

An Introduction to Design for Six Sigma concepts

Dr Jane Marshall
Product Excellence using 6 Sigma
Module

PEUSS 2011/2012 Design for Six Sigma Page 1

Objectives of the session

- History of Six Sigma
- Describe the Six Sigma Philosophy
- Introduce DFSS
- Key points in DFSS
- DFSS background
- DFSS process
- Differences between DFSS and Six Sigma

Introduction to Six Sigma

- Six Sigma is:
 - A business process
 - Proactive approach to designing and monitoring key activities
 - Philosophy
 - Methodology
 - A process that is customer focussed and profit driven

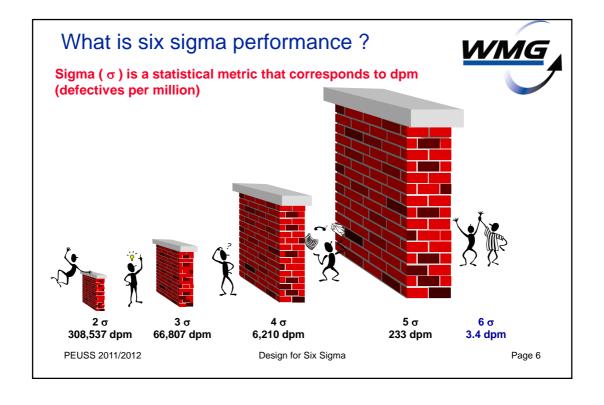
PEUSS 2011/2012

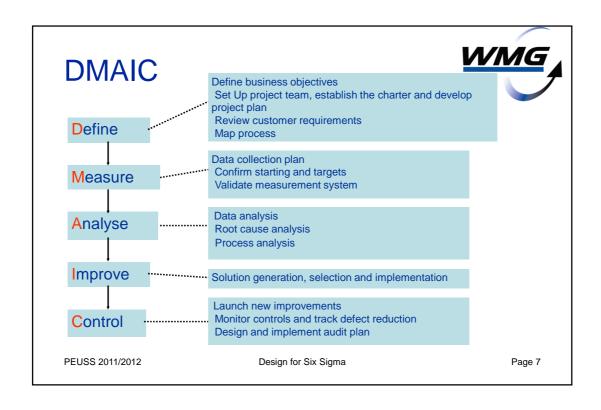
Design for Six Sigma

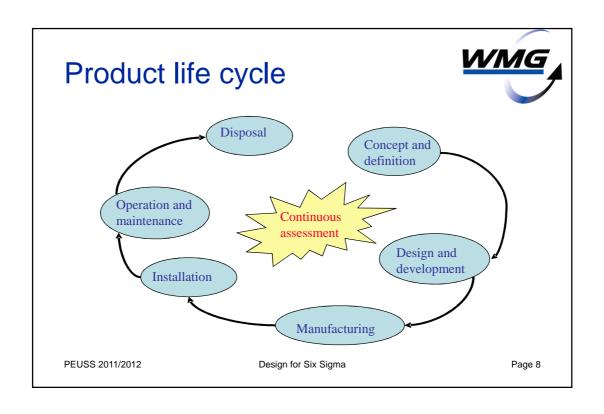
Page 3

Introduction to Six Sigma

- It works by:
 - Being adopted by the whole company;
 - Creating an internal infrastructure within the company;
 - Using metrics to measure processes and changes to processes
 - Using scientific methods, changing the working culture and introducing business process management


PEUSS 2011/2012


Design for Six Sigma


Six Sigma Background

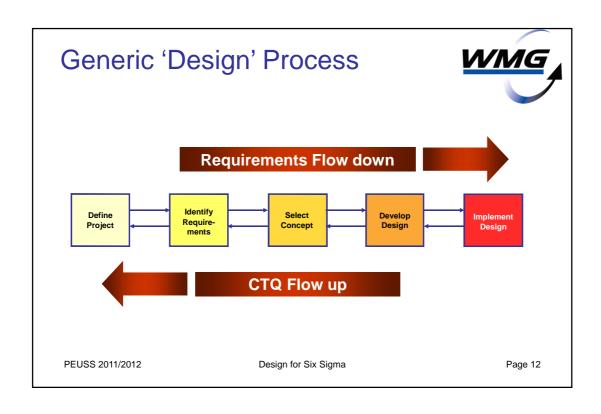
- Motorola employee investigating variation in various processes
- Acted on results using tools to reduce variation
- Improved the effectiveness and efficiency of the processes
- Engaged CEO
- GE is the company that made SIX Sigma a management philosophy

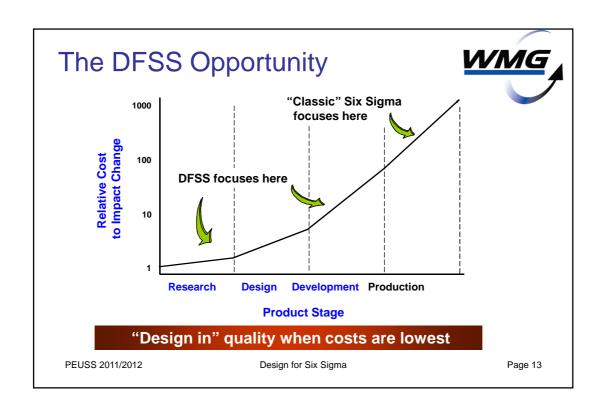
Introduction to DFSS

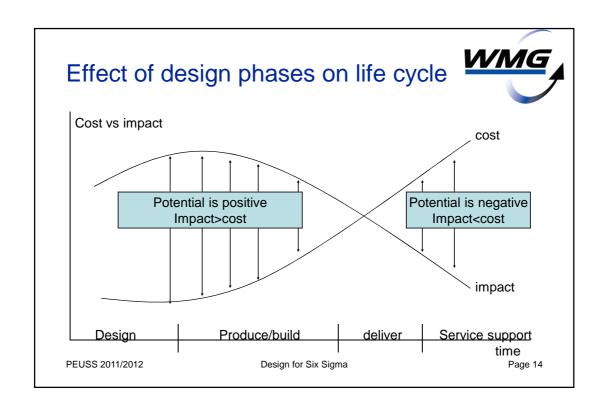
- Systematic methodology for designing or redesigning products or services according to customer requirements and expectations.
- Optimises design process to achieve six sigma performance
- · Get it 'right first time'

PEUSS 2011/2012 Design for Six Sigma Page 9

What is Design For Six Sigma?




- Companies who had seen the success of Six Sigma for problem solving using DMAIC wanted to apply data driven tools and techniques to the design of new products, processes & services
- Typically, after 2 years of DMAIC, Design For Six Sigma programmes were launched
- Applied in both Manufacturing and Service industries in technical and non-technical environments
- Used to define and/or supplement the 'design' process


When to Use DFSS

- · Creating a new product, process, or service
- Incremental improvement cannot close the gap between the current process capability and customer requirements
- Should spend time understanding the faults of existing systems before you embark on a a redesign methodology

The Vision of DFSS

Reactive Design Quality

DFSS

Predictive Design Quality

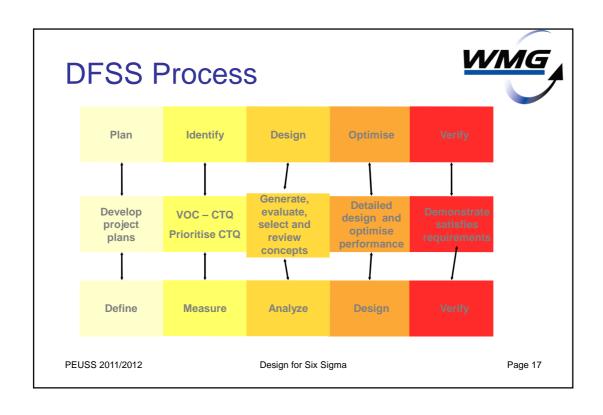
From

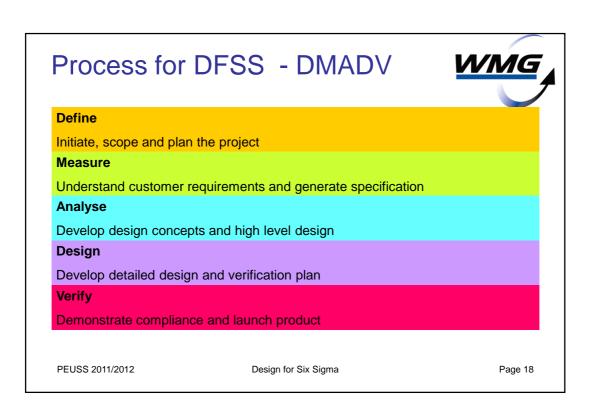
- Evolving design requirements
- Extensive design rework
- Product performance assessed by "build and test"
- Performance and producibility problems fixed <u>after</u> product in use
- Quality "tested in"

Το

- Disciplined CTQ flow-down through requirements management
- Controlled design parameters
- Confidence in product performance
- <u>Designed</u> for robust performance and manufacture
- Quality "designed in"

PEUSS 2011/2012 Design for Six Sigma Page 15


DFSS Methodology



- DMADV
 - Define, Measure, Analyse, Design and Verify
- PIDOV
 - Plan, Identify, Design, Optimise and Validate.

PEUSS 2011/2012

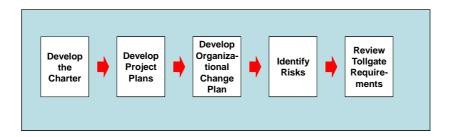
Design for Six Sigma

Tollgates and phases

- Stopping point within the flow of phases
 - A thorough assessment of deliverables
 - A thorough review of the project management plans for the next phase
- Checklists
 - Summary statements of tools and best practices required to fulfil gate deliverable
- Scorecards
 - Summary statements from specific application of tools and best practice

PEUSS 2011/2012 Design for Six Sigma Page 19

DMADV



Define

PEUSS 2011/2012 Design for Six Sigma

DMADV - Define

PEUSS 2011/2012 Design for Six Sigma Page 21

Elements of a Charter

- Problem Statement
- Opportunity Statement
- Importance
- Expectations/Deliverables
- Scope
- Schedule
- Team Resources

PEUSS 2011/2012 Design for Six Sigma

Develop Project Plans

- Project schedule and milestones
- Organizational change plan
- Risk management plan
- Review schedule

PEUSS 2011/2012 Design for Six Sigma Page 23

Risk Management Plan

- Design projects face a number of risks
- The team's job is to anticipate where the key risks of failure are and to develop a plan to address those risks
- In Define, the team should:
 - Identify known and potential risks for the project
 - Indicate when and how the risks will be addressed

Project Reviews

- Regular reviews are key for successful projects and should be included in the project schedule
- There are several levels of review:
 - Milestone or tollgate reviews; weekly reviews; daily reviews
- In addition, design projects have three unique reviews:
 - Concept review; High-level design review;
 Detailed design review

PEUSS 2011/2012 Design for Six Sigma Page 25

Key Outputs of DEFINE Phase

- Project team
- Project business case
- Project objective
- Project plan (GANNT chart)
- Document control systems
- Risk reduction plan

PEUSS 2011/2012

Design for Six Sigma

DMADV

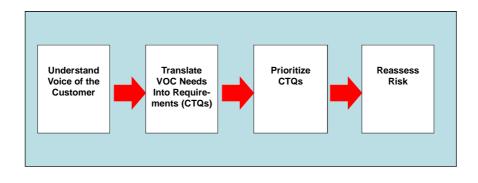
Measure

PEUSS 2011/2012 Design for Six Sigma Page 27

DMADV - Measure

- Goals:
 - Collect Voice of the Customer data
 - Translate VOC into design requirements (CTQs)
 - Identify the most important CTQs
 - Develop the measurement system for each CTQ
 - Develop a design scorecard
 - Revise project objective if necessary
- Output:
 - Prioritized CTQs

Measure: Tools



- Data collection plan
- Customer segmentation
- Customer research
- Voice of Customer table
- Kano model
- Affinity diagram
- Benchmarking
- QFD (Quality Function Deployment)

PEUSS 2011/2012 Design for Six Sigma Page 29

Measure: Key Activities

PEUSS 2011/2012

Design for Six Sigma

What is the Voice of the Customer?

- The term Voice of the Customer (VOC) is used to describe customers' needs and their perceptions of your product or service
- It includes all forms of interaction between customers and your organization

Use of Kano analysis

PEUSS 2011/2012 Design for Six Sigma Page 31

Critical to Quality Characteristics

- A quality characteristic that specifies how the customer need will be met by the product/service to be designed
- A quantitative measure for the performance of the quality characteristic
- A target value that represents the desired level of performance that the characteristic should meet
- Specification limits that define the performance limits that will be tolerated by customers
- Several CTQs will exist for each need.
- Use QFD to transfer VOC data into CTQs

Develop and Validate a measurement system

- Review data requirements
- Review how to capture data
- Review applicable analysis methods
 - e.g. compare voice of the process with voice of the customer – SPC and capability analysis
- Decision criteria to determine acceptance
- Establish validity of the measurement system

PEUSS 2011/2012 Design for Six Sigma Page 33

Develop a design scorecard

Used to help the team to:

- Establish nominal values and specification limits for each CTQ
- Predict output of the voice of the process with respect to stability (SPC)
- Highlight problems and risks of CTQs
- Track CTQs throughout the entire life of the product

Generic design scorecard

		t A (Voice	of the	Scorecard Part B (Predicted Voice of the process)					
customer)										
CTQ	Target	LSL	USL	Sigma	Stable	Shape	Mean	Standard	DPU	Predicted
	C			target	(Y/N)	•		Deviation		Process
										Sigma

PEUSS 2011/2012 Design for Six Sigma Page 35

Reassess Scope and Risk

- How difficult do we predict it will be to meet all the target values of the most important CTQs?
- Is it necessary to adopt a phased approach to meet the target?
- What are the risks associated with not meeting the CTQs now?
- What are the risks associated with dropping some of the less important CTQs from consideration?

Measure: Tollgate Review

- This tollgate review focuses on
 - Customer segmentation strategy
 - Top 10-15 customer needs
 - Top 8-10 CTQs and targets
 - Summarized benchmark information
 - Platform management matrix
 - CTQ achievement matrix
- The review can lead to the following steps:
 - Proceed to Analyse
 - Redo parts Measure
 - Stop the project

PEUSS 2011/2012 Design for Six Sigma Page 37

DMADV

Analyse

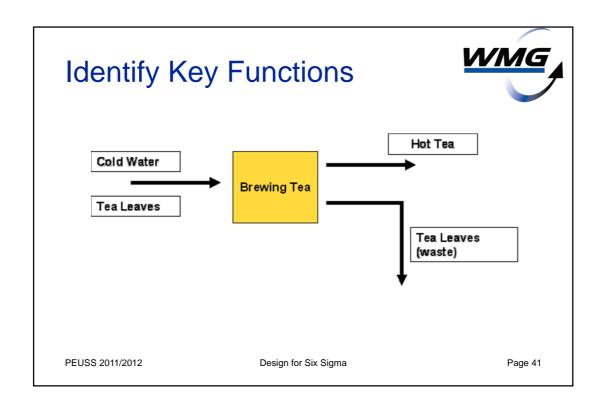
PEUSS 2011/2012

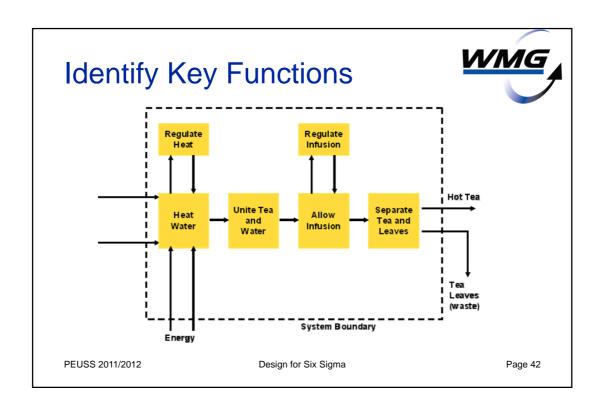
Design for Six Sigma

DMADV - Analyse: Key questions

- Important processes/functions that must be designed to meet the design requirements?
- Key inputs and outputs of each process?
- Processes for which innovative new designs are required to maintain a competitive advantage?
- Different solutions available for designing each process?
- What criteria do we use to evaluate these design alternatives?
- Collect information on these criteria for evaluation?

PEUSS 2011/2012 Design for Six Sigma Page 39


DMADV - Analyse



PEUSS 2011/2012

Design for Six Sigma

Generate Concepts

- Concepts are generated using two approaches:
- Creative idea-generation techniques that focus on analogy, connections, extrapolations and creative visualization to develop new ideas
- Benchmarking techniques that study similar designs in competing and non-competing businesses

PEUSS 2011/2012 Design for Six Sigma Page 43

Design Review

- Process for objectively evaluating the quality of a design at various stages of the design process
- Opportunity for voices external to the design team to provide feedback on the design, as the product and service is being developed
- Helps to ensure that the design will satisfy customers, and that the design process will function effectively to produce a high quality product or service

When to conduct a design review

- Concept Review: Conducted after two to three key concepts have been identified and their feasibility has been determined.
- High Level Design Review: Conducted after a selected concept has been designed to some level of detail and tested, and before detailed design begins.
- Pre-pilot Design Review: Conducted when the detailed design is complete and the product/service is ready to be piloted.

PEUSS 2011/2012 Design for Six Sigma Page 45

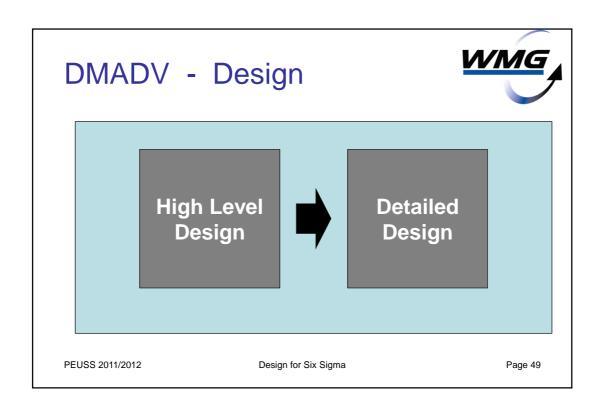
Design for X

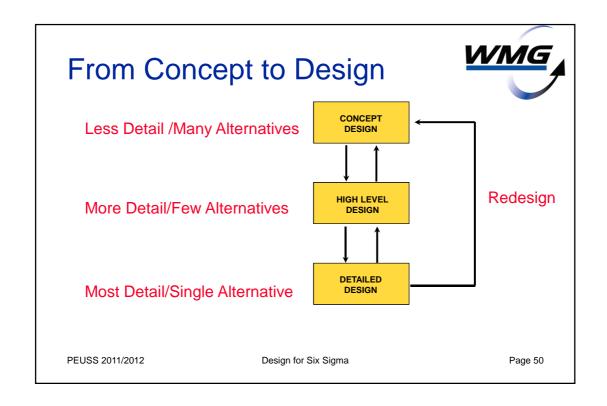
- Design for manufacture
- Design for assembly
- · Design for reliability
- Design for testability
- Design for service
- Design for quality
- Design for reusability
- Design for environment

Analyse: Tollgate Review

- This tollgate review focuses on:
 - List of key functions
 - List of top concepts
 - Pugh Matrix
 - Concept review outputs
 - Risk analysis update
- This review can lead to the following steps:
 - Proceed to High Level Design
 - Redo work on concepts, concept review and tollgate review
 - Stop the project

PEUSS 2011/2012 Design for Six Sigma Page 47


DMADV



Design

PEUSS 2011/2012

Design for Six Sigma

Design: Goals and Outputs

- Goals:
 - Develop high level and detailed design
 - Test design components
 - Prepare for pilot and full scale deployment
- Outputs:
 - Tested high level design
 - Tested detailed design
 - Plans for process control
 - Completed design reviews

PEUSS 2011/2012 Design for Six Sigma

WMG

Page 51

Design: Tools

- QFD
- Simulation
- Rapid prototyping
- Weibull analysis
- SPC and process capability
- · Detailed design scorecards
- FMEA
- · Reliability testing and qualification testing
- Design reviews

PEUSS 2011/2012

Design for Six Sigma

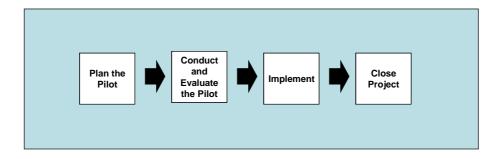
Tollgate review

The pre-pilot detailed design tollgate review focuses on:

- Developed design
- Completed FMEA/simulation analysis
- Design solutions for vulnerable elements
- Organizational Change Plan updates
- Process management system variables
- Process management system details

PEUSS 2011/2012 Design for Six Sigma Page 53

DMADV


Verify

PEUSS 2011/2012

Design for Six Sigma

DMADV - Verify

PEUSS 2011/2012

Design for Six Sigma

Page 55

Steps in the Verify phase

- Build a prototype
- Pilot test the prototype
- conduct design reviews using design scorecards
- Decide if the process is meeting business objectives
- Close DMADV project
- Transfer lessons learned from the project

PEUSS 2011/2012

Design for Six Sigma

Verify: Goals and Outputs

- Goals:
 - 'Stress-testing' and de-bugging of prototype
 - Implementation and team closure
- Outputs:
 - Working prototype with documentation
 - Plans for full implementation
 - Process owners using control plans to measure, monitor and maintain process capability
 - Project closure and documentation completed
 - Ownership transition from sponsor to operations management, and from design team to process management team(s)
 - Lessons learned

PEUSS 2011/2012

Design for Six Sigma

Page 57

Completion Checklist

- Completed project documentation that summarizes results and learnings
- Recommendations (supported by updated information, if possible) for the next generation of this design
- Plans for (or results from) communicating your achievements to the rest of the organization
- Plans for celebrating your success

PEUSS 2011/2012 Design for Six Sigma

Advantages of DFSS

- Provide structure to development process
- Anticipate problems and avoid them
- Reduce life cycle cost
- Improve product quality, reliability and durability
- Cultural change
- Minimise design changes
- Improve communication between functions

PEUSS 2011/2012 Design for Six Sigma Page 59

Difference between SS and DFSS

DMAIC	DFSS
reactionary	proactive
detecting and resolving problems	preventing problems
Existing products or services	Design of new products, services or processes;
Financial benefits quantified quickly	Financial benefits long-term
Mainly manufacturing processes	Marketing R&D and design
	DFSS team cross-functional

PEUSS 2011/2012

Design for Six Sigma

DFSS Summary

- Rigorous approach to design
- Primarily used for new product design
- Structured approach
- DMADV and PIDOV
- Tailored for each company
- In conjunction with product introduction
- Pushes key issues up front design for reliability and design for manufacture