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Motivation

Magnetic Resonance Imaging

⊕ Extremely versatile
⊕ Noninvasive, no ionizing radiation
	 Very expensive
	 Long scan times: Major limiting factor
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Motivation

Image Reconstruction

Ideal Image u

Reconstruction

Measurement

Design

y    X u

Data y
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Motivation

Sampling Optimization

Reconstruction

y    X u
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Bayesian Experimental Design

Posterior Distribution

Likelihood P(y |u): Data fit
Prior P(u): Signal properties
Posterior distribution P(u |y ):
Consistent information summary

P(y |u)
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Bayesian Experimental Design

Posterior Distribution

Likelihood P(y |u): Data fit
Prior P(u): Signal properties
Posterior distribution P(u |y ):
Consistent information summary

P(u |y ) =
P(y |u)× P(u)

P(y )
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Bayesian Experimental Design

Bayesian Experimental Design

Posterior: Uncertainty in
reconstruction
Experimental design:
Find poorly determined
directions
Sequential search with
interjacent partial
measurements
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Bayesian Experimental Design

Bayesian Experimental Design

Bayesian Sequential Design

How much do I know?
P(u |y ), H = H[P(u |y )]

How much would (x∗, y∗) help?
I(x∗, y∗) = H− H[P(u |y , y∗)]
How much will x∗ help?
I(x∗) = EP(y∗|y )[I(x∗, y∗)]
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Bayesian Experimental Design

Maximizing Information Gain

Score design extension X ∗ by information gain:

I(X ∗) = I(y∗,u |y ) = H[P(u |y )]︸ ︷︷ ︸
Before

−H[P(u |y∗,y )]︸ ︷︷ ︸
After

Standard approach in literature:
Assume: I(X ∗) tractable to compute
Assume: I(X ∗) cheap to compute (many X ∗)
Concentrate on combinatorial optimization aspects
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Bayesian Experimental Design

Maximizing Information Gain

Score design extension X ∗ by information gain:

I(X ∗) = I(y∗,u |y ) = H[P(u |y )]︸ ︷︷ ︸
Before

−H[P(u |y∗,y )]︸ ︷︷ ︸
After

Standard approach in literature:
Assume: I(X ∗) tractable to compute
Assume: I(X ∗) cheap to compute (many X ∗)
Concentrate on combinatorial optimization aspects

So is it . . . ?
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Bayesian Experimental Design

Challenges

I(X ∗) = H[P(u |y )]− H[P(u |y∗,y )]

Assume: I(X ∗) tractable to compute.
Only if P(u |y ) Gaussian . . .
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Bayesian Experimental Design

Image Statistics

Whatever images are . . .

they are not Gaussian!
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Bayesian Experimental Design

Challenges

I(X ∗) = H[P(u |y )]− H[P(u |y∗,y )]

Assume: I(X ∗) tractable to compute?
No: Needs approximate inference
Assume: I(X ∗) cheap to compute (many X ∗).
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Bayesian Experimental Design

Size Does Matter

1 Global covariances
Scores I(X ∗) need full CovP [u |y ]

2 Massive scale
R131072 (just one slice).

3 Many times
Posterior after each design extension
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Bayesian Experimental Design

Challenges

I(X ∗) = H[P(u |y )]− H[P(u |y∗,y )]

Assume: I(X ∗) tractable to compute?
No: Needs approximate inference
Assume: I(X ∗) cheap to compute (many X ∗)?
No: Needs new algorithms and high performance computing
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Variational Bayesian Inference

Sparsity Priors courtesy Florian Steinke
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Variational Bayesian Inference

Sparse Linear Model
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Variational Bayesian Inference

Variational Bayesian Inference

Approximate inference for non-Gaussian models
Computations driven by Gaussian inference
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Variational Bayesian Inference

Variational Bayesian Inference

P(u |y ) =
P(y |u)× P(u)

P(y )

Variational Inference Approximation
Write intractable integration as optimization
Relax to tractable optimization problem

Seeger Large Scale Bayesian Inference 08/05/2015 17 / 30



Variational Bayesian Inference

Variational Bayesian Inference

P(u |y ) =
P(y |u)× P(u)

P(y )

Variational Relaxation: Bound the master function

− log P(y ) = − log
∫

P(u ,y )du ≤ 1
2

min
γ

min
u∗

φ(u∗,γ)

Approximate posterior P(u |y ) by Gaussian
Integration⇒ Convex optimization

Seeger Large Scale Bayesian Inference 08/05/2015 17 / 30



Variational Bayesian Inference

No Inference Without . . .
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Variational Bayesian Inference

Why Inference Algorithms Are Slow
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Variational Bayesian Inference

Decoupling by Concavity

− log
∫

P(u ,y )du ≤ min
γ

min
u
φ(u ,γ)

Dependencies in posterior P(u |y )
⇒ Difficult couplings in criterion φ
Critically coupled part is concave
Upper bound by tangent plane
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Variational Bayesian Inference

Decoupling by Concavity

− log
∫

P(u ,y )du ≤ min
γ

min
u
φ(u ,γ) = min

z
min
γ

min
u
φz (u ,γ)︸ ︷︷ ︸

Decoupled problem

Dependencies in posterior P(u |y )
⇒ Difficult couplings in criterion φ
Critically coupled part is concave
Upper bound by tangent plane
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Variational Bayesian Inference

Double Loop Algorithm

Double loop algorithm
Inner loop optimization:
Standard MAP Estimation
Outer loop update:
Gaussian Variances
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Variational Bayesian Inference

Closing the Loop

I(X ∗) = EP(y∗|y ) [H[P(u |y )]− H[P(u |y ,y∗)]]

Gaussian prior P(u)? Things are simple
Posterior P(u |y ) Gaussian as well
Information gain tractable

I(X ∗) = 1
2 log

∣∣∣I + X ∗A−1X T
∗

∣∣∣ , A = CovP [u |y ]−1

⇒ Posterior covariance
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Variational Bayesian Inference

Closing the Loop

I(X ∗) = EP(y∗|y ) [H[P(u |y )]− H[P(u |y ,y∗)]]

Gaussian prior P(u)? Things are simple
Posterior P(u |y ) Gaussian as well
Information gain tractable

I(X ∗) = 1
2 log

∣∣∣I + X ∗A−1X T
∗

∣∣∣ , A = CovQ[u |y ]−1

⇒ Posterior covariance

Image priors P(u) are not Gaussian . . .
Variational approximation:
Gaussian posterior Q(u |y ) ≈ P(u |y )
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Variational Bayesian Inference

Variational Bayesian Experimental Design

I(X ∗) = EP(y∗|y ) [H[P(u |y )]− H[P(u |y ,y∗)]]

Given initial X , y .
repeat

Variational inference: Update γ s.t. Q(u |y ) ≈ P(u |y ).
for X ∗ ∈ Xcand do

Compute approximate information gain:
I(X ∗) = 1

2 log |I + X ∗A−1X T
∗ |, A = CovQ[u |y ]−1.

end for
Pick score maximizer X ∗. Acquire data y∗.
Append X ∗ to X , y∗ to y .

until X has desired size
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Variational Bayesian Inference

Gaussian Covariances

Elephant in the room . . .

Covariance matrix

CovQ[u |y ] = A−1

A = σ−2X HX + BTΓ−1B

1 Outer loop updates: z ← diag(BA−1BT )

2 Experimental design scores: I(X ∗) = 1
2 log |I + σ−2X ∗A−1X H

∗ |
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Variational Bayesian Inference

Gaussian Covariances

CovQ[u |y ]−1 = A = σ−2X HX + BTΓ−1B

Some fields care about them
Electronic structure calculations
Uncertainty quantifications for PDEs
Gaussian MRFs for remote sensing

Simple trick: Perturb&MAP Papandreou, Yuille, NIPS 2010

w l ∼ N(0,A) [simple], q l = A−1w l ∼ N(0,A−1),

CovQ[u |y ] ≈
∑

l
q l(q l)

H

One linear system per sample (parallelizable)
Noisy, but unbiased
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Experimental Results

Optimizing Cartesian MRI

Bayes Optim. VD Random Low Pass

Seeger et.al., MRM 63(1), 2010 Lustig, Donoho, Pauli, MRM 58(6), 2007 Common MRI practice
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Experimental Results

Experimental Results: Test Set Errors
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Outlook

Large Scale Bayesian Inference

Computer Vision
Hierarchically structured image priors Ko, Seeger, ICML 2012

Learning Image Models (fields of experts, . . . )
Bayesian dictionary learning
Intelligent user interfaces (Bayesian active learning)

Advanced variational inference
Speeding up expectation propagation Seeger, Nickisch, AISTATS 2011

Generic framework
You can do penalized estimation efficiently?
You can do variational Bayesian inference!
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Outlook

People& Code

glm-ie: Toolbox by Hannes Nickisch

mloss.org/software/view/269/

Generalized sparse linear models
MAP reconstruction and variational Bayesian
inference (double loop algorithm for
super-Gaussian bounding)
Matlab 7.x, GNU Octave 3.2.x

Hannes Nickisch (now Philips Research, Hamburg)
Rolf Pohmann, Bernhard Schölkopf (MPI Tübingen)
Young Jun Ko (EPFL)
Emtiyaz Khan (EPFL)

Seeger Large Scale Bayesian Inference 08/05/2015 29 / 30



Outlook
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