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Motivation Design Data and Trial Simulation Conclusion

SUBA and SCUBA

SUBA design (Xu et al. 2014, Statistics in Biosciences)

SCUBA design (Guo, Catenacci, and Ji, 2015. To be submitted)
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Motivation Design Data and Trial Simulation Conclusion

One-size Fit All Cancer Treatment
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Motivation Design Data and Trial Simulation Conclusion

One-size Fit All Cancer Treatment – 2

The problem of one-size fit all:

Lung 
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• Treat the “phenotypes”
with brute force

• Severe side effects and
poor quality of life

• Unpredictable prognosis

• Risk of over-treatment
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Targeted Cancer Treatment
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Motivation Design Data and Trial Simulation Conclusion

Targeted Cancer Treatment – 2

The benefits of being on target:

Lung 
Cancer

Leukemia 

Breast 
Cancer

Erlotinib

Imabtinib

Trastuzumab

EGFR

BCR-ABL

HER2

• Treat the “genotypes”
that are causal of
phenotypes

• Typically mild side
effects and high quality
of life

• Predictable prognosis

• Less chance of
over-treatment
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Motivation Design Data and Trial Simulation Conclusion

Precision Cancer Care

Disease agnostic; Genotype specific (e.g., NCI MATCH trial)
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Motivation Design Data and Trial Simulation Conclusion

Patients with NO actionable genotypes

Lung 
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Motivation Design Data and Trial Simulation Conclusion

When to use SCUBA

Which treatment is the best depends on status of biomarkers X

A hypothetical example
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Motivation Design Data and Trial Simulation Conclusion

Trial Setup for SCUBA

• Patients without known targeted drugs (e.g., relapsed patients out
of options)

• A set of relevant biomarkers (or PCs) X = (X1, X2, ...Xp), p small

• A set of candidate drugs (t1, t2, ..., tT ), T ≥ 1.

Goal: find a rule that allocates patient subgroup Sk(X) to drug tk, such
that the response rate under the rule is better than standard strategy ,
such as treating ALL patients with drug tk or randomization between
different drugs (in a trial) .
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Motivation Design Data and Trial Simulation Conclusion

Overview of SCUBA
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Motivation Design Data and Trial Simulation Conclusion

Overview of Probability Model and Inference

π1	   π2	  

π3	   π4	  

Random	  par//ons	  

Prior	  
Pr(π=πi)	  

Pr(Y=1	  |S1	  ,tj	  )	  	  Pr(Y=1|S2	  ,tj	  )	  	  

Given	  par//on	  π1	  =	  (S1,	  S2)	  

Likelihood	  
p(Y|π,trt)	  

Posterior	  predicted	  
for	  new	  pa/ent	  

Pr(Ynew =1|Y, trt) =

Pr(
π

∑ Ynew =1|π, trt)p(π |Y )

Op/mal	  
Decision	  

S1	   S2	  
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Motivation Design Data and Trial Simulation Conclusion

CART-type model for binary outcomes

Consider binary outcome yi ∈ {0, 1} where 0 and 1 denotes no response
and response.
[Π]

Let Π = (B1, B1, . . . , BM ) be a random partition of X = Rk;

[θ | Π] :

θj,m | Π
iid∼ Beta(a, b) j = 1, 2, 3, m = 1, . . . ,M

[Y |X, t,Π, θ] :

Yi | Xi, ti = j,Π, θ ∼ Bernoulli(θj,mXi
), mXi = (m : Xi ∈ Bm)

A simple random partition P (Π)
is constructed by randomly selecting one biomarker and partition the
patient groups into half according to the median.
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Motivation Design Data and Trial Simulation Conclusion

Prior on Π

Choose one Xi with probability pi (
∑

i pi = 1), and with probability q to
split the space by I(Xi > median(Xi)). Do the same for the new subset
if the split does occur. Repeat 3 times.
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X
2
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X
2
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X
2

X1

X
2

X1

X
2

Prior probability p2q × p2qp1q × p21q2(1− p1 − p2)2
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Motivation Design Data and Trial Simulation Conclusion

Subgroup-Based Trial Design

Let N be the total sample size. For patient i, let xi be the biomarker
profile, ti be the treatment allocation, and yi be the response outcome.

1 An initial run-in with an equal randomization of n ≤ N patients.

2 Fit a Bayesian model
∏

i p(yi | xi = x, ti = t, π, θ) · p(π)p(θ) to
the data of n patients from step 1, denoted as (yn,xn, tn).

3 Compute for patient n+ 1,

qn+1(t) = Pr(yn+1 = 1 | yn,xn, tn, xn+1, tn+1 = t) =∫
Pr(yn+1 = 1 | xn+1, tn+1 = t, π, θ)p(π, θ | yn,xn, tn)dθ

.

4 Allocate patient n+ 1 to treatment t∗ = arg maxt qn+1(t).

5 Update the observed data as (yn+1,xn+1, tn+1), and repeat steps
2-4 for patient n+ 2, n+ 3, ...N .
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Motivation Design Data and Trial Simulation Conclusion

A Breast Cancer Trial
• Patients eligible to the trial are

• have undergone neoadjuvant systemic therapy (NST) and surgery
• have their protein biomarkers measured (through biopsy samples) at

the end of NST but before surgery

• Three candidate treatments
• Poly (ADP-ribose) polymerase (PARP) inhibitor – DNA repair and

programmed cell death
• PI3K pathway inhibitor – cell growth, proliferation, differentiation,

motility, survival and intracellular trafficking
• Cell cycle inhibitor

• About 300 patients had expression measurements for a number of
proteins from MAPK and PI3K pathways.
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Motivation Design Data and Trial Simulation Conclusion

Simulation Setup

Basic setup

• Samp size N = 300, run-in phase n = 100 (equal randomization),
T = 3 treatment arms

• Six scenarios, 1,000 simulated trial per scenario.

• Compare to ER, AR (outcome adaptive), and probit-reg designs.
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Simulation Scenarios
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Motivation Design Data and Trial Simulation Conclusion

Operating Characteristics – All scenarios
Sc ER AR Reg SUBA

S* 1 2 3 1 2 3 1 2 3 1 2 3
1 / 66.76 66.60 66.64 83.02 65.35 51.63 119.46 70.13 10.41 177.11 18.67 4.22

2
S1 33.49 33.09 33.24 33.37 33.19 33.25 35.24 32.88 31.69 72.57 18.37 8.88
S3 33.27 33.51 33.40 33.41 33.25 33.53 35.42 33.01 31.76 8.63 17.79 73.77

3
S1 19.49 19.09 19.29 22.21 17.63 18.03 18.65 16.40 22.81 41.11 8.94 7.82
S2 25.23 25.17 25.35 21.13 26.81 27.80 24.10 21.86 29.79 13.67 35.91 26.17
S3 22.05 22.34 22.00 24.61 20.52 21.26 21.27 18.99 26.12 11.33 11.54 43.52

4
S1 33.26 33.11 33.44 43.01 42.32 14.49 51.81 48.00 0 52.76 46.96 0.10
S2 33.50 33.49 33.20 42.32 43.46 14.41 51.75 48.44 0 50.78 49.29 0.11

5
S1 33.26 33.11 33.44 39.14 38.49 22.19 51.51 48.25 0.05 51.13 47.05 1.63
S2 33.50 33.49 33.20 38.29 39.32 22.58 51.22 48.92 0.05 47.07 51.53 1.59

6 / 66.76 66.60 66.64 66.66 66.89 66.46 65.04 67.84 67.12 66.90 64.20 68.90

*: St is the subset of of biomarker space X in which the t-th treatment
has the highest response rate.
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Operating Characteristics – All scenarios

Define the overall response rate (ORR) as the proportion of responders among
those patients who are treated after the run-in phase

ORR =
1

N − n

N∑
i=n+1

I(yi = 1),

• Plot ORR(SUBA) - ORR(design): Sc 1 Sc 2 Sc 3 Sc 4 Sc 5 Sc 6
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those patients who are treated after the run-in phase

ORR =
1

N − n

N∑
i=n+1

I(yi = 1),

• Plot ORR(SUBA) - ORR(design): Sc 1 Sc 2 Sc 3 Sc 4 Sc 5 Sc 6
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Bayesian nonparametric modeling for Clustering (SCUBA)

Model extension A nonparatric Bayesian model using Dirichlet process
priors

Flexible boundaries Allowing a varying number of boundaries
Precision medicine Report subgroup-treatment pairs for confirmatory

studies
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Truth SCUBA estimate
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Conclusions

SCUBA is about precision medicine and targeted therapy.

• Precision medicine: Response to treatment (its order) is assumed to
depend on X – biomarkers.

• Adaptive learning based on Bayesian hierarchical models

• Subgroup-treatment pair report with confidence – multiple
confirmatory trials for targeted drugs/companion diagnositics
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