A Bayesian framework for

personalized design in alternative splicing RNA-seq studies

Camille Stephan-Otto Attolini Biostatistics and bioinformatics Unit IRB Barcelona

Workshop on experimental Design and Big Data
May 8th 2015
The University of Warwick

Introduction

RNAseq: Big Data, Big Questions

RNAseq is a technique to measure the abundance (expression) of mRNA in a cell.

The main application is to find differences in expression between samples in distinct biological conditions

RNAseq: Big Data, Big Questions

Q:What is the "Big" in the data?
A: Several million reads are generated from a single sample. These reads correspond to about 20,000 genes in the human genome and, according to the most conservative annotations, to more than 40,000 (mostly overlapping) transcripts

The question

Find the optimal experimental design to better estimate transcript level expression and/or to find those transcripts differentially expressed between conditions while keeping the number of reads and samples (cost and time) as low as possible

Alternative splicing

IN A NUTSHELL

Alternative splicing

IN A NUTSHELL

Alternative splicing

IN A NUTSHELL

Alternative splicing

IN A NUTSHELL

Relative
35\% expression 65\%

RNA sequencing

ALSO IN A NUTSHELL

RNA sequencing

In a beautiful world

RNA sequencing
 In the real world

RNAseq

Real data

Statistical framework

Statistical framework

The data

- Impossible to model full data ($10^{\wedge} 7 \sim 10^{\wedge} 8$ seqs. per experiment)
- Experimental biases such as uneven distributions of fragments along transcripts
- Fragment length distributions not always as reported by lab

Statistical framework Exon paths

Statistical framework Exon paths

Path	Fragment Count
$1-2$	10

Statistical framework Exon paths

Path	Fragment Count
$1-2$	10
$1-1.2$	56

Statistical framework Exon paths

Path	Fragment Count
$1-2$	10
$1-1.2$	56
$2-4$	120

Statistical framework Exon paths

Path	Fragment Count
$1-2$	10
$1-1.2$	56
$2-4$	120
$1.2-2.3 .4$	8

Statistical framework Exon paths

Path	Fragment Count
$1-2$	10
$1-1.2$	56
$2-4$	120
$1.2-2.3 .4$	8
\ldots	\ldots

Statistical framework

Fragment start and length distributions

Bringing all together

The model

Path	Fragment Count
$1-2$	10
$1-1.2$	56
$2-4$	120
$1.2-2.3 .4$	8

Bringing all together

The model

Path	Fragment Count
$1-2$	10
$1-1.2$	56
$2-4$	120
$1.2-2.3 .4$	8

Statistical framework

Bayes rule rules!

$$
P(\pi \mid Y) \propto P(Y \mid \pi) P(\pi)
$$

Statistical framework

Bayes rule rules!

$$
P(\pi \mid Y) \propto P(Y \mid \pi) P(\pi)
$$

Statistical framework

Bayes rule rules!
$P(\pi \mid Y) \propto P(Y \mid \pi) P(\pi)$

$$
P(\mathbf{y} \mid \boldsymbol{\pi}, \boldsymbol{\delta})=\prod_{k}\left(\sum_{d \in \boldsymbol{\delta}} P(\text { path } k \mid d) \pi_{d}\right)^{y_{k}}
$$

where $P($ path $k \mid d)=\iint I($ path $k \mid s, I) d \hat{P}_{L}(I) d \hat{P}_{s}(s)$

- P_{L} : fragment length distrib.
- P_{s} : read start distrib. (e.g. 3' bias)

Statistical framework

Bayes rule rules!

$P(\pi \mid Y) \propto P(Y \mid \pi) P(\pi)$

$$
P(\mathbf{y} \mid \boldsymbol{\pi}, \boldsymbol{\delta})=\prod_{k}\left(\sum_{d \in \boldsymbol{\delta}} P(\text { path } k \mid d) \pi_{d}\right)^{y_{k}}
$$

where $P($ path $k \mid d)=\iint I($ path $k \mid s, I) d \hat{P}_{L}(I) d \hat{P}_{s}(s)$

- P_{L} : fragment length distrib.
- P_{s} : read start distrib. (e.g. 3' bias)

The Model

Path counts arise from a mixture (one component from each variant):

$$
P(\mathbf{y} \mid \boldsymbol{\pi}, \boldsymbol{\delta})=\prod_{k}\left(\sum_{d \in \boldsymbol{\delta}} P(\text { path } k \mid d) \pi_{d}\right)^{y_{k}}
$$

where $P($ path $k \mid d)=\iint I($ path $k \mid s, l) d \hat{P}_{L}(I) d \hat{P}_{s}(s)$

- P_{L} : fragment length distrib.
- P_{s} : read start distrib. (e.g. 3' bias)

Statistical framework

Prior

Statistical framework

 Model fitting- EM algorithm to maximize posterior probability
- Find point estimates of relative expressions, asymptotic credibility intervals and exact posterior samples
- The algorithm converges to a single maximum

Reads simulation

Following the same model, we can simulate reads from a given set of expressions, reproducing the same technical biases observed in the data

Sample size calculation

Question I: Coverage in a single sample

What is the number of reads that need to be sequenced in order to control the estimation error below a certain threshold?

Simulation setup

I. Compute relative expressions and distributions for pilot data (human and mouse)
2. For a range of total bp sequenced simulate under 5 parameter scenarios:

Mean of fragment's length	Read length
200	76
200	101
300	76
300	101
1500	1000

Simulation setup

3. Compute relative expression from simulated data
4. Compute mean absolute error between original expressions and computed expressions

Results: One sample problem

Results: One sample problem

Question II: Differential expression

How many samples per group and at what coverage should I sequence to get a desired number of differentially expressed genes(DEG)?

Publicly available data

Dataset A

We found a dataset consisting of 6 samples (3 for control and 3 for condition) sequenced at low coverage in a Mlseq Illumina sequencer.

A follow up dataset was generated with high coverage from a Hlseq Illumina sequencer for the same conditions

Publicly available data

 Dataset BWell know MAQC samples (human brain vs pooled human tissues) were generated in 5 technical replicates with high coverage in Hlseq Illumina sequencer.

Simulation setup

I. Compute relative expressions and distributions for a set of samples from pilot data (control vs condition)
2. Simulate 3 combinations of parameters:

Mean of fragment's length	Read length	Total reads
300	101	16 M
300	101	32 M
150	750	1.8 M

Simulation setup

3. Simulate 3 and 6 samples for each group *
4. Compute number of DEG genes for pilot and simulated data combined
5. Compare to number of DEG genes from real data
(*) We simulate new samples following a LNNMV model for each of the group's expression per transcript.

Simulation setup

(*) To simulate the expressions of new samples we use the lognormal-normal with modified variance model (LNNMV,Yuan and Kendiorski (2006)).

This model correctly fits the data as was seen from whole genome quantile plots and asymmetry checks

Results: DEG genes dataset A

Results: DEG genes dataset B

Implications

Prediction		Consequence	Beneffits
Accuracy in the expression estimation depends on on the organism and tissue	no general recommendations are valid	Don't be fooled	
Shorter reads (but more) are better to estimate expression	The tendency of increasing read length may not be optimal for RNAseq	Get better results at the same cost	
Fold changes between groups are unknown	sample size calculation is impossible without a pilot	Don't be fooled!	
DEG genes are gained when adding more samples to an existing dataset and not by increasing the number of reads per sample	Sequence more samples, not reads	Spend money for a benefit	
No more DEG are gained when adding more samples to an	Do not sequence more	Do not spend money	
existing dataset			

Conclusions

- With the advances in technology in biology little importance has been given to the optimal use of resources
- Almost no research has been done on sample size calculation
- Researchers believe that money=results... oh my my
- Batch and technical effects are rarely taken into account leading to no or wrong results

Bioconductor package: casper

http://www.bioconductor.org/packages/2.12/bioc/html/casper.html
Rossell D., Stephan-Otto Attolini C., Kroiss M., Stöcker A. (20|4) Quantifying alternative splicing from paired-end RNA-seq data. Annals of Applied Statistics, 8: I, 309-330.

Size calculations:
C. Stephan-Otto Attolini, V. Peña and D. Rossell. (submitted)

Joint work with:
David Rossell, IRB
Manuel Kroiss, Almond Stocker, Ludwig Maximilians
Universitaet
Victor Peña, University of Duke

Thank you

