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Unreliable research

Trouble at the lab

Scientists like to think of science as self-correcting. To an alarming degree, it is not

Oct 19th 2013 | From the print edition

“I SEE a train wreck looming,” warned Daniel
Kahneman, an eminent psychologist, in an open
letter last year. The premonition concerned
research on a phenomenon known as “priming”.
Priming studies suggest that decisions can be
influenced by apparently irrelevant actions or

events that took place just before the cusp of
choice. They have been a boom area in psychology
over the past decade, and some of their insights have already made it out of the lab and into the
toolkits of policy wonks keen on “nudging” the populace.



Snippets

The |
Economist

Unreliable research

Trouble at the lab

Scientists like to think of science as self-correcting. To an alarming degree, it is not

Oct 19th 2013 | From the print edition

@ Systematic attempts to replicate widely cited priming experiments have failed

@ Amgen could only replicate 6 of 53 studies they considered landmarks in
basic cancer science

@ HealthCare could only replicate about 25% of 67 seminal studies

Early report (Kaplan, '08): 50% of Phase Ill FDA studies ended in failure



New Yorker: December, 2010

ANNALS OF SCIENCE

THE TRUTH WEARS OFF

Is there something wrong with the scientific method?
BY JONAH LEHRER

DECEMBER 13, 2010

Many results that are rigorously proved and
accepted start shrinking in later studies.

“Significance chasing”
“Publication bias”
“Selective reporting”

“Why most published research findings are false” (loannidis, '05)
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New Truths That Only One Can See

JAN. 20,2014

Since 1955, The Journal of Irreproducible
Results has offered “spoofs, parodies,
whimsies, burlesques, lampoons and
satires” about life in the laboratory. Among
its greatest hits: “Acoustic Oscillations in
Jell-0, With and Without Fruit, Subjected to
Varying Levels of Stress” and “Utilizing
Infinite Loops to Compute an Approximate
Value of Infinity.” The good-natured jibes

Email are a backhanded celebration of science.
What really goes on in the lab is, by

Share implication, of a loftier, more serious
nature.

W Tweet

It has been jarring to learn in recent years

@ that a reproducible result may actually be
the rarest of birds. Replication, the ability of

another lab to reproduce a finding, is the
gold standard of science, reassurance that
you have discovered something true. But
that is getting harder all the time. With the
‘most accessible truths already discovered,
what remains are often subtle effects, some
50 delicate that they can be conjured up only
under ideal circumstances, using highly
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Personal and societal concern



Personal and societal concern

Great danger in seeing erosion of public confidence in science

Seems like scientific community is responding
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Nature's 18-point checklist:

398 | NATURE | VOL 496

| ANNOUNCEMENT |
Reducing our
irreproducibility

ver the past year, Nature has published a string of articles that
highlight failures in the reliability and reproducibility of pub-
lished research (collected and freely available at go.nature.com/
huhbyr). The problems arise in laboratories, but journals such as
this one compound them when they fail to exert sufficient scrutiny
over the results that they publish, and when they do not publ)sh
enough for other s to assess
From next month, Nature and the Nature research journals w)ll
introduce editorial measures to address the problem by improving
the consistency and quality of reporting in life-sciences articles.
To ease the interpretation and improve the reliability of published
results we will more systematically ensure that key methodologi-
cal details are reported, and we will give more space to methods
sections. We will examine statistics more closely and encourage
authors to be transparent, for example by including their raw data.
Central to this initiative is a checklist intended to prompt authors
to disclose technical and statistical information in their submis-
sions, and to encourage referees to consider aspects important for
research reproducibility (go.nature.com/oloeip). It was developed
after discussions with researchers on the problems that lead to
irreproducibility, including workshops organized last year by US
National Institutes of Health (NIH) institutes. It also d;

April 25, 2013

we will commission statisticians as consultants on certain papers,
at the editor’s discretion and at the referees’ suggestion.

‘We recognize that there is no single way to conduct an experi-
‘mental study. Exploratory investigations cannot be done with the
same level of statistical rigour as hypothesis-testing studies. Few
academiclaboratories have the means to perform the level of vali-
dation required, for example, to translate a finding from the labo-
ratory to the clinic. However, that should not stand in the way ofa
full report of how a study was designed, conducted and analysed
that will allow reviewers and readers to adequately interpret and
build on the results.

To allow authors to describe their experimental design and
methods in as much detail as necessary, the participating jour-
nals, including Nature, will abolish space restrictions on the
methods section.

To further increase transparency, we will encourage authors to
provide tables of the data behind graphs and figures. This builds
onour established data-d policy for specific experi
and large data sets. The source data will be made available directly
from the figure legend, for easy access. We continue to encour-
age authors to share detailed methods and reagent descriptions
by depositing protocols in Protocol Exchange (www.nature.com/
protocolexchange), an open resource linked from the primary paper.

Renewed attention to reporting and transparency is a small step.
Much bigger underlying issues contribute to the problem, and are
beyond the reach of journals alone. Too few biologists receive ade-
quate training in statistics and other quantitative aspects of their
subject. Menmnng of young scientists on matters of rigour and
i atbest. In academia, the ever increas-

pub-
lished concerns about reporting standards (or the lack of (hem) and
the collective experience of editors at Nature journals.

The checklist is not exhaustive. It focuses on a few experimental
and analytical design elements that are crucial for the interpreta-
tion of research results but are often reported incompletely. For
example, authors will need to describe methodological parameters
that can introduce bias or influence robustness, and provide precise
characterization of key reagents that may be subject to biological
variability, such as cell lines and antibodies. The checklist also con-
solidates existing policies about data deposition ang

ing pressures (0 publish and chase funds provide little incentive to
pursuestudies and publish results that contradict o confirm previ-
ous papers. Those
a published piece of work seldom geta i journals .
funders, even as money and effort are wasted on false assumptions.
Tackling these issues is a long-term endeavour that will require
the i of funders, instituti hers and pub-
lishers. It is encouraging that NIH institutes have led community
discussions on this topic and are considering their own recommen-
dations. We to take note of these and of our initiatives,

‘We will also demand more precise descriptions of statistics, and

25 APRIL 2013

and do whatever they can to improve research reproducibility. m
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Big data and a new scientific paradigm

Collect data first =  Ask questions later

o Large data sets available prior to formulation of hypotheses
@ Need to quantify “reliability” of hypotheses generated by data snooping

Very different from hypothesis-driven research



Big data and a new scientific paradigm

Collect data first =  Ask questions later J

o Large data sets available prior to formulation of hypotheses
@ Need to quantify “reliability” of hypotheses generated by data snooping

Very different from hypothesis-driven research

What does statistics have to offer?

@ Account for “look everywhere” effect

@ Understand reliability in the context of all hypotheses that have been explored




Most discoveries may be false: Sori¢ ('89)

1000 hypotheses to test

See also The Economist



Most discoveries may be false: Sori¢ ('89)

1000 hypotheses, 100 potential discoveries



Most discoveries may be false: Sori¢ ('89)

1000 hypotheses, 100 potential discoveries



Most discoveries may be false: Sori¢ ('89)
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False positives (5% level) = 45 = False discovery rate ~ 36%
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Most discoveries may be false: Sori¢ ('89)

m True positives

False negatives m False positives
I
!
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Power =~ 30%

—  False discovery rate =~ 60%

More false negatives than true positives!



Example: meta-analysis in neuroscience

Button et al. (2013) Power failure: why small sample size undermines the
reliability of neuroscience
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Nature Reviews | Neuroscience



False Discovery Rate (FDR): Benjamini & Hochberg ('95)

Hi,... H, hypotheses subject to some testing procedure

F##false discoveries
#discoveries

FDR =E '0/0 = 0’

o Natural type | error
@ Under independence (and PRDS) simple rules control FDR (BHq)
o Widely used



FDR control with BHq (under independence)

FDR: expected proportion of false discoveries

o Sorted p-values: p(1) < p(2) < ... < peyy (from most to least significant)

o Target FDR ¢

1.0 -~
o
s
08 rd
2 )
g 06 g
& -~
§ 0.4 -
o
[2]
02 - line ig/n
0.0

80

100



FDR control with BHq (under independence)
FDR: expected proportion of false discoveries

o Sorted p-values: p(1) < p(2) < ... < peyy (from most to least significant)
o Target FDR ¢

1.0 - - 1.0 - -
o K
E
0.8 - -
] 3 2
g 06 - g
Q -~ a
§ 0.4 g §
o o
(2] [}
02 - line ig/n
0.0
T T T T

0 20 40 60 80 100 0 20 40 60 80 100

Index

The cut-off is adaptive to number of non-nulls




Earlier work on multiple comparisons

Henry Scheffe John Tukey

Westfall and Young ('93)

Rupert Miller



Controlled Variable Selection



Contemporary problem: inference for sparse regression
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Contemporary problem: inference for sparse regression

Find locations on the genome that influence a trait: e.g. cholesterol level

HDL cholesterol
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Linear model (y = X8 + z) + e.g. Lasso fit
min Ly — XB)5 + Bl

@ y : cholesterol level of patients

@ X : genotype matrix; e.g. X; ; # of alleles of recessive type at location j
@ z environmental factors (not accounted by genetics)



Contemporary problem: inference for sparse regression

Find locations on the genome that influence a trait: e.g. cholesterol level
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Linear model (y = X8 + z) + e.g. Lasso fit
min Ly — XB)5 + Bl

@ y : cholesterol level of patients

@ X : genotype matrix; e.g. X; ; # of alleles of recessive type at location j
@ z environmental factors (not accounted by genetics)

How do we control the FDR of selected variables {i : 3; # 0}?




Sparse regression

Simulated data with n = 1500, p = 500
Lasso model with A = 1.75
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Sparse regression

Simulated data with n = 1500, p = 500
Lasso model with A = 1.75

_.-" - @ |False positive?

Fitted coefficient B;
0
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1 . O | True positive?
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Sparse regression

Simulated data with n = 1500, p = 500
Lasso model with A = 1.75

FDP = 2% = 47%

Fitted coefficient B;
-1 0
!
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Sparse regression

Simulated data with n = 1500, p = 500
Lasso model with A = 1.75

FDP = 2% = 47%

Fitted coefficient B;
-1 0
!
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Index j

Estimate FDP?



Sparse regression

Simulated data with n = 1500, p = 500
Lasso model with A = 1.75

FDP = 2% = 47%

Fitted coefficient B;
-1 0
!

-2

0 100 200 300 400 500

Index j

Estimate FDP? Forget it...



Controlled variable selection

> BiX;

=
Y = Xp + z y ~N(XB,0°I)
nxl1 nxppxl nx1



Controlled variable selection

> B X,
=~
y = X5 o+ oz y ~N(XB,0°I)
nxl1 nxppxl nx1

Goal: select set of features X; without too many false positives

# false positives
# features selected

o8 =g

False discovery rate

'0/0 = 0’

False discovery proportion



Controlled variable selection

> B X,
=~
y = X5 o+ oz y ~N(XB,0°I)
nxl1 nxppxl nx1

Goal: select set of features X; without too many false positives

# false positives
# features selected

o8 =g

False discovery rate

'0/0 =0’

False discovery proportion

Context of multiple testing (with possibly very many irrelevant variables)

Hj:szo jzl,...,p



This lecture

Novel procedure for variable selection controlling FDR in finite sample settings J

@ Requires n > p (and full column rank) for identifiability
n<p = XB=Xp andB#p

@ Works under any design X

@ Does not require any knowledge of noise level o

Ongoing research: n < p



The Knockoff Filter



The knockoff filter

It's not a name brand bag, just a cheap knockoff

Thesaurize.com

For each feature X, construct knockoff version X
Knockoffs serve as control group = can estimate FDP

(1) Construct fake variables (knockoffs)
(2) Calculate statistics for each original /knockoff pair

(3) Calculate a data-dependent threshold for the statistics



1. Knockoff features Xj

XXy =X/X,  forall j,k
X;Xk = X;Xk for all j # k

X

Would like knockoffs as uncorrelated to features as possible

Y

el



How?

Compute knockoffs via matrix computations and/or numerical optimization (later)

S 5 Y ¥ — diag{s} -0

x X]'[x X]= 5 dingls) - s€RP



How?

Compute knockoffs via matrix computations and/or numerical optimization (later)

S 5 Y ¥ — diag{s} -0

x X]'[x X]= 5 dingls) - s€RP

X = X(I — 2 'diag{s}) +UC

o U € R™ P with col. space orthogonal to that of X
@ (C'C Cholevsky factorization of 2diag{s} — diag{s}> ! diag{s} = 0

No need for new data or experiment




Why?
For null feature X

1oy d v - v
Xy = X)X+ Xjz= X XB+ X}z = Xjy

original features knockoff features
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1oy d v - v
Xy = X)X+ Xjz= X XB+ X}z = Xjy

original features knockoff features



Why?

Pairwise exchangeability property. For any subset of nulls N
d o1/
yy = [XX]'y

[X X]gwap(N

= knockoffs are a ‘control group’ for the nulls

knockoff features

original features



Knockoff method
Compute Lasso with augmented matrix:
. - 2
BV = argminyege & [y — (X X] -5+ Al

.
e

Fitted coefficient

500 original features 500 knockoff features
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Fitted coefficient

500 original features 500 knockoff features

o Lasso selects 49 original features & 24 knockoff features



Knockoff method
Compute Lasso with augmented matrix:
. - 2
BV = argminyege & [y — (X X] -5+ Al

Fitted coefficient

500 original features 500 knockoff features

o Lasso selects 49 original features & 24 knockoff features

o Pairwise exchangeability
= probably ~ 24 false positives among 49 original features



2. Statistics

Zj =sup{A:b;(\) # 0} first time X; enters model
Zj =sup{A:b;(\) #0} first time X; enters model

Test statistic IV for feature j
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(significant)



2. Statistics

Zj =sup{A:b;(\) # 0} first time X; enters model
Zj =sup{A:b;(\) #0} first time X; enters model

Test statistic IV for feature j

enters late enters early

(significant)

Many other choices (later)



Variation

Forward selection on augmented design [X X]

o First time (rank) either original or knockoff enters

e Tag '+' if original comes before its knockoff, ‘-' otherwise

+ 4+ + 4+ +
—e—9o—90—90—90—90—9o—0—0—) rank

enters late enters early
(significant)



Pairwise exchangeability of the nulls

exchangeable
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Pairwise exchangeability of the nulls

Value of A when X;enters

exchangeable
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Consequence of exchangeability

e null
® non null

Signs — 1-bit p-values



Knockoff estimate of FDR

FDP(t) = #{j null : W; >t} N #{j null : W; < —t}

R A S TR



Knockoff estimate of FDR

_ #{j null : W; >t} - #{j null : W; < —t}
C#W v T B W2V
# W <t} =
B #{j:WJ—]z v’ FDP(?)

FDP(t)




3. Selection and FDR control

Select features with large and positive statistics {IW; > T'}

#{j: W; < —t}
<
B W, SVl <gq Knockoff

T:min{tEW:

Theorem (Knockoff)

v - V : 4 false positives
R+qg1l|— R : total # of selections




3. Selection and FDR control

Select features with large and positive statistics {IW; > T'}

oW <
T:min{tGW: i Wy = —t) <q} Knockoff

#{jZWth}\/li

Theorem (Knockoff)

v - V : 4 false positives
R+qg1l|— R : total # of selections

W < —
T = min {teW: Ly Wy < 1) <q} Knockoff+

#{]W]Zt}\/l -

Theorem (Knockoff+)




Stopping rule

. '0/1+#{j:W-§—t}
T‘m'"{t' W, =1 Sq}

Stop first time ratio between # negatives and # positives below ¢
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Stopping rule

. .0/1+#{j:W-§—t}
T‘m'"{t' W, =1 Sq}

Stop first time ratio between # negatives and # positives below ¢



Why does all this work?
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CHGw > tpve =1
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T:min{t' 1+#{j:WjS_t} < }
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Why does all this work?

T:min{t' 1+#{j:WjS_t} < }

CHGw > tpve =1

_ Al Wy =T} 14 #{j null : W; < -T7}

FDP(T) = #{j:W; >Thv 1 1+#{null: W; < -T}

V)
#{jnull: W; > T}
=TT R W, < T

V—(T)




Why does all this work?

T:min{t' 1+#{j:WjS_t} < }

CHGw > tpve =1

A null: W5 =T} 14 #{j null : W
THG W, STIVL 14 £ nul W,
vH(T)
C #inull W > T}
=TT R W, < T

V—(T)

_T}

FDP(T) —

IAIA

e VT (t)/(1+V~(t)) is a super-martingale w.r.t. well defined filtration
@ T is stopping time



Optional stopping time theorem

e null ® non null
0 + + t— + 4+ + + +
1—0—0—0—‘—0 - oo oo
' X 4 (4 " N 4
A A A A A

FDR<(¢E [HV;(_T()T)}



Optional stopping time theorem

e null @ non null
0 + + t— + 4+ + + +
{—oa—o—i—o PP PP oo
' X 4 (4 " N 4
A A A A A

FDR<qE[HV;(—T()T)} <q]E{1+V;%]



Optional stopping time theorem

e null @ non null
0 + + t— + 4+ + + +
{—H—o—i—o oo o PP oo
o .0 (4 " N 4
A A A A A
Ber(#nulls,1/2)

V) Vo) V)
FDR < q E |:1+V_(T)} <qE L—FV_(O)] =qE 1+ #nulls — V+(0)



Optional stopping time theorem

e null @ non null
0 + + t— + 4+ + + +
{—H—o—i—o oo o PP oo
o .0 (4 " N 4
A A A A A
Ber(#nulls,1/2)

VD) Vo) Vo)
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Comparison with other methods



Permutation methods
Let X™ = X with rows randomly permuted
y m_|= 0
x X7 x x7) = [



Permutation methods

Let X™ = X with rows randomly permuted

¥ 0

X X™]'[X X"]~ {0 5

|

° ® o ® o [N ] A Aa *
S Prls 0500 o Fehuasns o a0 % o LM s pouas i, st Kol
T T T I

N —N 20 JOQ 150 200
TV Vv
signals nulls permuted features



Permutation methods

Let X™ = X with rows randomly permuted

1/ m o2 0
X X7 [Xx]N[O Z}
54 W, =
204 v Wl ’
154 . ’ :
Zj 104 . "'_ . v .
5 " ‘ ° o o ©e .o A
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0 30Q 150 200
TV Vv
signals nulls permuted features

FDR over 1000 trials
(nominal level ¢ = 20%)
Knockoff method 12.29%
Permutation method 45.61%




Other methods

@ Benjamini-Hochberg (BHq)
@ BHq + log factor correction
@ BHq with whitened noise



Other methods

@ Benjamini-Hochberg (BHq)
@ BHq + log factor correction
@ BHq with whitened noise

y~N(XB,0°I) — B ~N(B,o*(X'X)™)
Apply BHqg to

Not known to control FDR — log factor correction (Benjamini Yekutieli)



Empirical results

e Features N/(0,1,), n = 3000, p = 1000
@ k = 30 variables with regression coefficients of magnitude 3.5

Method FDR (%) Power (%) | Theor. FDR
(nominal level ¢ = 20%) control?

Knockoff+ (equivariant) 14.40 60.99 Yes
Knockoff (equivariant) 17.82 66.73 No
Knockoff+ (SDP) 15.05 61.54 Yes
Knockoff (SDP) 18.72 67.50 No
BHq 18.70 48.88 No
BHq + log-factor correction 2.20 19.09 Yes
BHqg with whitened noise 18.79 2.33 Yes




Effect of sparsity level

Same setup with amplitudes set to 3.5 (¢ = 0.2)
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Effect of signal amplitude

Same setup with £ = 30 (¢ = 0.2)
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Effect of feature correlation

Features ~ N (0,0) Q1 = p\j*kl
n = 3000, p = 1000, and k = 30 and amplitude = 3.5

30

100
-- Nominal level —=— Knockoff
—=— Knockoff —— Knockoff+
25 4 |~ Knockoff+ —— BHq
—— BHq 80 —
= < 60+
g g
g g
T &
40 —
20 —
5
0+ 0
T T T T T T T T T
0.0 0.2 04 0.6 0.8 0.0 0.2 0.4 0.6

Feature correlation p Feature correlation p



Application to real HIV data



HIV drug resistance

Drug type | # drugs | Sample size # protease or RT # mutations appearing
positions genotyped > 3 times in sample
Pl 6 848 99 209
NRTI 6 639 240 294
NNRTI 3 747 240 319

@ response y: log-fold-increase of lab-tested drug resistance in

@ covariate X;: presence or absence of mutation #j

Data from R. Shafer (Stanford) available at:

http://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006/


http://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006/

Pl-type drug resistance

TSM list: mutations associated with the PI class of drugs in general, and is not
specialized to the individual drugs in the class

Resistance to APV Resistance to ATV Resistance to IDV
2 B m AppeavlnTSM list 35
|4 o
v w0 Nm in TSM list 2
s
£ 254 25
g
2 204 20
g 15 15
g 10+ 10
T 54 5
2
I o
=
Knockoff Knockoff Knockoff BHq
Data set size: n=768, p=201 Data set size: n=329, p=147 Data set size: n=826, p=208
Resistance to LPV Resistance to NFV Resistance to SQV B Appear in TSM list
B Notin TSM list
35 35 35
30 30 20
25 2 2
20 20 20
15 15 15
10 10 10
5 5 5
0 4 0
Knockoff Knockoff Knockoff BHq
Data set size: n=516, p=184 Data set size: =843, p=209 Data set size: n=825, p=208

Figure: ¢ = 0.2. # positions on the HIV-1 protease where mutations were selected.
Horizontal line = # HIV-1 protease positions in TSM list.



NRTI-type drug resistance

Resistance to X3TC Resistance to ABC Resistance to AZT
3
2 30 | ® Appearin TSMlist 30 4 20
° @ Notin TSM list
4 25 25
2
2 20 20
g 15 15
fin
& 10 10
T
2 s 5 5
I
B —— 0 0
Knockoff BHg Knockoff BHq Knockoff BHq
Data set size: n=633, p=292 Data set size: n=628, p=294 Data set size: n=630, p=292
Resistance to D4T Resistance to DDI Resistance to TDF
30 «‘ 30 «‘ 30 «‘
25 25 25
20 20 20
15 15 15
10 10 10
: : E :
0 0 0
Knockoff BHg Knockoff BHg Knockoff BHg
Data set size: n=630, p=293 Data set size: n=632, p=292 Data set size: n=353, p=218

Figure: Validation against the treatment-selected mutation (TSM) panel



NNRTI-type drug resistance

Resistance to DLV Resistance to EFV Resistance to NVP
g 35 35 35
2 W Appear in TSM list
£ 30 4 @ Notin TSMlist 30 30
o 25 ] 25 25
s
£ 20 20 20
8
S 15+ 15 15
&
o 101 10 10
> -
z s 5 5
® 04 0 0
Knockoff BHg Knockoff BHq Knockoff BHq
Data set size: n=732, p=311 Data set size: n=734, p=318 Data set size: n=746, p=319

Figure: Validation against the treatment-selected mutation (TSM) panel



Heavy-tailed noise

@ Design as in HIV example (sparse matrix)
@ Errors as residuals from HIV example

@ Regression coefficients entered manually

FDR Power

(g =20%)
Knockoff+ 20.31% 60.67%
BHq 25.47% | 69.42%



Details



Knockoff constructions (n > 2p)



Knockoff constructions (n > 2p)

ER IR M L



Knockoff constructions (n > 2p)

[X X]/ [X X] = |:E _d?ag{s} > _d;ag{s}] =Gz0

diag{s} > 0

GZ0 = 9% diag{s} = 0



Knockoff constructions(n > 2p)

o Equi-correlated knockoffs: s; = 2 min(X) A 1
(X;,X;) =1 -2 min(Z) A 1

Under equivariance, minimizes the value of [(X;, X;)|



Knockoff constructions(n > 2p)

o Equi-correlated knockoffs: s; = 2 min(X) A 1
(X;, Xj) =1- 2 mn(2) A 1
Under equivariance, minimizes the value of [(X;, X;)|

@ SDP knockoffs:

minimize 225 11— s minimize
subject to 5, >0 S subject to
diag{s} < 2%

Highly structured semidefinite program (SDP)

@ Other possibilities

Zj(l - 55)
S5 Z 0
diag{s} < 2%



Symmetric statistics: W ([X X]|,y)

o Sufficiency property:

w=r([x X]'[x X],[x X]'y)

o Anti-symmetry property: swapping changes signs

w; ([x

XLMMQJO::WBGX>XLy){+1 ;ig

column swap
P e S

e null
e non null




Examples of statistics

o Zj =sup{\:3;(\)#0},j=1,...,2p, and B()\) sol. to augmented Lasso

Wj = (ZJ V Zjer) . 51gn(Z] — Zjer) Wj = ZJ — Zj+p



Examples of statistics

o Zj =sup{\:3;(\)#0},j=1,...,2p, and B()\) sol. to augmented Lasso

Wj = (ZJ V Zjer) . Slgl’l(Zj — Zj+p) Wj = ZJ — Zj+p

@ Same with penalized estimate

min 1|y — X0|2 + A\P(b)



Examples of statistics

o Zj =sup{\:3;(\)#0},j=1,...,2p, and B()\) sol. to augmented Lasso

Wj = (ZJ V Zjer) . Slgl’l(Zj — Zjer) Wj = ZJ — Zj+p

@ Same with penalized estimate

min 1|y — X0|2 + A\P(b)

e Forward selection/orthogonal matching pursuit: Z1,- -, Za, (reverse) order
in which 2p variables entered model

Wi =(Z;jV Zjyp) -sign(Z; — Zj4p)



Examples of statistics

o Z; =sup{\: Bj()\) 40}, j=1,...,2p, and B()) sol. to augmented Lasso
Wj = (ZJ V Zjer) . Slgl’l(Zj - Zjer) Wj = ZJ - Zj+p

@ Same with penalized estimate

min 1|y — X0|2 + A\P(b)

e Forward selection/orthogonal matching pursuit: Z1,- -, Za, (reverse) order
in which 2p variables entered model

Wi =(Z;jV Zjyp) -sign(Z; — Zj4p)

@ Statistics based on LS estimates

ALS S
WJ = |B; |2 | j+p|2 |ﬂL ‘_| ]+p|



Examples of statistics

o Z; =sup{\: Bj()\) 40}, j=1,...,2p, and B()) sol. to augmented Lasso
Wj = (ZJ V Zjer) . Slgl’l(Zj - Zjer) Wj = ZJ - Zj+p

@ Same with penalized estimate
min Ly — Xb|3 + AP(b)
e Forward selection/orthogonal matching pursuit: Z1,- -, Za, (reverse) order
in which 2p variables entered model

Wi =(Z;jV Zjyp) -sign(Z; — Zj4p)

@ Statistics based on LS estimates

ALS S
WJ = |B; |2 | j+p|2 |ﬂL ‘_| ]+p|

o ... (endless possibilities)



Extensions



Other type-l errors

Can control familywise error rate (FWER), k-FWER, ...: Janson and Su ('15)

: - o S P S S Y
0 J— —_— J—
enters late enters early

(significant)

@ T': time at which m knockoffs have entered before originals appear before
@ Reject hypotheses with ‘+'

Expected number of false discoveries

EV <m




Other models
Suppose we wish to test for groups

y:ZXgﬁg—l—z Hy:B8,=0
geG

@ Group lasso ) A
min %”y - Zg Xgﬂg”% + AZg HBg”Q

@ Forward group selection

° ..



Other models

Suppose we wish to test for groups

y:ZXgﬂg'i_Z Hg:IBQZO
geG

@ Group lasso

min 5 [ly — 32, XgBgll3 + A2, 18]l
@ Forward group selection
° ..




Other models

Suppose we wish to test for groups

y:ZXgﬁg—l—z Hy:B8,=0
geG

Group lasso ) A
mln %”y_ZngﬂQ”%—i_)\Zg HBg”Q
Forward group selection

+ ++ + ++
—t—e—e—e0o—0o—0o—0—0-0) |||
0 — — —
enters late enters early
(significant)

Construct group knockoffs for exchangeability

Calculate statistics; e.g. signed reversed ranks




Other models

Suppose we wish to test for groups

y:ZXgﬁg—l—z Hy:B8,=0
geG

Group lasso ) A
mln %”y_ZngﬂQ”%—i_)\Zg Hﬁg”Q
Forward group selection

+ ++ + +4
——f——e—eo——900—90— 0000 ) |V
0 — — —
enters late enters early
(significant)

Construct group knockoffs for exchangeability

Calculate statistics; e.g. signed reversed ranks

Compute threshold as before




Other models

Suppose we wish to test for groups

y:ZXgﬁg—l—z Hy:B8,=0
geG

Group lasso ) A
mln %”y_ZngﬂQ”%—i_)\Zg ||/89||2
Forward group selection

+ ++ + +4
——f——e—eo——900—90— 0000 ) |V
0 — — —
enters late enters early
(significant)

Construct group knockoffs for exchangeability

Calculate statistics; e.g. signed reversed ranks
@ Compute threshold as before

Provides FDR control




Summary

Knockoff filter = inference machine

You design the statistics, knockoffs take care of inference

® Works under any design X (handles arb. correlations)
@ Does not require any knowledge of noise level o

@ Very powerful when sparse effects

Open research: n < p...

FDR control is an extremely useful concept even away from counting errors and
successes




BHq

y~N(XB,0°l) = 5~ N(B (X' X))
Statistics are independent iff X'X is diagonal (orthogonal design)



BHq

Orthogonal model: y ~ N(8,1) (o =1 is known)

. p-P{IN(0,1)] > ¢} }
TegH = :
o mm{t #{7 : lyl =185 + 2] > t} =4




BHq

Orthogonal model: y ~ N(5,I) (0 =1 is known)

. p-P{IN(0,1)] > ¢} }
TegH = :
o mm{t #{7 : lyl =185 + 2] > t} =4

Knockoff procedure (with lasso) is quite different:
@ Make control group

I, 0

X X]= [o I,

] —  statistics = B,]

y ~ N(B,1) indep. from 2’ ~ N(0, 1)
e Compute threshold (knockoff+) via

_ |25 >t and |25 > |y;
T_min{t:FDP(t)#{] 1251 2 il |yj|}< }

= - _q
#{7: ly;| = ¢ and Jy;| > |25}



Empirical comparison

e p=1000
@ # true signals is 200 — fraction of nulls is 0.8

25 100
80 —
g g 60
@ &
3
2 & 40
5 - ---- Nominal level 20 —— BHq
—— BHq —— Knockoff+
—— Knockoff+
0 0
T T T T T T T T T T T T
1 2 3 4 5 6 1 2 3 4 5 6
Signal Magnitude Signal Magnitude
FDR Power

FDR and power of the BHq and knockoff+ methods vs. size A of the regression
coefficients (signal magnitude)



Some Closing Remarks: How About Prediction/Estimation?



FDR for estimation: y = X3 + z

@ Goal: predict response from explanatory variables

@ Sparse (modern) setup: p large and only few important variables



FDR for estimation: y = X3 + z

@ Goal: predict response from explanatory variables

@ Sparse (modern) setup: p large and only few important variables




FDR for estimation: y = X3 + z

@ Goal: predict response from explanatory variables

@ Sparse (modern) setup: p large and only few important variables

Low bias | Low variance
6 | @ X
FWER | XK O
FDR < <



FDR thresholding (Abramovich and Benjamini ('96))

@ Orthogonal design: XTX =1, = XTy ~ N(B,021,)

@ Select nominal level ¢ and perform BH(q) testing

B = X'y X[yl > tror
! 0 otherwise



FDR thresholding (Abramovich and Benjamini ('96))

@ Orthogonal design: XTX =1, = XTy ~ N(B,021,)

@ Select nominal level ¢ and perform BH(q) testing

Bi =

5 XTy X[yl > tror
0 otherwise

Theorem (Abramovich, Benjamini, Donoho, Johnstone ('05))
@ Sparsity class Ly(k) = {8 : ||Bllo < k}

@ Minimax risk

R(k)=inf sup E|B-8l3
B Bely(k)




FDR thresholding (Abramovich and Benjamini ('96))

@ Orthogonal design: XTX =1, = XTy ~ N(B,021,)

@ Select nominal level ¢ and perform BH(q) testing

B = X'y X[yl > tror
’ 0 otherwise

Theorem (Abramovich, Benjamini, Donoho, Johnstone ('05))

@ Sparsity class £y(k) = {8 : ||5]lo < k}

@ Minimax risk

R(k)=inf sup E|B-8l3
B Bely(k)

Set q¢ < 1/2. Then asymptotically, as p — oo and k € [(logp)®, p'~°]

E||Bror — B2 = E|| X Bror — X 8|12 = R(k)(1 + o(1))




Other connections

SLOPE: Bogdan, van den Berg, Sabatti, Su and Candés ('13)

Bl = 1Bl = - = 1Bl
> > ... > > P
AzAez. 2220 [order statistic]



Other connections

SLOPE: Bogdan, van den Berg, Sabatti, Su and Candes ('13)

. 1 A . . .
min §||y — XBI3 4+ AilBlay + A2lBlzy + - - - + AplBlip) J

M>A>.. >0, >0 Pl 2 Pl 2 .- 2 1Bl
ZA2Z .2 Ap 2 [order statistic]

Adaptive minimaxity: C. and Su ('15)
@ Sparse class £o(k) = {8 : ||Bllo < k}
e Fix ¢ € (0,1] and set \; = o - ®~1(1 —iq/2p) (BHq)

For some linear models, adaptive minimax estimation

sup  E || X fsope — X85 = R(k)(1+0(1))
Beto(k)




