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R package memecse

Goal: output analysis for Markov chain Monte Carlo

'
review

Highlights

- Univariate and multivariate standard errors for MCMC
- multivariate effective sample size

- minimum effective sample size required
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The MCMC Story

There is a complicated integral (expectation).

0= /g(x)

fx) dx eRY.
prob. density fn

Draw samples X, X>, ..., X, from distribution with pdf f(x).

~ 1 <
0, = ; Zg(Xt)
=1

and A0, — 0) > Ny(0, A).

pXp
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The MCMC Story

* Drawing iid samples is often impossible/hard, so X;, X5, ..., X, samples a Markov
chain with stationary distribution having pdf f(x)

- X1,.Xo,...,X, are correlated .

- However, the usual method still works

~ 1 <« ~
On=- 2 80X) and (@ —0) > Ny(0, 2).
=1 #A

- Standard errors are tough!
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The MCMC Story

Drawing iid samples is often impossible/hard, so X, X», ..., X,, samples a Markov
chain with stationary distribution having pdf f(x)

- X1,Xo,...,X, are correlated .

However, the usual method still works

~ 1 -« ~
On=- 2 80X) and (@ —0) > Ny(0, 2).
=1 #A

* Standard errors are tough! correlated samples means X is difficult to estimate.

' memese estimates X and its diagonals 67 for MCMC.
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Simple Example

Goal: Estimate mean of N, <<§> , < ; f >>

Here we have the luxury of knowing the truth. 8 = (2 5)7

Bivariate normal

Y2
5
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Example: MCMC

We will use a random walk Metropolis sampler to draw correlated, non iid
samples.

# Runs mcmc for le4 steps
N <- le4d
out.rwm <- rwm(sigma = 1.5, N = N)S$Schain
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Example: MCMC
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Example: MCMC

# Rows represent samples, columns are components of the Markov chain
head (out.rwm)

## [,1] [,2]
## [1,] 0.0000000 0.000000
## [2,] -0.4617975 1.137128
## [3,] -1.3943455 3.014124
## [4,] -1.3943455 3.014124
## [5,] -1.3943455 3.014124
## [6,] 0.2874315 3.954838

dim(out.rwm)

## [1] 10000 2

Are 10000 samples enough to estimate the mean here?
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Example: MCMC

# Monte Carlo estimate for (2, 5)
colMeans (out.rwm)

## [1] 2.025037 5.010399

# Standard error?

We need the memese R package to estimate the standard error!
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mcmecse

library(mcmcse)
# Function calculates univariate standard errors for first comp

mcse(out.rwm[,1])

## Sest

## [1] 2.025037
et

## Sse

## [1] 0.03808689

PN

-~ d Oij
Markov chain CLT: 4/n(6, —8) — N(0,X) mcse returns%

# sigma’2
mcse(out.rwm[,1])$se”2*N

## [1] 14.50611
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mcmecse

# For both components
mcse.mat (out.rwm)

est se
;] 2.025037 0.03808689

“ht
## 11
## [2,] 5.010399 0.03857074

# If IID sampling, variance should have been 1

mcse.mat(out.rwm)[,2]"72*N

## [1] 14.50611 14.87702
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Autocorrelation
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The autocorrelations inflate the variance. mese accounts for these lag
correlations
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Standard Errors estimators

To estimate X or ¢; consistently, options are
* bm Fast

- tukey Slow

- bartlett Slow

To estimate X or ¢;; coservatively, options are

- multi.initseq

All references Dai and Jones (2016), Vats, Flegal, and Jones (2015a), Vats,
Flegal, and Jones (2015Db)
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ess

One common way of assessing MCMC performance is to know its effective
sample size .

If we had taken iid samples
CLT: /(0 — 6) = N(O, A)
/12

ESS; = n—
2

O::
24

# Positive correlation means smaller ess. n = le4

ess(out.rwm)

## [1] 724.9664 701.4952
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Multivariate ess

But we have two multivariate CLTs. Why a univariate ESS? With univariate

ESS we are ignoring cross-correlation
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Multivariate ess

If estimating p components

|A|1/p
="

ESS =n

# Effective sample size for estimating the mean vector
multiESS (out.rwm)

## [1] 1056.513

- Calls function mese.multi which estimates =

Estimates A using the usual cov function

Estimates X using batch means method by default. Other methods may

be used.

+ Coded using Rcpp
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Minimum ess required

But how do we know if we have enough samples?
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Minimum ess required

But how do we know if we have enough samples?

To get relative tolerance of ¢ = .05, and in order to make 95% confidence
regions we need minimum — effective sample size

# Compare to estimated 1056 from le4 Monte Carlo samples
minESS(p = 2, eps = .05, alpha = .05)

## minESS
#HH# 7529

Similar to sample size calculations for one sample ¢-tests

This does not depend on the Markov chain. Should be done a priori.
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Minimum ess required

So | need some 6500 more effective samples.

N <- 8e4
out.rwm <- rwm(sigma = 1.5, N = N)S$chain
multiESS (out.rwm)

## [1] 8713.306

| overshot a little bit, but I'd rather overshoot than undershoot.

So now | know that with 8e4 Monte Carlo samples, my effective sample size
for estimating the mean of this bivariate normal distribution is 8713 for a

relative tolerance of ¢ = .05 in order to be 95% confident in my estimate.
Phew!
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Conclusions

Determine minESS before starting simulation
Recommend using multiESS over univariate ess

R package coda produces only biased univariate estimates
Example was only for mean. Package can be used for E[g(x)]

Package can also be used for finding standard errors for quantiles

Thank you!
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