Design

Data and Tria

Simulatio

Conclusion

Sub-group C luster-Based Adaptive Designs for Precision Medicine (S C UBA)

Yuan Ji, PhD

Program for Computational Genomics & Medicine NorthShore University HealthSystem Department of Public Health Sciences The University of Chicago

5.8.2015

Design

Data and Tria

Simulation

Conclusion

SUBA and SCUBA

SUBA design (Xu et al. 2014, Statistics in Biosciences)

SCUBA design (Guo, Catenacci, and Ji, 2015. To be submitted)

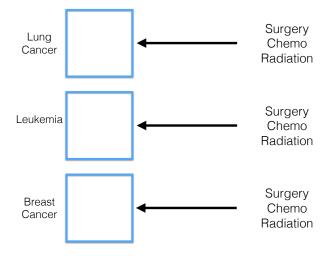
Motivation Design

Data and Trial

Simulation

Conclusion

One-size Fit All Cancer Treatment

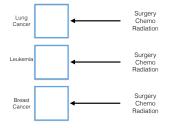


Simulation

Conclusion

One-size Fit All Cancer Treatment - 2

The problem of one-size fit all:



- Treat the "phenotypes" with brute force
- Severe side effects and poor quality of life
- Unpredictable prognosis
- Risk of over-treatment

otivation

Mo

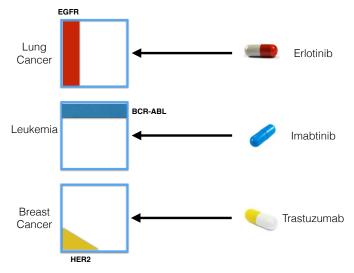
Design

Data and Tria

Simulation

Conclusion

Targeted Cancer Treatment



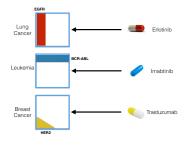
Design

Data and Tria

Conclusion

Targeted Cancer Treatment – 2

The benefits of being on target:



- Treat the "genotypes" that are causal of phenotypes
- Typically mild side effects and high quality of life
- Predictable prognosis
- Less chance of over-treatment

Design

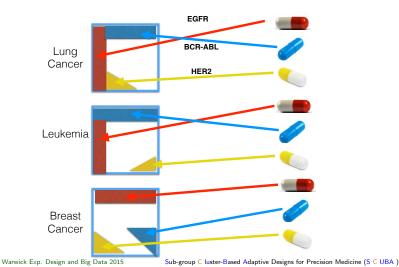
Data and Tria

Simulation

Conclusion

Precision Cancer Care

Disease agnostic; Genotype specific (e.g., NCI MATCH trial)



7 / 23

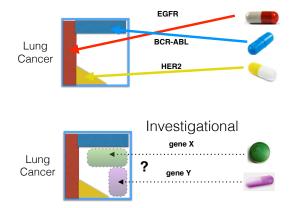
Design

Data and Tria

Simulation

Conclusion

Patients with NO actionable genotypes

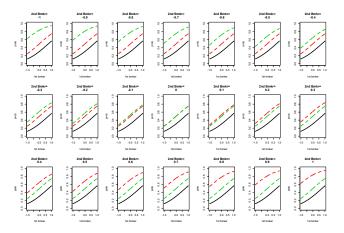


When to use SCUBA

Which treatment is the best depends on status of biomarkers X

When to use SCUBA

Which treatment is the best depends on status of biomarkers \boldsymbol{X} A hypothetical example



Design

Data and Tria

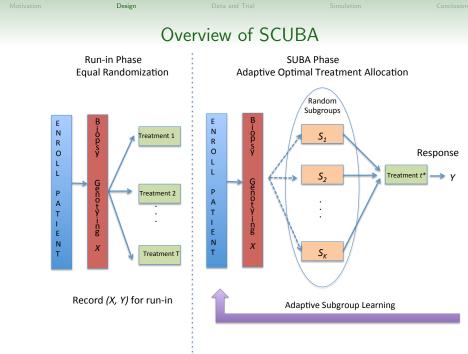
Simulation

Conclusion

Trial Setup for SCUBA

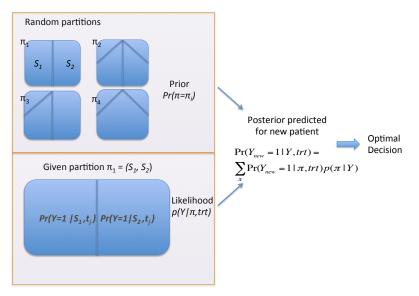
- Patients without known targeted drugs (e.g., relapsed patients out of options)
- A set of relevant biomarkers (or PCs) $\boldsymbol{X} = (X_1, X_2, ... X_p)$, p small
- A set of candidate drugs $(t_1, t_2, ..., t_T)$, $T \ge 1$.

Goal: find a rule that allocates patient subgroup $S_k(\mathbf{X})$ to drug t_k , such that the response rate under the rule is better than standard strategy, such as treating ALL patients with drug t_k or randomization between different drugs (in a trial).



Conclusion

Overview of Probability Model and Inference



CART-type model for binary outcomes

Consider binary outcome $y_i \in \{0,1\}$ where 0 and 1 denotes no response and response.

 $[\Pi]$

Let $\Pi = (B_1, B_1, \dots, B_M)$ be a random partition of $\mathbf{X} = R^k$; $[\theta \mid \Pi]$:

 $\theta_{j,m} \mid \Pi \stackrel{iid}{\sim} \mathsf{Beta}(a,b) \qquad j = 1, 2, 3, \ m = 1, \dots, M$

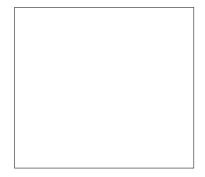
 $[Y|X,t,\Pi,\theta]$:

 $Y_i \mid X_i, t_i = j, \Pi, \theta \sim Bernoulli(\theta_{j, m_{X_i}}), \quad m_{X_i} = (m : X_i \in B_m)$

A simple random partition $P(\Pi)$

is constructed by randomly selecting one biomarker and partition the patient groups into half according to the median.

Choose one X_i with probability p_i ($\sum_i p_i = 1$), and with probability q to split the space by $\mathbb{I}(X_i > median(X_i))$. Do the same for the new subset if the split does occur. Repeat 3 times.



X

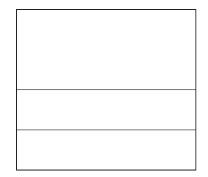
X1

Choose one X_i with probability p_i ($\sum_i p_i = 1$), and with probability q to split the space by $\mathbb{I}(X_i > median(X_i))$. Do the same for the new subset if the split does occur. Repeat 3 times.

R

X1

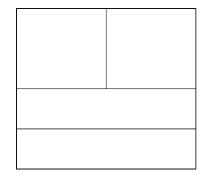
Choose one X_i with probability p_i ($\sum_i p_i = 1$), and with probability q to split the space by $\mathbb{I}(X_i > median(X_i))$. Do the same for the new subset if the split does occur. Repeat 3 times.



R

X1

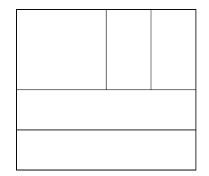
Choose one X_i with probability p_i ($\sum_i p_i = 1$), and with probability q to split the space by $\mathbb{I}(X_i > median(X_i))$. Do the same for the new subset if the split does occur. Repeat 3 times.



g

X1

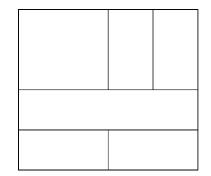
Choose one X_i with probability p_i ($\sum_i p_i = 1$), and with probability q to split the space by $\mathbb{I}(X_i > median(X_i))$. Do the same for the new subset if the split does occur. Repeat 3 times.



g

X1

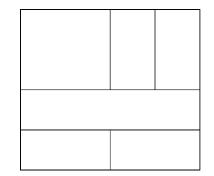
Choose one X_i with probability p_i ($\sum_i p_i = 1$), and with probability q to split the space by $\mathbb{I}(X_i > median(X_i))$. Do the same for the new subset if the split does occur. Repeat 3 times.



g

X1

Choose one X_i with probability p_i ($\sum_i p_i = 1$), and with probability q to split the space by $\mathbb{I}(X_i > median(X_i))$. Do the same for the new subset if the split does occur. Repeat 3 times.



Prior probability $p_2q \stackrel{\mathbf{x}}{\times} p_2qp_1q \times p_1^2q^2(1-p_1-p_2)^2$

Warwick Exp. Design and Big Data 2015

g

Let N be the total sample size. For patient i, let x_i be the biomarker profile, t_i be the treatment allocation, and y_i be the response outcome.

1 An initial run-in with an equal randomization of $n \leq N$ patients.

3 Compute for patient
$$n + 1$$
,

$$q_{n+1}(t) = Pr(y_{n+1} = 1 | \mathbf{y_n}, \mathbf{x_n}, \mathbf{t_n}, x_{n+1}, t_{n+1} = t) = \int Pr(y_{n+1} = 1 | x_{n+1}, t_{n+1} = t, \pi, \theta) p(\pi, \theta | \mathbf{y_n}, \mathbf{x_n}, \mathbf{t_n}) d\theta$$
.
4 Allocate patient $n + 1$ to treatment $t^* = \arg \max_t q_{n+1}(t)$.

5 Update the observed data as $(y_{n+1}, x_{n+1}, t_{n+1})$, and repeat steps 2-4 for patient n + 2, n + 3, ...N.

Let N be the total sample size. For patient i, let x_i be the biomarker profile, t_i be the treatment allocation, and y_i be the response outcome.

- $1\,$ An initial run-in with an equal randomization of $n\leq N$ patients.
- 2 Fit a Bayesian model $\prod_i p(y_i \mid x_i = x, t_i = t, \pi, \theta) \cdot p(\pi)p(\theta)$ to the data of n patients from step 1, denoted as $(\mathbf{y_n}, \mathbf{x_n}, \mathbf{t_n})$.

3 Compute for patient n + 1,

$$q_{n+1}(t) = Pr(y_{n+1} = 1 \mid \mathbf{y_n}, \mathbf{x_n}, \mathbf{t_n}, x_{n+1}, t_{n+1} = t) =$$

$$\int Pr(y_{n+1} = 1 \mid x_{n+1}, t_{n+1} = t, \pi, \theta) p(\pi, \theta \mid \mathbf{y_n}, \mathbf{x_n}, \mathbf{t_n}) d\theta$$

4 Allocate patient n + 1 to treatment $t^* = \arg \max_t q_{n+1}(t)$.

5 Update the observed data as $(y_{n+1}, x_{n+1}, t_{n+1})$, and repeat steps 2-4 for patient n + 2, n + 3, ...N.

Let N be the total sample size. For patient i, let x_i be the biomarker profile, t_i be the treatment allocation, and y_i be the response outcome.

- $1\,$ An initial run-in with an equal randomization of $n\leq N$ patients.
- 2 Fit a Bayesian model $\prod_i p(y_i \mid x_i = x, t_i = t, \pi, \theta) \cdot p(\pi)p(\theta)$ to the data of n patients from step 1, denoted as $(\mathbf{y_n}, \mathbf{x_n}, \mathbf{t_n})$.
- 3 Compute for patient n+1,

$$q_{n+1}(t) = Pr(y_{n+1} = 1 \mid \mathbf{y_n}, \mathbf{x_n}, \mathbf{t_n}, x_{n+1}, t_{n+1} = t) = \int Pr(y_{n+1} = 1 \mid x_{n+1}, t_{n+1} = t, \pi, \theta) p(\pi, \theta \mid \mathbf{y_n}, \mathbf{x_n}, \mathbf{t_n}) d\theta$$

4 Allocate patient n + 1 to treatment $t * = \arg \max_t q_{n+1}(t)$.

5 Update the observed data as $(y_{n+1}, x_{n+1}, t_{n+1})$, and repeat steps 2-4 for patient n + 2, n + 3, ...N.

Warwick Exp. Design and Big Data 2015

.

Let N be the total sample size. For patient i, let x_i be the biomarker profile, t_i be the treatment allocation, and y_i be the response outcome.

- $1\,$ An initial run-in with an equal randomization of $n\leq N$ patients.
- 2 Fit a Bayesian model $\prod_i p(y_i \mid x_i = x, t_i = t, \pi, \theta) \cdot p(\pi)p(\theta)$ to the data of n patients from step 1, denoted as $(\mathbf{y_n}, \mathbf{x_n}, \mathbf{t_n})$.
- 3 Compute for patient n+1,

$$q_{n+1}(t) = Pr(y_{n+1} = 1 \mid \mathbf{y_n}, \mathbf{x_n}, \mathbf{t_n}, x_{n+1}, t_{n+1} = t) = \int Pr(y_{n+1} = 1 \mid x_{n+1}, t_{n+1} = t, \pi, \theta) p(\pi, \theta \mid \mathbf{y_n}, \mathbf{x_n}, \mathbf{t_n}) d\theta$$

- 4 Allocate patient n + 1 to treatment $t^* = \arg \max_t q_{n+1}(t)$.
- 5 Update the observed data as $(y_{n+1}, x_{n+1}, t_{n+1})$, and repeat steps 2-4 for patient n + 2, n + 3, ...N.

Let N be the total sample size. For patient i, let x_i be the biomarker profile, t_i be the treatment allocation, and y_i be the response outcome.

- $1\,$ An initial run-in with an equal randomization of $n\leq N$ patients.
- 2 Fit a Bayesian model $\prod_i p(y_i \mid x_i = x, t_i = t, \pi, \theta) \cdot p(\pi)p(\theta)$ to the data of n patients from step 1, denoted as $(\mathbf{y_n}, \mathbf{x_n}, \mathbf{t_n})$.
- 3 Compute for patient n+1,

$$q_{n+1}(t) = Pr(y_{n+1} = 1 \mid \mathbf{y_n}, \mathbf{x_n}, \mathbf{t_n}, x_{n+1}, t_{n+1} = t) = \int Pr(y_{n+1} = 1 \mid x_{n+1}, t_{n+1} = t, \pi, \theta) p(\pi, \theta \mid \mathbf{y_n}, \mathbf{x_n}, \mathbf{t_n}) d\theta$$

- 4 Allocate patient n + 1 to treatment $t^* = \arg \max_t q_{n+1}(t)$.
- 5 Update the observed data as $(y_{n+1}, x_{n+1}, t_{n+1})$, and repeat steps 2-4 for patient n + 2, n + 3, ...N.

A Breast Cancer Trial

- Patients eligible to the trial are
 - have undergone neoadjuvant systemic therapy (NST) and surgery
 - have their protein biomarkers measured (through biopsy samples) at the end of NST but before surgery

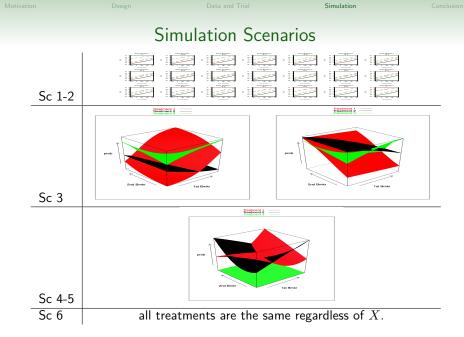
A Breast Cancer Trial

- Patients eligible to the trial are
 - have undergone neoadjuvant systemic therapy (NST) and surgery
 - have their protein biomarkers measured (through biopsy samples) at the end of NST but before surgery
- Three candidate treatments
 - Poly (ADP-ribose) polymerase (PARP) inhibitor DNA repair and programmed cell death
 - PI3K pathway inhibitor cell growth, proliferation, differentiation, motility, survival and intracellular trafficking
 - Cell cycle inhibitor
- About 300 patients had expression measurements for a number of proteins from MAPK and PI3K pathways.

Simulation Setup

Basic setup

- Samp size N = 300, run-in phase n = 100 (equal randomization), T = 3 treatment arms
- Six scenarios, 1,000 simulated trial per scenario.
- Compare to ER, AR (outcome adaptive), and probit-reg designs.



Operating Characteristics – All scenarios

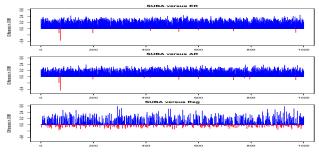
			50		-	4.0			-			CUD A	
Sc		ER			AR			Reg			SUBA		
	S*	1	2	3	1	2	3	1	2	3	1	2	3
1	/	66.76	66.60	66.64	83.02	65.35	51.63	119.46	70.13	10.41	177.11	18.67	4.22
2	S_1	33.49	33.09	33.24	33.37	33.19	33.25	35.24	32.88	31.69	72.57	18.37	8.88
	S_3	33.27	33.51	33.40	33.41	33.25	33.53	35.42	33.01	31.76	8.63	17.79	73.77
3	S_1	19.49	19.09	19.29	22.21	17.63	18.03	18.65	16.40	22.81	41.11	8.94	7.82
	S_2	25.23	25.17	25.35	21.13	26.81	27.80	24.10	21.86	29.79	13.67	35.91	26.17
	S_3	22.05	22.34	22.00	24.61	20.52	21.26	21.27	18.99	26.12	11.33	11.54	43.52
4	S_1	33.26	33.11	33.44	43.01	42.32	14.49	51.81	48.00	0	52.76	46.96	0.10
	S_2	33.50	33.49	33.20	42.32	43.46	14.41	51.75	48.44	0	50.78	49.29	0.11
5	S_1	33.26	33.11	33.44	39.14	38.49	22.19	51.51	48.25	0.05	51.13	47.05	1.63
	S_2	33.50	33.49	33.20	38.29	39.32	22.58	51.22	48.92	0.05	47.07	51.53	1.59
6	/	66.76	66.60	66.64	66.66	66.89	66.46	65.04	67.84	67.12	66.90	64.20	68.90

*: S_t is the subset of of biomarker space X in which the t-th treatment has the highest response rate.

Operating Characteristics – All scenarios

Define the overall response rate (ORR) as the proportion of responders among those patients who are treated after the run-in phase

ORR =
$$\frac{1}{N-n} \sum_{i=n+1}^{N} I(y_i = 1),$$

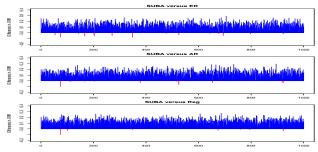


Simulation

Operating Characteristics – All scenarios

Define the overall response rate (ORR) as the proportion of responders among those patients who are treated after the run-in phase

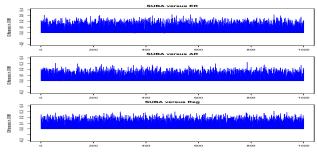
ORR =
$$\frac{1}{N-n} \sum_{i=n+1}^{N} I(y_i = 1),$$



Operating Characteristics – All scenarios

Define the overall response rate (ORR) as the proportion of responders among those patients who are treated after the run-in phase

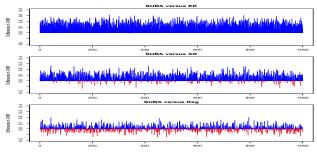
ORR =
$$\frac{1}{N-n} \sum_{i=n+1}^{N} I(y_i = 1),$$



Operating Characteristics – All scenarios

Define the overall response rate (ORR) as the proportion of responders among those patients who are treated after the run-in phase

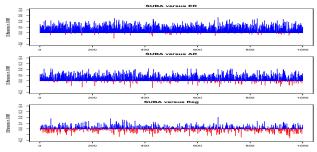
ORR =
$$\frac{1}{N-n} \sum_{i=n+1}^{N} I(y_i = 1),$$



Operating Characteristics – All scenarios

Define the overall response rate (ORR) as the proportion of responders among those patients who are treated after the run-in phase

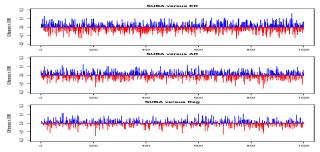
ORR =
$$\frac{1}{N-n} \sum_{i=n+1}^{N} I(y_i = 1),$$



Operating Characteristics – All scenarios

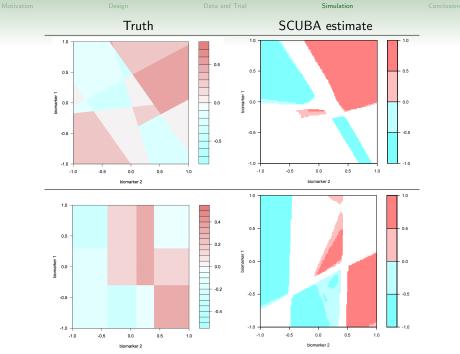
Define the overall response rate (ORR) as the proportion of responders among those patients who are treated after the run-in phase

ORR =
$$\frac{1}{N-n} \sum_{i=n+1}^{N} I(y_i = 1),$$



Bayesian nonparametric modeling for Clustering (SCUBA)

Model extension A nonparatric Bayesian model using Dirichlet process priors Flexible boundaries Allowing a varying number of boundaries Precision medicine Report subgroup-treatment pairs for confirmatory studies



Warwick Exp. Design and Big Data 2015

22 / 23

Conclusions

SCUBA is about precision medicine and targeted therapy.

- Precision medicine: Response to treatment (its order) is assumed to depend on *X* biomarkers.
- Adaptive learning based on Bayesian hierarchical models
- Subgroup-treatment pair report with confidence multiple confirmatory trials for targeted drugs/companion diagnositics