*, SivabdanManivannant, Wagne Marcenes*,
 JohnMoGrath", MariaElenaMedina-Mara*, MicheleMeltzer*,ZiodA Memish*, GeargeA Mensah*, Tony RMerniman*, Ana-OaireMeyer*, VderiaMigidi*, Matthew Miller*,

 Michoel CNevitt ${ }^{*}$, Charles RNewton', SandraNaltet , Paul Norman', RosanaNorman', Martin O'Dornell', Simon O'Hanlon', Casey Olves', Soad B Omer ${ }^{*}$, Katrina Orthlad",

 Mathilda Regan*, JorgenT Rehm*, David BRein", Guiseppe Remuzzi', Kathynn Richardson", FrederickP Rivarat', Thamas Raberts", Cardyn Rabinsont, Felipe Rodriguez De Leòn", Luca Ronfanit, Robin Roomt, Lisa CRosenfeld*, LesleyRMushton*, RalphLSacco*, Sukenta Saha*, Uchechukwu Sampsan*, Lidia Sanchez-Riera*, EllaSanman*, DavidC Schwebed*, James Graham Scott", Maria Segui-Gomer', Saeid Shalraz*, Dandd S Shepadt, Hwashin Shint, Rupak Shivakoti", David Singht, GitanjaliM Singht, Jasvinder A Singh*,

 Jimwan Os', MonicaSVavilala*, NVenketasubramanian*, Mengru Wang*, WerzhiWang*, Kerianne Watt", David JWeatherall", MatinA Weinstock*, Robert Weintraub*,
 EmmaWitt", Frederid Walfe", Anthony DWoolf", Sarah Wulf", Pon-Hsiu Yeh", AnitaK M Zaidj", Zhijie Zheng", DavidZanies", Alan D Lopezt

Summary

Background Measuring disease and injury burden in populations requires a composite metric that captures both premature mortality and the prevalence and severity of ill-health. The 1990 Global Burden of Disease study proposed disability-adjusted life years (DALYs) to measure disease burden. No comprehensive update of disease burden worldwide incorporating a systematic reassessment of disease and injury-specific epidemiology has been done since the 1990 study. We aimed to calculate disease burden worldwide and for 21 regions for 1990, 2005, and 2010 with methods to enable meaningful comparisons over time.

Methods We calculated DALYs as the sum of years of life lost (YLLs) and years lived with disability (YLDs). DALYs were calculated for 291 causes, 20 age groups, both sexes, and for 187 countries, and aggregated to regional and global estimates of disease burden for three points in time with strictly comparable definitions and methods. YLLs were calculated from age-sex-country-time-specific estimates of mortality by cause, with death by standardised lost

Lancer 2012; 300: 2197-223 Thes online putilkation tas been corrected. The correctedversion first appeaned at thelancetcom on February 22,2013
See Comment pages 2053.2054. 2055, 2058, 2060, 2062, and 2063 See Spectal heport page 2067 See Articles page 2011, 2095. $21292144216\}$ and 2224

ANATOMY OF A

VISUALISATION

http://openbracketdesign.co.uk/wp-content/uploads/2013/03/Jurassic-5-Data-Vis-600.jpg

SCREEN

Grammar makes language expressive. A language consisting of words and no grammar (statement = word) expresses only as many ideas as there are words. By specifying how words are combined in statements, a grammar expands a language's scope...

Grammar makes language expressive. A language consisting of words and no grammar (statement = word) expresses only as many ideas as there are words. By specifying how words are combined in statements, a grammar expands a language's scope...

Figure 1.1 Plot of death rates against birth rates for selected countries

Figure 1.2 Design tree for chart in Figure 1.1

ggplot2

Average bill for 2 people


```
ggplot(data=dat, aes(x=time, y=total_bill, fill=time)) +
    geom_bar(colour="black", fill="#DD\overline{8888", width=.8,}
stat="identity") +
    guides(fill=FALSE) +
    xlab("Time of day") + ylab("Total bill") +
    ggtitle("Average bill for 2 people")
```

Base Graphics

Average Bill for Two-Person Meal

Dinner

```
par(las=1)
barplot(dat$total_bill,
    names.arg=dat$time,
    col="#AFCOCB",
    border=FALSE,
    main="Average Bill for Two-Person Meal")
```

ggplot(data=dat, aes(x=time, y=total_bill, fill=time)) + geom_bar(colour="black", fill="\#DD8888", width=.8, stat="identity") +
guides(fill=FALSE) +
xlab("Time of day") + ylab("Total bill") + ggtitle("Average bill for 2 people")

```
dat <- data.frame(
    time = factor(c("Lunch","Dinner"), levels=c("Lunch","Dinner")),
    total_bill = c(14.89, 17.23)
)
```

ggplot(data=dat, aes(x=time, y=total_bill, fill=time)) +
geom_bar(colour="black", fill="\#DD8888", width=.8, stat="identity") +
guides(fill=FALSE) +
xlab("Time of day") + ylab("Total bill") +
ggtitle("Average bill for 2 people") +
facet_wrap(~time, ncol=2)
ggplot(data=dat, aes(x=time, y=total_bill, fill=time)) + geom_bar(colour="black", fill="\#DD8888", width=.8, stat="identity") +
guides(fill=FALSE) +
xlab("Time of day") + ylab("Total bill") +
ggtitle("Average bill for 2 people")
par(las=1)
barplot(dat\$total_bill,
names.arg=dat\$time, col="\#AFC0CB", border=FALSE,
main="Average Bill for Two-Person Meal")

1.5.4 Not a Book of Virtues

This system is capable of producing some hideous graphics. There is nothing in its design to prevent its misuse. We will occasionally point out some of these instances (e.g., Figure 9.25). That the system can produce such graphics is simply a consequence of its basis on the mathematical rules that determine the meaning of graphs, rather than on the ad hoc rules we sometimes use to produce graphics. These rules are not based on personal preferences but rather on the mathematics and perceptual dimensions underlying the graphics we draw in practice. These rules are just as capable of producing graphics for USA Today as for Scientific American.

Today's Lab

In this lab you will be introduced to the three main ways of creating graphic in R-using 'base' graphics, the 'ggplot' package and 'grid' graphics. There are six scripts which have the instructions, directions and questions as comments. You will not complete them all! The goals are:

- to orientate you with the structure of the different methods (a broad, but shallow overview),
- encourage you to defy the defaults and show you how to make visuals your own,
- introduce some design and computational thinking,
- and give you a spring board to become an independent learner.

Remember (as I should have said in the lecture) not all the visuals we will produce make sense! Some examples are just show you alternatives, or signposts things you may consider later on. Except for the jpeg, all the data is contained in the scripts. Do not linger too long on looking at the data. That is what the visualisations are for. Please use the scripts in this order...

1. anscombe.R
2. anscombelayouts.R
3. truncated.R
4. piecharts.R
5. anscombeGGplot.R
6. ukko.R (also using ukko5.jpg, download this and save it)

Don't feel like you have to learn every command, every argument and every method. We all look everything up all the time. The key is to know enough that you can articulate your question. Most questions are already answered on the internet.

QUESTIONS?

CENTRE FOR
INTERDISCIPLINARY
METHODOLOGIES

@gregmci Greg McInerny

This book does not contain discussions about which sort of plot is most appropriate for a particular sort of data, nor does it contain guidelines for correct graphical presentation. In fact, instructions are provided for producing types of plots that are generally disapproved of...

correlation

Ranking Visualizations of Correlation Using Weber's Law

Lane Harrison, Fumeng Yang, Steven Franconeri, Remco Chang

Abstract- Despite years of research yielding systems and guidelines to aid visualization design, practitioners still face the challenge of identifying the best visualization for a given dataset and task. One promising approach to circumvent this problem is to leverage perceptual laws to quantitatively evaluate the effectiveness of a visualization design. Following previously established methodologies, we conduct a large scale ($\mathrm{n}=1687$) crowdsourced experiment to investigate whether the perception of correlation in nine commonly used visualizations can be modeled using Weber's law. The results of this experiment contribute to our understanding of information visualization by establishing that: 1) for all tested visualizations, the precision of correlation judgment could be modeled by Weber's law, 2) correlation judgment precision showed striking variation between negatively and positively correlated data, and 3) Weber models provide a concise means to quantify, compare, and rank the perceptual precision afforded by a visualization.
Index Terms-Perception, Visualization, Evaluation

Which of these graphs is best for noticing correlations between variables?

Which has the higher level of correlation?

Which of these graphs is best for noticing correlations between variables?

Which has the higher level of correlation?

B

a Only three graphs allowed users to judge any type of correlation better

Worse than the Worst
Below this line, the graphs
were no better than
assessing correlation
than random guesses.

Which graph is best for noticing differences in correlation?

Negative	Positive
correlations	correlations
$\mathrm{R}=-0.9$	$\mathrm{R}=0.9$

Only three graphs allowed
users to judge any type of
correlation better than
random guesses.

What is an orderedline graph?

Which graph is best for noticing differences in correlation?

Negative	Positive
correlations	correlations
$\mathrm{R}=-0.9$	$\mathrm{R}=0.9$

Only three graphs allowed users to judge any type of correlation better than
random guesses.

$r=0.1$ *	$r=0.3$	$r=0.5$	$r=0.7$	$r=0.9$ *	overall
pcp-negative	pcp-negative	scatterplot-positive	scatterplot-negative	scatterplot-negative	scatterplot-positive
scatterplot-positive	scatterplot-positive	pcp-negative	scatterplot-positive	scatterplot-positive	pcp-negative
scatterplot-negative	scatterplot-negative	scatterplot-negative	pcp-negative	pcp-negative	scatterplot-negative
stackedbar-negative	stackedbar-negative	stackedbar-negative	stackedbar-negative	ordered line-positive	stackedbar-negative
ordered line-positive	ordered line-positive	ordered line-positive	ordered line-positive	donut-negative	ordered line-positive
donut-negative	donut-negative	donut-negative	donut-negative	ordered line-negative	donut-negative
stackarea-negative	stackarea-negative	stackarea-negative	ordered line-negative	stackedbar-negative	stackarea-negative
ordered line-negative	ordered line-negative	ordered line-negative	stackarea-negative	stackedline-negative	ordered line-negative
stackedline-negative	stackedline-negative	stackedline-negative	stackedline-negative	stackarea-negative	stackedline-negative
pcp-positive	pcp-positive	pcp-positive	pcp-positive	radar-positive	pcp-positive
radar-positive	radar-positive	radar-positive	radar-positive	pcp-positive	radar-positive
line-positive	line-positive	line-positive	line-positive	line-positive	line-positive

Worse than the Worst
Below this line, the graphs
were no better than assessing correlation than random guesses.

Donut

Stacked bar Stacked line

Stacked area Ordered line graphs differ as one of the data categories is ordered by size.
What is an ordered line graph?

In line graphs both data categories are ordered by time, chronology or an other time, chronology or
sorting variable.

Fig. 7: Using the inferred Weber models, we can produce a perceptually-driven ranking for individual correlation (r) values, as well as an overall ranking (right column). Performance is ordered from the best (top) to the worst (bottom). The columns denoted by * are predicted responses using the fit models shown in Figure 6."Stacked" graphs all performed poorly despite being frequently found in software and reports.Stacked line graphs show
lach data cated value added to all the previous
$\xrightarrow{\text { categories across the } x \text {-axis. }}$

- Line graphs are surprisingly ineffective!
- Scatter plots are simple but precise.

- Design for the task(s) and the data (small multiples?)

