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Problems with scientific research

How science goes wrong
Scientific research has changed the world. Now it needs to change itself

Oct 19th 2013 | From the print edition

A SIMPLE idea underpins science: “trust, but
verify”. Results should always be subject to
challenge from experiment. That simple but
powerful idea has generated a vast body of
knowledge. Since its birth in the 17th century,
modern science has changed the world beyond
recognition, and overwhelmingly for the better.

But success can breed complacency. Modern scientists are doing too much trusting and not
enough verifying—to the detriment of the whole of science, and of humanity.

Too many of the findings that fill the academic ether are the result of shoddy experiments or
poor analysis (see article (http://www.economist.com/news/briefing/21588057-scientists-think-
science-self-correcting-alarming-degree-it-not-trouble) ). A rule of thumb among biotechnology
venture-capitalists is that half of published research cannot be replicated. Even that may be
optimistic. Last year researchers at one biotech firm, Amgen, found they could reproduce just six
of 53 “landmark” studies in cancer research. Earlier, a group at Bayer, a drug company, managed
to repeat just a quarter of 67 similarly important papers. A leading computer scientist frets that
three-quarters of papers in his subfield are bunk. In 2000-10 roughly 80,000 patients took part
in clinical trials based on research that was later retracted because of mistakes or improprieties.

What a load of rubbish

Even when flawed research does not put people’s lives at risk—and much of it is too far from the
market to do so—it squanders money and the efforts of some of the world’s best minds. The
opportunity costs of stymied progress are hard to quantify, but they are likely to be vast. And
they could be rising.

One reason is the competitiveness of science. In the 1950s, when modern academic research took
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Unreliable research

Trouble at the lab
Scientists like to think of science as self-correcting. To an alarming degree, it is not

Oct 19th 2013 | From the print edition

“I SEE a train wreck looming,” warned Daniel
Kahneman, an eminent psychologist, in an open
letter last year. The premonition concerned
research on a phenomenon known as “priming”.
Priming studies suggest that decisions can be
influenced by apparently irrelevant actions or
events that took place just before the cusp of
choice. They have been a boom area in psychology
over the past decade, and some of their insights have already made it out of the lab and into the
toolkits of policy wonks keen on “nudging” the populace.

Dr Kahneman and a growing number of his colleagues fear that a lot of this priming research is
poorly founded. Over the past few years various researchers have made systematic attempts to
replicate some of the more widely cited priming experiments. Many of these replications have
failed. In April, for instance, a paper in PLoS ONE, a journal, reported that nine separate
experiments had not managed to reproduce the results of a famous study from 1998 purporting
to show that thinking about a professor before taking an intelligence test leads to a higher score
than imagining a football hooligan.

The idea that the same experiments always get the same results, no matter who performs them,
is one of the cornerstones of science’s claim to objective truth. If a systematic campaign of
replication does not lead to the same results, then either the original research is flawed (as the
replicators claim) or the replications are (as many of the original researchers on priming
contend). Either way, something is awry.

To err is all too common

It is tempting to see the priming fracas as an isolated case in an area of science—psychology—
easily marginalised as soft and wayward. But irreproducibility is much more widespread. A few
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Systematic attempts to replicate widely cited priming experiments have failed

Amgen could only replicate 6 of 53 studies they considered landmarks in
basic cancer science

HealthCare could only replicate about 25% of 67 seminal studies

Early report (Kaplan, ’08): 50% of Phase III FDA studies ended in failure



New Yorker: December, 2010

9/24/12 1:35 PMThe decline effect and the scientific method : The New Yorker

Page 1 of 4http://www.newyorker.com/reporting/2010/12/13/101213fa_fact_lehrer

O Print
E-Mail

Subscribe
home
New Yorker magazine articles
News
Culture
Politics
Books + Fiction
Cartoons
Humor
Archive

Sports
Photo Booth
Daily Shouts
Page-Turner
Daily Comment
Amy Davidson
John Cassidy
Andy Borowitz
Richard Brody

The New Yorker
Reporting & Essays

ANNALS OF SCIENCE

THE TRUTH WEARS OFF
Is there something wrong with the scientific method?
by Jonah Lehrer

DECEMBER 13, 2010

Recommend 29k

TweetTweet 1,767

192

n September 18, 2007, a few dozen neuroscientists,
psychiatrists, and drug-company executives gathered

11/6/13, 11:39 AMThe decline effect and the scientific method : The New Yorker

Page 1 of 11http://www.newyorker.com/reporting/2010/12/13/101213fa_fact_lehrer?printable=true&currentPage=all

O

Many results that are rigorously proved and
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n September 18, 2007, a few dozen neuroscientists,
psychiatrists, and drug-company executives gathered

in a hotel conference room in Brussels to hear some
startling news. It had to do with a class of drugs known as
atypical or second-generation antipsychotics, which came
on the market in the early nineties. The drugs, sold under
brand names such as Abilify, Seroquel, and Zyprexa, had
been tested on schizophrenics in several large clinical
trials, all of which had demonstrated a dramatic decrease
in the subjects’ psychiatric symptoms. As a result, second-
generation antipsychotics had become one of the fastest-
growing and most profitable pharmaceutical classes. By
2001, Eli Lilly’s Zyprexa was generating more revenue
than Prozac. It remains the company’s top-selling drug.

But the data presented at the Brussels meeting made it clear that something strange was happening:
the therapeutic power of the drugs appeared to be steadily waning. A recent study showed an effect that“Significance chasing”

“Publication bias”

“Selective reporting”

“Why most published research findings are false” (Ioannidis, ’05)
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Personal and societal concern

Great danger in seeing erosion of public confidence in science

Seems like scientific community is responding
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Reproducibility Initiative
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http://validation.scienceexchange.com/
http://validation.scienceexchange.com/


Nature’s 18-point checklist: April 25, 2013

schizophrenia and bipolar disorder as two separate conditions. This 
separation is respected by drug companies, regulators, research 
funders, journals and bench researchers. Add that lot up, and you get 
a fundamental problem with psychiatry.

Next month, the American Psychiatric Association will release the 
long-awaited fifth version of its Diagnostic and Statistical Manual 
of Mental Disorders (DSM-5), which lists mental illnesses and their 
symptoms. Work on preparing the DSM-5 has been clouded in con-
troversy, and the arguments over which conditions should have been 
included and which left out will rumble on for some time.

The more fundamental problem, as the News Feature explores, is 
growing doubt about the way the DSM-5 classifies mental disorders. 
Psychiatrists have long known that the illnesses of patients they see 
in the clinic cannot be broken down into discrete groups in the way 
that is taught at medical school. Symptoms overlap and flow across 
diagnostic boundaries. Patients can show the signs of two or three 
disorders at the same time. Treatments are inconsistent. Outcomes 
are unpredictable.  

Science was supposed to come to the rescue. Genetics and neuro-
imaging studies would, all involved hoped, reveal biological signatures 
unique to each disorder, which could be used to provide consistent 

and reliable diagnoses. Instead, it seems the opposite is true. The more 
scientists look for biomarkers for specific mental disorders, the harder 
the task becomes. Scans of the DNA and brain function of patients 
show the same stubborn refusal to group by disease type. Genetic risk 
factors and dysfunction in brain regions are shared across disorders. 

Psychiatrists joke that their patients have not 
read the textbooks. The reality is serious and 
more troubling — the textbook is wrong.

The American Psychiatric Association 
routinely points out that its DSM disease 
categories are intended only as diagnostic 
tools. It does not claim that they mark genu-
ine biological boundaries. But the system is 
set up as if they do. That might explain why 
biomarkers and new drugs for mental illness 

remain elusive. The system should change. Funders and journals must 
encourage work that cuts across the boundaries. Researchers should be 
encouraged to investigate the causes of mental illness from the bottom 
up, as the US National Institute of Mental Health is doing. The brain 
is complicated enough. Why investigate its problems with one hand 
tied behind our backs? ■

“Patients’ 
illnesses cannot 
be broken down 
into discrete 
groups in 
the way that 
is taught at 
medical school.”

ANNOUNCEMENT

Reducing our 
irreproducibility
Over the past year, Nature has published a string of articles that 

highlight failures in the reliability and reproducibility of pub-
lished research (collected and freely available at go.nature.com/
huhbyr). The problems arise in laboratories, but journals such as 
this one compound them when they fail to exert sufficient scrutiny 
over the results that they publish, and when they do not publish 
enough information for other researchers to assess results properly.

From next month, Nature and the Nature research journals will 
introduce editorial measures to address the problem by improving 
the consistency and quality of reporting in life-sciences articles. 
To ease the interpretation and improve the reliability of published 
results we will more systematically ensure that key methodologi-
cal details are reported, and we will give more space to methods 
sections. We will examine statistics more closely and encourage 
authors to be transparent, for example by including their raw data.

Central to this initiative is a checklist intended to prompt authors 
to disclose technical and statistical information in their submis-
sions, and to encourage referees to consider aspects important for 
research reproducibility (go.nature.com/oloeip). It was developed 
after discussions with researchers on the problems that lead to 
irreproducibility, including workshops organized last year by US 
National Institutes of Health (NIH) institutes. It also draws on pub-
lished concerns about reporting standards (or the lack of them) and 
the collective experience of editors at Nature journals.

The checklist is not exhaustive. It focuses on a few experimental 
and analytical design elements that are crucial for the interpreta-
tion of research results but are often reported incompletely. For 
example, authors will need to describe methodological parameters 
that can introduce bias or influence robustness, and provide precise 
characterization of key reagents that may be subject to biological 
variability, such as cell lines and antibodies. The checklist also con-
solidates existing policies about data deposition and presentation.

We will also demand more precise descriptions of statistics, and 

we will commission statisticians as consultants on certain papers, 
at the editor’s discretion and at the referees’ suggestion.

We recognize that there is no single way to conduct an experi-
mental study. Exploratory investigations cannot be done with the 
same level of statistical rigour as hypothesis-testing studies. Few 
academic laboratories have the means to perform the level of vali-
dation required, for example, to translate a finding from the labo-
ratory to the clinic. However, that should not stand in the way of a 
full report of how a study was designed, conducted and analysed 
that will allow reviewers and readers to adequately interpret and 
build on the results.

To allow authors to describe their experimental design and 
methods in as much detail as necessary, the participating jour-
nals, including Nature, will abolish space restrictions on the 
methods section.

To further increase transparency, we will encourage authors to 
provide tables of the data behind graphs and figures. This builds 
on our established data-deposition policy for specific experiments 
and large data sets. The source data will be made available directly 
from the figure legend, for easy access. We continue to encour-
age authors to share detailed methods and reagent descriptions 
by depositing protocols in Protocol Exchange (www.nature.com/
protocolexchange), an open resource linked from the primary paper. 

Renewed attention to reporting and transparency is a small step. 
Much bigger underlying issues contribute to the problem, and are 
beyond the reach of journals alone. Too few biologists receive ade-
quate training in statistics and other quantitative aspects of their 
subject. Mentoring of young scientists on matters of rigour and 
transparency is inconsistent at best. In academia, the ever increas-
ing pressures to publish and chase funds provide little incentive to 
pursue studies and publish results that contradict or confirm previ-
ous papers. Those who document the validity or irreproducibility of 
a published piece of work seldom get a welcome from journals and 
funders, even as money and effort are wasted on false assumptions.

Tackling these issues is a long-term endeavour that will require 
the commitment of funders, institutions, researchers and pub-
lishers. It is encouraging that NIH institutes have led community 
discussions on this topic and are considering their own recommen-
dations. We urge others to take note of these and of our initiatives, 
and do whatever they can to improve research reproducibility. ■
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Big data and a new scientific paradigm

Collect data first =⇒ Ask questions later

Large data sets available prior to formulation of hypotheses

Need to quantify “reliability” of hypotheses generated by data snooping

Very different from hypothesis-driven research

What does statistics have to offer?
Account for “look everywhere” effect

Understand reliability in the context of all hypotheses that have been explored
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Most discoveries may be false: Sorić (’89)

True positives False negatives False positives

1000 hypotheses to test

See also The Economist
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Most discoveries may be false: Sorić (’89)

True positives False negatives False positives

Reported

True positives False negatives False positives

Reported

Power ≈ 30% =⇒ False discovery rate ≈ 60%

More false negatives than true positives!



Example: meta-analysis in neuroscience

Button et al. (2013) Power failure: why small sample size undermines the
reliability of neuroscience



False Discovery Rate (FDR): Benjamini & Hochberg (’95)

H1, . . . Hn hypotheses subject to some testing procedure

FDR = E
[

#false discoveries

#discoveries

]
‘0/0 = 0’

Natural type I error

Under independence (and PRDS) simple rules control FDR (BHq)

Widely used



FDR control with BHq (under independence)

FDR: expected proportion of false discoveries

Sorted p-values: p(1) ≤ p(2) ≤ . . . ≤ p(n) (from most to least significant)

Target FDR q
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The cut-off is adaptive to number of non-nulls
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Earlier work on multiple comparisons

Henry Scheffe John Tukey

Rupert Miller

Westfall and Young (’93)



Controlled Variable Selection



Contemporary problem: inference for sparse regression

Find locations on the genome that influence a trait: e.g. cholesterol level

improve coverage around type 2 diabetes (T2D) candidate genes
in 1,874 Finnish individuals from the Finland–United States
Investigation of NIDDM Genetics (FUSION) study13. In a second
scan, after quality-control filtering, we examined 356,539 SNPs (MAF
4 5%) from the Affymetrix 500K Mapping Array Set in 4,184
individuals from the SardiNIA Study of Aging10,14. The Sardinian
sample is organized into a number of small- to medium-sized
pedigrees. We took advantage of this relatedness to reduce genotyping
costs: we genotyped 1,412 individuals with the Affymetrix 500K
Mapping Array Set (organized into groups of 2–3 individuals per
nuclear family) and then propagated their genotypes to the remaining
individuals, who were genotyped using only the Affymetrix 10K
Mapping Array14,17,18 (see Methods). To increase statistical power,
we also contacted the authors of a previously published study15 to
obtain results for 347,010 SNPs (MAF 4 5%) genotyped in 2,758
Finnish and Swedish individuals from the Diabetes Genetics Initiative
(DGI) using the Affymetrix 500K Mapping Array Set. Further details
of the DGI study and independent follow-up analyses are provided in
a companion manuscript16. All three initial scans excluded individuals
taking lipid lowering therapies, for a total of 8,816 phenotyped
individuals (Table 1). Informed consent was obtained from all

study participants and ethics approval was obtained from the
participating institutions.

Because the three studies used different marker sets with an
overlap of only 44,998 SNPs across studies, we used information on
patterns of haplotype variation in the HapMap CEU samples (release
21)19 to infer missing genotypes in silico and to facilitate comparison
between the studies13. Imputation analyses were carried out with
Markov Chain Haplotyping software (MaCH; see URLs section in
Methods). For our analyses, we only considered SNPs that were either
genotyped or could be imputed with relatively high confidence; that is,
SNPs for which patterns of haplotype sharing between sampled
individuals and those genotyped by the HapMap consistently indi-
cated a specific allele. Comparison of imputed and experimentally
derived genotypes in our samples yielded estimated error rates of
1.46% (for imputation based on Illumina genotypes) to 2.14%
(imputation based on Affymetrix genotypes) per allele, consistent
with expectations from HapMap data. For additional details of
quality-control and imputation procedures, see Methods and Supple-
mentary Table 1 online.

We then conducted a series of association analyses to relate
the B2,261,000 genotyped and/or imputed SNPs with plasma
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Figure 1 Summary of genome-wide association scans. The figure summarizes combined genome-wide association scan results in the top 3 panels (plotted
as –log10 P value for HDL cholesterol, LDL cholesterol and triglycerides). Loci that were not followed up are in gray. Loci that were followed-up are in green
(combined dataset yielded convincing evidence of association, P o 5 ! 10"8), orange (combined dataset yielded promising evidence of association,
P o 10"5), or red (combined dataset did not suggest association, P 4 10"5). The three panels in the bottom row display quantile-quantile plots for test
statistics. The red line corresponds to all test statistics, the blue line corresponds to results after excluding statistics at replicated loci (in green, top panel),
and the gray area corresponds to the 90% confidence region from a null distribution of P values (generated from 100 simulations).
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Linear model (y = Xβ + z) + e.g. Lasso fit

min 1
2‖y −Xβ̂‖22 + λ‖β̂‖1

y : cholesterol level of patients

X : genotype matrix; e.g. Xi,j # of alleles of recessive type at location j

z environmental factors (not accounted by genetics)

How do we control the FDR of selected variables {i : β̂i 6= 0}?



Contemporary problem: inference for sparse regression

Find locations on the genome that influence a trait: e.g. cholesterol level

improve coverage around type 2 diabetes (T2D) candidate genes
in 1,874 Finnish individuals from the Finland–United States
Investigation of NIDDM Genetics (FUSION) study13. In a second
scan, after quality-control filtering, we examined 356,539 SNPs (MAF
4 5%) from the Affymetrix 500K Mapping Array Set in 4,184
individuals from the SardiNIA Study of Aging10,14. The Sardinian
sample is organized into a number of small- to medium-sized
pedigrees. We took advantage of this relatedness to reduce genotyping
costs: we genotyped 1,412 individuals with the Affymetrix 500K
Mapping Array Set (organized into groups of 2–3 individuals per
nuclear family) and then propagated their genotypes to the remaining
individuals, who were genotyped using only the Affymetrix 10K
Mapping Array14,17,18 (see Methods). To increase statistical power,
we also contacted the authors of a previously published study15 to
obtain results for 347,010 SNPs (MAF 4 5%) genotyped in 2,758
Finnish and Swedish individuals from the Diabetes Genetics Initiative
(DGI) using the Affymetrix 500K Mapping Array Set. Further details
of the DGI study and independent follow-up analyses are provided in
a companion manuscript16. All three initial scans excluded individuals
taking lipid lowering therapies, for a total of 8,816 phenotyped
individuals (Table 1). Informed consent was obtained from all

study participants and ethics approval was obtained from the
participating institutions.

Because the three studies used different marker sets with an
overlap of only 44,998 SNPs across studies, we used information on
patterns of haplotype variation in the HapMap CEU samples (release
21)19 to infer missing genotypes in silico and to facilitate comparison
between the studies13. Imputation analyses were carried out with
Markov Chain Haplotyping software (MaCH; see URLs section in
Methods). For our analyses, we only considered SNPs that were either
genotyped or could be imputed with relatively high confidence; that is,
SNPs for which patterns of haplotype sharing between sampled
individuals and those genotyped by the HapMap consistently indi-
cated a specific allele. Comparison of imputed and experimentally
derived genotypes in our samples yielded estimated error rates of
1.46% (for imputation based on Illumina genotypes) to 2.14%
(imputation based on Affymetrix genotypes) per allele, consistent
with expectations from HapMap data. For additional details of
quality-control and imputation procedures, see Methods and Supple-
mentary Table 1 online.

We then conducted a series of association analyses to relate
the B2,261,000 genotyped and/or imputed SNPs with plasma
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Figure 1 Summary of genome-wide association scans. The figure summarizes combined genome-wide association scan results in the top 3 panels (plotted
as –log10 P value for HDL cholesterol, LDL cholesterol and triglycerides). Loci that were not followed up are in gray. Loci that were followed-up are in green
(combined dataset yielded convincing evidence of association, P o 5 ! 10"8), orange (combined dataset yielded promising evidence of association,
P o 10"5), or red (combined dataset did not suggest association, P 4 10"5). The three panels in the bottom row display quantile-quantile plots for test
statistics. The red line corresponds to all test statistics, the blue line corresponds to results after excluding statistics at replicated loci (in green, top panel),
and the gray area corresponds to the 90% confidence region from a null distribution of P values (generated from 100 simulations).
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Find locations on the genome that influence a trait: e.g. cholesterol level

improve coverage around type 2 diabetes (T2D) candidate genes
in 1,874 Finnish individuals from the Finland–United States
Investigation of NIDDM Genetics (FUSION) study13. In a second
scan, after quality-control filtering, we examined 356,539 SNPs (MAF
4 5%) from the Affymetrix 500K Mapping Array Set in 4,184
individuals from the SardiNIA Study of Aging10,14. The Sardinian
sample is organized into a number of small- to medium-sized
pedigrees. We took advantage of this relatedness to reduce genotyping
costs: we genotyped 1,412 individuals with the Affymetrix 500K
Mapping Array Set (organized into groups of 2–3 individuals per
nuclear family) and then propagated their genotypes to the remaining
individuals, who were genotyped using only the Affymetrix 10K
Mapping Array14,17,18 (see Methods). To increase statistical power,
we also contacted the authors of a previously published study15 to
obtain results for 347,010 SNPs (MAF 4 5%) genotyped in 2,758
Finnish and Swedish individuals from the Diabetes Genetics Initiative
(DGI) using the Affymetrix 500K Mapping Array Set. Further details
of the DGI study and independent follow-up analyses are provided in
a companion manuscript16. All three initial scans excluded individuals
taking lipid lowering therapies, for a total of 8,816 phenotyped
individuals (Table 1). Informed consent was obtained from all

study participants and ethics approval was obtained from the
participating institutions.

Because the three studies used different marker sets with an
overlap of only 44,998 SNPs across studies, we used information on
patterns of haplotype variation in the HapMap CEU samples (release
21)19 to infer missing genotypes in silico and to facilitate comparison
between the studies13. Imputation analyses were carried out with
Markov Chain Haplotyping software (MaCH; see URLs section in
Methods). For our analyses, we only considered SNPs that were either
genotyped or could be imputed with relatively high confidence; that is,
SNPs for which patterns of haplotype sharing between sampled
individuals and those genotyped by the HapMap consistently indi-
cated a specific allele. Comparison of imputed and experimentally
derived genotypes in our samples yielded estimated error rates of
1.46% (for imputation based on Illumina genotypes) to 2.14%
(imputation based on Affymetrix genotypes) per allele, consistent
with expectations from HapMap data. For additional details of
quality-control and imputation procedures, see Methods and Supple-
mentary Table 1 online.

We then conducted a series of association analyses to relate
the B2,261,000 genotyped and/or imputed SNPs with plasma
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Figure 1 Summary of genome-wide association scans. The figure summarizes combined genome-wide association scan results in the top 3 panels (plotted
as –log10 P value for HDL cholesterol, LDL cholesterol and triglycerides). Loci that were not followed up are in gray. Loci that were followed-up are in green
(combined dataset yielded convincing evidence of association, P o 5 ! 10"8), orange (combined dataset yielded promising evidence of association,
P o 10"5), or red (combined dataset did not suggest association, P 4 10"5). The three panels in the bottom row display quantile-quantile plots for test
statistics. The red line corresponds to all test statistics, the blue line corresponds to results after excluding statistics at replicated loci (in green, top panel),
and the gray area corresponds to the 90% confidence region from a null distribution of P values (generated from 100 simulations).
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How do we control the FDR of selected variables {i : β̂i 6= 0}?



Sparse regression

Simulated data with n = 1500, p = 500

Lasso model with λ = 1.75

Sparse regression
Simulated data with n = 1500, p = 500.

Lasso fitted model for λ = 1.75:
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FDP = 26
55 = 47%

To estimate FDP, would need to calculate distribution of βλj for null j
(would need to know σ2, β?, . . . ). (Donoho et al 2009)
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To estimate FDP, would need to calculate distribution of βλj for null j
(would need to know σ2, β?, . . . ). (Donoho et al 2009)
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Estimate FDP? Forget it...



Controlled variable selection

y =

∑
j βjXj︷︸︸︷
Xβ + z

n× 1 n× p p× 1 n× 1

y ∼ N (Xβ, σ2I)

Goal: select set of features Xj without too many false positives

FDR︸︷︷︸
False discovery rate

= E
[ # false positives

# features selected︸ ︷︷ ︸
False discovery proportion

]
‘0/0 = 0’

Context of multiple testing (with possibly very many irrelevant variables)

Hj : βj = 0 j = 1, . . . , p
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This lecture

Novel procedure for variable selection controlling FDR in finite sample settings

Requires n ≥ p (and full column rank) for identifiability

n < p =⇒ Xβ = Xβ′ and β 6= β′

Works under any design X

Does not require any knowledge of noise level σ

Ongoing research: n < p



The Knockoff Filter



The knockoff filter

It’s not a name brand bag, just a cheap knockoff

Thesaurize.com

For each feature Xj , construct knockoff version X̃j

Knockoffs serve as control group =⇒ can estimate FDP

(1) Construct fake variables (knockoffs)

(2) Calculate statistics for each original/knockoff pair

(3) Calculate a data-dependent threshold for the statistics



1. Knockoff features X̃j

X̃ ′jX̃k = X ′jXk for all j, k

X̃ ′jXk = X ′jXk for all j 6= k

Would like knockoffs as uncorrelated to features as possible



How?

Compute knockoffs via matrix computations and/or numerical optimization (later)

[
X X̃

]′ [
X X̃

]
=

[
Σ Σ− diag{s}

Σ− diag{s} Σ

]
� 0 s ∈ Rp

X̃ = X(I − Σ−1 diag{s}) + ŨC

Ũ ∈ Rn×p with col. space orthogonal to that of X

C ′C Cholevsky factorization of 2 diag{s} − diag{s}Σ−1 diag{s} � 0

No need for new data or experiment
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Why?

For null feature Xj

X ′jy = X ′jXβ +X ′jz
d
= X̃ ′jXβ + X̃ ′jz = X̃ ′jy

Construct knockoffs

Why?

For a null feature Xj,

X>j y = X>j Xβ? + X>j z D= X̃>j Xβ? + X̃>j z = X̃>j y
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Why?

Lemma
Pairwise exchangeability property. For any subset of nulls N

[X X̃]′swap(N) y
d
= [X X̃]′ y

=⇒ knockoffs are a ‘control group’ for the nulls

[X X̃]′swap(N) =

Construct knockoffs

Why?

For a null feature Xj,
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Knockoff method

Compute Lasso with augmented matrix:

β̂(λ) = argminb∈R2p
1
2

∥∥∥y − [X X̃] · b
∥∥∥
2

+ λ‖b‖1

Knockoff method

Fitted model for λ = 1.75 on the simulated dataset:
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I Lasso selects 49 original features & 24 knockoff features

I Pairwise exchangeability of the nulls
=⇒ probably ≈ 24 false positives among the 49 original features
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Jan 21 2015 Controlling false discovery rate via knockoffs 15/36

Lasso selects 49 original features & 24 knockoff features

Pairwise exchangeability
=⇒ probably ≈ 24 false positives among 49 original features



2. Statistics

Zj = sup {λ : bj(λ) 6= 0} first time Xj enters model

Z̃j = sup {λ : b̃j(λ) 6= 0} first time X̃j enters model

Test statistic Wj for feature j

Wj = max(Zj , Z̃j) ·
{

+1 Zj > Z̃j

−1 Zj < Z̃j

0 −
+++ + +

− −
+

enters late enters early
(significant)

|W|

Many other choices (later)
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Variation

Forward selection on augmented design
[
X X̃

]

First time (rank) either original or knockoff enters

Tag ‘+’ if original comes before its knockoff, ‘-’ otherwise

−
+++ + +

− −
+

enters late enters early
(significant)

rank
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Consequence of exchangeability

++
____

+++
__

++
__

null
non null

0 t

Signs of nulls iid ±1 indep. of |W | (ordering)

(W1, . . . ,Wp)
d
= (W1 · ε1, . . . ,Wp · εp)

Sign seq. {εj} indep. of W , εj = +1 for all non-null j and εj
i.i.d.∼ {±1} for null j

Signs → 1-bit p-values



Knockoff estimate of FDR
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FDP(t) =
#{j null : Wj ≥ t}
#{j : Wj ≥ t} ∨ 1
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#{j : Wj ≥ t} ∨ 1

≤ #{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

:= F̂DP(t)
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3. Selection and FDR control

Select features with large and positive statistics {Wj ≥ T}

T = min

{
t ∈ W :

#{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

≤ q
}

Knockoff

Theorem (Knockoff)

E
[

V

R+ q−1

]
≤ q V : # false positives

R : total # of selections

T = min

{
t ∈ W :

1 + #{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

≤ q
}

Knockoff+

Theorem (Knockoff+)

E
[

V

R ∨ 1

]
≤ q
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R : total # of selections

T = min

{
t ∈ W :

1 + #{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

≤ q
}

Knockoff+

Theorem (Knockoff+)

E
[

V

R ∨ 1

]
≤ q



Stopping rule
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}

++
____

+++
__

++
__

0

Stop first time ratio between # negatives and # positives below q



Stopping rule

T = min

{
t :

0/1 + #{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

≤ q
}

++
____

+++
__

++
__

0

Stop first time ratio between # negatives and # positives below q



Stopping rule

T = min

{
t :

0/1 + #{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

≤ q
}

++
____

+++
__

++
__

0

Stop first time ratio between # negatives and # positives below q



Stopping rule

T = min

{
t :

0/1 + #{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

≤ q
}

++
____

+++
__

++
__

0

Stop first time ratio between # negatives and # positives below q



Why does all this work?

T = min

{
t :

1+#{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

≤ q
}

++
____

+++
__

++
__

0

FDP(T ) =
#{j null : Wj ≥ T}
#{j : Wj ≥ T} ∨ 1

· 1 + #{j null : Wj ≤ −T}
1 + #{j null : Wj ≤ −T}

≤ q ·

V +(T )︷ ︸︸ ︷
#{j null : Wj ≥ T}

1 + #{j null : Wj ≤ −T}︸ ︷︷ ︸
V −(T )

V +(t)/(1 + V −(t)) is a super-martingale w.r.t. well defined filtration

T is stopping time
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Optional stopping time theorem

++
____

+++
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__

null non null
0 t

FDR ≤ q E
[

V +(T )

1 + V −(T )

]

≤ q E
[

V +(0)

1 + V −(0)

]
= q E




Ber(#nulls,1/2)︷ ︸︸ ︷
V +(0)

1 + #nulls− V +(0)


 ≤ q
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Comparison with other methods



Permutation methods

Let Xπ = X with rows randomly permuted

[
X Xπ

]′ [
X Xπ

]
≈
[
Σ 0
0 Σ

]

Can knockoffs be replaced by permutations?

Let Xπ = X with rows randomly permuted. Then

[
X Xπ

]>[X Xπ
]
≈
(

Σ 0
0 Σ

)
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Other methods

Benjamini-Hochberg (BHq)

BHq + log factor correction

BHq with whitened noise

y ∼ N (Xβ, σ2I) ⇐⇒ β̂LS ∼ N (β, σ2(X ′X)−1)

Apply BHq to

Zj =
β̂LS
j

σ
√

(Σ−1)jj

Not known to control FDR → log factor correction (Benjamini Yekutieli)
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Empirical results

Features N (0, In), n = 3000, p = 1000

k = 30 variables with regression coefficients of magnitude 3.5

Method FDR (%) Power (%) Theor. FDR
(nominal level q = 20%) control?

Knockoff+ (equivariant) 14.40 60.99 Yes
Knockoff (equivariant) 17.82 66.73 No

Knockoff+ (SDP) 15.05 61.54 Yes
Knockoff (SDP) 18.72 67.50 No

BHq 18.70 48.88 No
BHq + log-factor correction 2.20 19.09 Yes

BHq with whitened noise 18.79 2.33 Yes



Effect of sparsity level

Same setup with amplitudes set to 3.5 (q = 0.2)
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Effect of signal amplitude

Same setup with k = 30 (q = 0.2)
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Effect of feature correlation

Features ∼ N (0,Θ) Θjk = ρ|j−k|

n = 3000, p = 1000, and k = 30 and amplitude = 3.5
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Application to real HIV data



HIV drug resistance

Drug type # drugs Sample size # protease or RT # mutations appearing
positions genotyped ≥ 3 times in sample

PI 6 848 99 209
NRTI 6 639 240 294

NNRTI 3 747 240 319

response y: log-fold-increase of lab-tested drug resistance in

covariate Xj : presence or absence of mutation #j

Data from R. Shafer (Stanford) available at:

http://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006/

http://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006/


PI-type drug resistance
TSM list: mutations associated with the PI class of drugs in general, and is not

specialized to the individual drugs in the class

Knockoff BHq

Data set size: n=768, p=201
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Figure: q = 0.2. # positions on the HIV-1 protease where mutations were selected.
Horizontal line = # HIV-1 protease positions in TSM list.



NRTI-type drug resistance

Knockoff BHq

Data set size: n=633, p=292
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Figure: Validation against the treatment-selected mutation (TSM) panel



NNRTI-type drug resistance

Knockoff BHq

Data set size: n=732, p=311
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Heavy-tailed noise

Design as in HIV example (sparse matrix)

Errors as residuals from HIV example

Regression coefficients entered manually

FDR Power
(q = 20%)

Knockoff+ 20.31% 60.67%
BHq 25.47% 69.42%



Details



Knockoff constructions (n ≥ 2p)

X̃ = X(I − Σ−1 diag{s}) + ŨC

[
X X̃

]′ [
X X̃

]
=

[
Σ Σ− diag{s}

Σ− diag{s} Σ

]
:= G � 0

G � 0 ⇐⇒ diag{s} � 0
2Σ− diag{s} � 0
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Knockoff constructions(n ≥ 2p)

Equi-correlated knockoffs: sj = 2λmin(Σ) ∧ 1

〈Xj , X̃j〉 = 1− 2λmin(Σ) ∧ 1

Under equivariance, minimizes the value of |〈Xj , X̃j〉|

SDP knockoffs:

minimize
∑
j |1− sj |

subject to sj ≥ 0
diag{s} � 2Σ

⇐⇒
minimize

∑
j(1− sj)

subject to sj ≥ 0
diag{s} � 2Σ

Highly structured semidefinite program (SDP)

Other possibilities
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Symmetric statistics: W (
[
X X̃

]
, y)

Sufficiency property:

W = f
([
X X̃

]′ [
X X̃

]
,
[
X X̃

]′
y
)

Anti-symmetry property: swapping changes signs

Wj

([
X X̃

]
swap(S)

, y
)

= Wj

([
X X̃

]
, y
)
·
{

+1 j 6∈ S
−1 j ∈ S

column swap

++
____

+++
__

++
__

null
non null

0 t



Examples of statistics

Zj = sup{λ : β̂j(λ) 6= 0}, j = 1, . . . , 2p, and β̂(λ) sol. to augmented Lasso

Wj = (Zj ∨ Zj+p) · sign(Zj − Zj+p) Wj = Zj − Zj+p

Same with penalized estimate

min 1
2‖y −Xb‖22 + λP (b)

Forward selection/orthogonal matching pursuit: Z1, · · · , Z2p (reverse) order
in which 2p variables entered model

Wj = (Zj ∨ Zj+p) · sign(Zj − Zj+p)

Statistics based on LS estimates

Wj = |β̂LS
j |2 − |β̂LS

j+p|2 |β̂LS
j | − |β̂LS

j+p|

... (endless possibilities)
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Extensions



Other type-I errors

Can control familywise error rate (FWER), k-FWER, ...: Janson and Su (’15)

0 −
+++ + +

− −
+

enters late enters early
(significant)

|W|

T : time at which m knockoffs have entered before originals appear before

Reject hypotheses with ‘+’

Expected number of false discoveries

EV ≤ m



Other models
Suppose we wish to test for groups

y =
∑

g∈G
Xgβg + z Hg : βg = 0

Group lasso
min 1

2‖y −
∑
gXgβ̂g‖22 + λ

∑
g ‖β̂g‖2

Forward group selection

...

0 −
+++ + +

− −
+

enters late enters early
(significant)

|W|

Construct group knockoffs for exchangeability

Calculate statistics; e.g. signed reversed ranks

Compute threshold as before

Provides FDR control
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Summary

Knockoff filter = inference machine
You design the statistics, knockoffs take care of inference

Works under any design X (handles arb. correlations)

Does not require any knowledge of noise level σ

Very powerful when sparse effects

Open research: n < p...

FDR control is an extremely useful concept even away from counting errors and
successes



BHq

y ∼ N (Xβ, σ2I) ⇐⇒ β̂LS ∼ N (β, σ2(X ′X)−1)

Statistics are independent iff X ′X is diagonal (orthogonal design)

Orthogonal model: y ∼ N (β, I) (σ = 1 is known)

TBH = min

{
t :

p · P{|N (0, 1)| ≥ t}
#{j : |yj | = |βj + zj | ≥ t}

≤ q
}

Knockoff procedure (with lasso) is quite different:

Make control group

[
X X̃] =

[
Ip 0
0 Ip

]
=⇒ statistics =

[
y
z′

]

y ∼ N (β, I) indep. from z′ ∼ N (0, I)

Compute threshold (knockoff+) via

T = min

{
t : F̂DP(t) =

#{j : |z′j | ≥ t and |z′j | > |yj |}
#{j : |yj | ≥ t and |yj | > |z′j |}

≤ q
}
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Empirical comparison

p = 1000

# true signals is 200 → fraction of nulls is 0.8
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Some Closing Remarks: How About Prediction/Estimation?



FDR for estimation: y = Xβ + z

Goal: predict response from explanatory variables

Sparse (modern) setup: p large and only few important variables



FDR for estimation: y = Xβ + z

Goal: predict response from explanatory variables

Sparse (modern) setup: p large and only few important variables

Model selection via Cp

Cp(S) = ‖y −Xβ̂[S]‖2︸ ︷︷ ︸
RSS

+ 2σ2 |S|︸︷︷︸
model dim.

S ⊂ {1, . . . , p}

β̂[S]: fitted LS coefficients from variables in S

Cp(S) unbiased for prediction error of model S



FDR for estimation: y = Xβ + z

Goal: predict response from explanatory variables

Sparse (modern) setup: p large and only few important variables

Low bias Low variance

Cp

FWER

FDR



FDR thresholding (Abramovich and Benjamini (’96))

Orthogonal design: XTX = Ip =⇒ XT y ∼ N (β, σ2Ip)

Select nominal level q and perform BH(q) testing

β̂i =

{
XT
i y |XT

i y| ≥ tFDR

0 otherwise

Theorem (Abramovich, Benjamini, Donoho, Johnstone (’05))

Sparsity class `0(k) = {β : ‖β‖0 ≤ k}
Minimax risk

R(k) = inf
β̂

sup
β∈`0(k)

E ‖β̂ − β‖22

Set q < 1/2. Then asymptotically, as p→∞ and k ∈ [(log p)5, p1−δ]

E ‖β̂FDR − β‖22 = E ‖Xβ̂FDR −Xβ‖22 = R(k)(1 + o(1))



FDR thresholding (Abramovich and Benjamini (’96))

Orthogonal design: XTX = Ip =⇒ XT y ∼ N (β, σ2Ip)

Select nominal level q and perform BH(q) testing

β̂i =

{
XT
i y |XT

i y| ≥ tFDR

0 otherwise

Theorem (Abramovich, Benjamini, Donoho, Johnstone (’05))

Sparsity class `0(k) = {β : ‖β‖0 ≤ k}
Minimax risk

R(k) = inf
β̂

sup
β∈`0(k)

E ‖β̂ − β‖22

Set q < 1/2. Then asymptotically, as p→∞ and k ∈ [(log p)5, p1−δ]

E ‖β̂FDR − β‖22 = E ‖Xβ̂FDR −Xβ‖22 = R(k)(1 + o(1))



FDR thresholding (Abramovich and Benjamini (’96))

Orthogonal design: XTX = Ip =⇒ XT y ∼ N (β, σ2Ip)

Select nominal level q and perform BH(q) testing

β̂i =

{
XT
i y |XT

i y| ≥ tFDR

0 otherwise

Theorem (Abramovich, Benjamini, Donoho, Johnstone (’05))

Sparsity class `0(k) = {β : ‖β‖0 ≤ k}
Minimax risk

R(k) = inf
β̂

sup
β∈`0(k)

E ‖β̂ − β‖22

Set q < 1/2. Then asymptotically, as p→∞ and k ∈ [(log p)5, p1−δ]

E ‖β̂FDR − β‖22 = E ‖Xβ̂FDR −Xβ‖22 = R(k)(1 + o(1))



Other connections

SLOPE: Bogdan, van den Berg, Sabatti, Su and Candès (’13)

min
1

2
‖y −Xβ̂‖22 + λ1|β̂|(1) + λ2|β̂|(2) + . . .+ λp|β̂|(p)

λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0
|β̂|(1) ≥ |β̂|(2) ≥ . . . ≥ |β̂|(p)

[order statistic]

Adaptive minimaxity: C. and Su (’15)

Sparse class `0(k) = {β : ‖β‖0 ≤ k}
Fix q ∈ (0, 1] and set λi = σ · Φ−1(1− iq/2p) (BHq)

For some linear models, adaptive minimax estimation

sup
β∈`0(k)

E ‖Xβ̂SLOPE −Xβ‖22 = R(k)(1 + o(1))
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