
Unit testing and continuous integration

How to find bugs as soon as you create them

Lewis Rendell

Warwick R User Group, 11th May 2017

Testing

Typically, we test code to ensure its output meets our expectations.

Unit testing

Unit testing is the process in which the smallest testable parts of
source code are tested individually and independently, usually in an
automated way.

I Formalises the testing of code
I Makes it easier to identify bugs when they are introduced
I Helps ensure that the code meets all necessary criteria
I Reassures the user that the code works correctly

Unit testing in R

testthat is an R package created by Hadley Wickham for the
purpose of writing unit tests for R code. It is available on CRAN.

An alternative (not covered in this talk) is RUnit, by Matthias
Burger, Klaus Jünemann and Thomas König.

Expectation functions in testthat

These functions form the core of the testing framework. They all
have the prefix expect_.

Several of these functions take an object to be tested as the first
argument, and check some aspect of it against a reference value,
given as the second argument.

If the two values do not match, an error is produced.

(If they do match, the function invisibly returns the object being
tested.)

Expectation functions in testthat

For example, the function expect_equal checks that the
numerical value of the object is equal to a reference value (up to
some tolerance, which may be given as a third argument).

a <- 3 + 2

expect_equal(a, 5) # Runs without error

expect_equal(a, 6) # Produces an error:
Error: `a` not equal to 6.
1/1 mismatches
[1] 5 - 6 == -1

Expectation functions in testthat

Other such functions include:

I expect_is, which checks the class of an object.

val <- 43.7
expect_is(val, "numeric") # Runs without error
expect_is(val, "character") # Produces an error

I expect_length, which checks whether the object has a given
length.

vec <- c(1, 7, 6, 4, 9)
expect_length(vec, 5) # Runs without error
expect_length(vec, 8) # Produces an error

Expectation functions in testthat

Some functions only require one argument – the object to be
tested.

For example, expect_true checks that the object evaluates to
TRUE; similarly, expect_false checks for a FALSE evaluation.

root <- sqrt(64)

expect_true(root >= 0) # Runs without error

expect_true(root == 1) # Produces an error:
Error: root == 1 isn't true.

Other such functions include expect_error, which checks that
the object produces an error when it is evaluated. Analogously,
there are expect_warning, expect_message, etc.

Testing random functions

To test a function with random output, set the seed for the
random number generation first using set.seed.

Define a function that samples n numbers,
with replacement, from (1, 2, ..., 10).
sampler <- function(n) {

sample(1:10, n, replace = TRUE)
}

set.seed(123) # Set random seed
foo <- sampler(3)
foo
[1] 3 8 5

expect_equal(foo, c(3, 8, 5)) # Runs without error

Useful functions when writing tests

dput (a base R function) takes any object and prints out the code
required to recreate it.

set.seed(246)
dput(runif(4))
c(0.703108243644238, 0.205851259641349,
0.599153293762356, 0.288029342656955)

This can be useful for specifying the reference value against which
an object should be tested.

Useful functions when writing tests

capture.output (from the package utils) takes any expression,
and returns a character vector containing the text that would be
printed to the console if it were run.

Define a function that prints "Hello, world!".
hello <- function() {

cat("Hello, world!")
}

hello()
Hello, world!
capture.output(hello())
[1] "Hello, world!"

Adding tests to a package

When creating an R package, unit tests can be included. These
will be run automatically whenever the package is built and
checked (using R CMD check, for example).

In order to do so, a framework for the tests must be created. The
correct framework can be created using the use_testthat
function from the devtools package. This creates a directory in
the package called ‘tests’, which contains:

I An R script called ‘testthat.R’, which contains the code for
running the tests;

I A directory called ‘testthat’. All tests must be contained in R
scripts in this directory, with file names beginning ‘test’.

Writing tests

Within testthat, a test is a series of expectation functions, which
collectively test one small unit of functionality.

A test is created using the test_that function. The first
argument is the name of the test (as a character string), while the
second argument contains the test code, including all of the
expectation statements, between curly brackets.

When this function is run, the test code will be evaluated in its
own environment. An error will be produced if any of the test code
produces an error.

Writing test scripts

Tests that check related functionality should all be put in the same
R script. The context function should be used in the first line of
the file, to provide a description for the group of tests that follows.

Each script should be saved in the ‘testthat’ directory with a file
name beginning ‘test’.

An example test script

context("Function 'sampler' works correctly")

test_that("Function 'sampler' correctly samples
with replacement from 1:10", {

set.seed(123)
expect_equal(sampler(3), c(3, 8, 5))

set.seed(999)
expect_equal(sampler(4), c(4, 6, 1, 9))

})

test_that("Function 'sampler' gives error if
argument is not a positive number", {

expect_error(sampler(-1))
expect_error(sampler(FALSE))

})

Running the tests

To run the tests, the test function from the devtools package
may be used.

When checking a built package using R CMD check, any tests
included in the package will be run automatically, alongside all
other usual package checks. If any tests fail, an error message will
be produced.

Continuous integration

Version control systems are applications that track and manage
changes to source code. This presentation shall consider only Git,
and its web-based hosting service GitHub.

In software engineering, continuous integration (CI) is the
practice of regularly merging all changes to source code to a central
repository, building and testing the source code after every change.
This allows any bugs that are introduced to be identified quickly.

Continuous integration and R packages

Why use continuous integration software when developing an R
package?

Every time a change is committed to the version control repository,
this triggers the CI software to rebuild and check the package.
This will include the running of any unit tests.

As such, all unit tests are run automatically every time any change
is made to the source code – so any bugs can be identified as soon
as they are created.

Continuous integration with GitHub

Travis CI (travis-ci.org) is a continuous integration service for use
with GitHub code repositories. For open-source projects it is free
to use.

Alternative CI software exists for use with GitHub, and with
alternative version control systems and hosting services (for
example, Jenkins).

http://travis-ci.org

How to use Travis CI

I Ensure your package is on GitHub, in the correct format so
that it can be checked.

I Create an account at travis-ci.org.
I Activate the GitHub repository containing your package.
I Add a .travis.yml file to the root directory of your package –

the use_travis function in the devtools package will do this.
I Commit this new file to your Git repository.

From now on, whenever any commits are pushed to your online
GitHub repository, Travis will automatically build and check your
package. Travis will notify you if the check results in any errors,
including those generated by failed unit tests.

http://travis-ci.org

Summary

I Testing is often done manually, in an ad hoc way; unit testing
formalises this, allowing testing to be carried out in an
automated way.

I Continuous integration software causes such tests to be
carried out every time changes to source code are committed,
allowing bugs to be identified as soon as they are created.

I This can make the process of writing code much easier, and
gives assurances to the end user that everything works as the
author intended.

