MCMC Output Analysis with R package mcmcse

University of Warwick

Dootika Vats 22/06/2017

Collaborators

James Flegal - University of California, Riverside

John Hughes - University of Colorado, Denver

Ning Dai - University of Minnesota, Twin-Cities

R package mcmcse

Goal: output analysis for Markov chain Monte Carlo

Highlights

- Univariate and multivariate standard errors for MCMC
- multivariate effective sample size
- · minimum effective sample size required

There is a complicated integral (expectation).

$$\theta = \int g(x) \underbrace{f(x)}_{\text{prob. density fn}} dx \in \mathbb{R}^d.$$

Draw samples X_1, X_2, \dots, X_n from distribution with pdf f(x).

$$\widehat{\theta}_n = \frac{1}{n} \sum_{t=1}^n g(X_t)$$
 and $\sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{d}{\to} N_p(0, \underline{\Lambda})$.

There is a complicated integral (expectation).

$$\theta = \int g(x) \underbrace{f(x)}_{\text{prob. density fn}} dx \in \mathbb{R}^d.$$

Draw samples X_1, X_2, \dots, X_n from distribution with pdf f(x).

$$\widehat{\theta}_n = \frac{1}{n} \sum_{t=1}^n g(X_t)$$
 and $\sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{d}{\to} N_p(0, \underbrace{\Lambda}_{p \times p})$.

Individual standard errors for $\widehat{\theta}_n^{(i)}$ is λ_{ii}/\sqrt{n} . sample variance

$$\hat{\lambda}_{ii}^2 = \frac{1}{n-1} \sum_{t=1}^n \left(g(X_t^{(i)}) - \hat{\theta}_n^{(i)} \right)^2.$$

Standard error matrix for $\widehat{\theta}_n$. sample covariance

$$\widehat{\Lambda} = \frac{1}{n-1} \sum_{t=1}^{n} \left(g(X_t) - \widehat{\theta}_n \right) \left(g(X_t) - \widehat{\theta}_n \right)^T.$$

- Drawing iid samples is often impossible/hard, so $X_1, X_2, ..., X_n$ samples a Markov chain with stationary distribution having pdf f(x)
 - X_1, X_2, \dots, X_n are correlated.
- · However, the usual method still works

$$\widehat{\theta}_n = \frac{1}{n} \sum_{t=1}^n g(X_t)$$
 and $\sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{d}{\to} N_p(0, \underline{\Sigma})$.

· Standard errors are tough!

- Drawing iid samples is often impossible/hard, so $X_1, X_2, ..., X_n$ samples a Markov chain with stationary distribution having pdf f(x)
 - X_1, X_2, \dots, X_n are correlated.
- · However, the usual method still works

$$\widehat{\theta}_n = \frac{1}{n} \sum_{t=1}^n g(X_t)$$
 and $\sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{d}{\to} N_p(0, \underline{\Sigma})$.

• Standard errors are tough! correlated samples means Σ is difficult to estimate.

- Drawing iid samples is often impossible/hard, so $X_1, X_2, ..., X_n$ samples a Markov chain with stationary distribution having pdf f(x)
 - X_1, X_2, \dots, X_n are correlated.
- · However, the usual method still works

$$\widehat{\theta}_n = \frac{1}{n} \sum_{t=1}^n g(X_t)$$
 and $\sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{d}{\to} N_p(0, \underline{\Sigma})$.

- Standard errors are tough! correlated samples means Σ is difficult to estimate.
- mcmcse estimates Σ and its diagonals σ_{ii}^2 for MCMC.

Simple Example

Goal: Estimate mean of
$$N_2\left(\begin{pmatrix}2\\5\end{pmatrix},\begin{pmatrix}1&.8\\.8&1\end{pmatrix}\right)$$

Here we have the luxury of knowing the truth. $\theta = (2 \ 5)^T$

Bivariate normal

We will use a random walk Metropolis sampler to draw correlated, non iid samples.

```
# Runs mcmc for 1e4 steps
N <- 1e4
out.rwm <- rwm(sigma = 1.5, N = N)$chain</pre>
```


$$n = 150$$
, Mean = 1.88, 4.84

$$n = 200$$
, Mean = 1.63, 4.68


```
# Rows represent samples, columns are components of the Markov chain head(out.rwm)
```

```
## [,1] [,2]
## [1,] 0.0000000 0.000000
## [2,] -0.4617975 1.137128
## [3,] -1.3943455 3.014124
## [4,] -1.3943455 3.014124
## [5,] -1.3943455 3.014124
## [6,] 0.2874315 3.954838
```

```
dim(out.rwm)
```

```
## [1] 10000
```

Are 10000 samples enough to estimate the mean here?

```
# Monte Carlo estimate for (2, 5)
colMeans(out.rwm)

## [1] 2.025037 5.010399

# Standard error?
```

We need the mcmcse R package to estimate the standard error!

mcmcse

[1] 14.50611

```
library(mcmcse)
# Function calculates univariate standard errors for first comp
mcse(out.rwm[,1])
## $est
## [1] 2.025037
##
## $se
## [1] 0.03808689
                              Markov chain CLT: \sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{d}{\to} N(0, \Sigma) mcse returns \frac{\widehat{\sigma_{ii}}}{\sqrt{n}}
# sigma^2
mcse(out.rwm[,1])$se^2*N
```

mcmcse

```
# For both components
mcse.mat(out.rwm)

## est se
## [1,] 2.025037 0.03808689
## [2,] 5.010399 0.03857074

# If IID sampling, variance should have been 1
mcse.mat(out.rwm)[,2]^2*N

## [1] 14.50611 14.87702
```

Autocorrelation

The autocorrelations inflate the variance. mcse accounts for these lag correlations

Standard Errors estimators

To estimate Σ or σ_{ii} consistently, options are

- bm Fast
- · tukey Slow
- bartlett Slow

To estimate Σ or σ_{ii} coservatively, options are

· multi.initseq

All references Dai and Jones (2016), Vats, Flegal, and Jones (2015a), Vats, Flegal, and Jones (2015b)

ess

One common way of assessing MCMC performance is to know its **effective** sample size .

If we had taken iid samples

CLT:
$$\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{d} N(0, \Lambda)$$

ESS_i = $n \frac{\lambda_{ii}^2}{\sigma_{ii}^2}$

Positive correlation means smaller ess. n = 1e4 ess(out.rwm)

[1] 724.9664 701.4952

Multivariate ess

But we have two multivariate CLTs. Why a univariate ESS? With univariate ESS we are ignoring cross-correlation

Cross-correlation

Multivariate ess

If estimating *p* components

$$ESS = n \frac{|\Lambda|^{1/p}}{|\Sigma|^{1/p}}$$

Effective sample size for estimating the mean vector
multiESS(out.rwm)

[1] 1056.513

- · Calls function mcse.multi which estimates Σ
- Estimates Λ using the usual **cov** function
- Estimates Σ using batch means method by default. Other methods may be used.
- Coded using Rcpp

Minimum ess required

But how do we know if we have enough samples?

Minimum ess required

##

7529

But how do we know if we have enough samples?

To get relative tolerance of $\epsilon=.05$, and in order to make 95% confidence regions we need minimum — effective sample size

```
# Compare to estimated 1056 from 1e4 Monte Carlo samples
minESS(p = 2, eps = .05, alpha = .05)
## minESS
```

- Similar to sample size calculations for one sample *t*-tests
- This does not depend on the Markov chain. Should be done a priori.

Minimum ess required

So I need some 6500 more effective samples.

```
N <- 8e4
out.rwm <- rwm(sigma = 1.5, N = N)$chain
multiESS(out.rwm)</pre>
```

[1] 8713.306

I overshot a little bit, but I'd rather overshoot than undershoot.

So now I know that with **8e4** Monte Carlo samples, my effective sample size for estimating the mean of this bivariate normal distribution is **8713** for a relative tolerance of $\epsilon = .05$ in order to be **95%** confident in my estimate. Phew!

Conclusions

- Determine minEss before starting simulation
- · Recommend using multiESS over univariate ess
- · R package coda produces only biased univariate estimates
- Example was only for mean. Package can be used for E[g(x)]
- Package can also be used for finding standard errors for quantiles

Thank you!

References

Dai, Ning, and Galin Jones. 2016. "Multivariate Initial Sequence Estimators in Markov Chain Monte Carlo." *ArXiv*.

Vats, Dootika, James M Flegal, and Galin L Jones. 2015a. "Multivariate Output Analysis for Markov Chain Monte Carlo." *Preprint*.

——. 2015b. "Strong Consistency of Multivariate Spectral Variance Estimators in Markov Chain Monte Carlo." *Bernoulli to appear*.