Skip to contentSkip to navigationFull graphics

Other DLM Projects

Remote Laser Welding (RLW) Laboratory Development

Budget: £1M, funded by InnovateUK/HVM Catapult

Remote Laser Welding (RLW) for Ultralight Aluminium Body-in-White Structure

PI: Ceglarek and Franciosa
Burdget: £875k, funded by InnovateUK/HVM Catapult

Remote laser welding (RLW) is emerging as a promising joining technology (one of the Key Enabling Technologies) in vehicle manufacturing. By having laser optics embedded into the robot and a scanning mirror head as the end-effector, RLW can easily create joints in different locations of the product through simple robot repositioning and/or laser beam redirection from a remote distance. In essence, RLW takes advantage of three main characteristics of laser welding: non-contact, single-sided joining technology, and high power beam capable of creating a joint in a fraction of a second.

While industry is using RLW processes for assembly of steel automotive body, RLW’s applications for joining aluminium panels have yet to move beyond experimental setups (TRL 3-4-5). This is mostly due to the following challenges:

The goal of this project is to develop, implement and pilot in industry RLW process for aluminium door structure assembly. To overcome the main challenges the project will develop a closed-loop in-process control scheme and apply it for RLW process for aluminium door assembly. This aim targets a critical area where maximum lightweighting benefit can be obtained.

This is a collaborative RTD project initially with JLR and Stadco (UK SME). Stadco is a tier-1 supplier of stamped parts and subassemblies for JLR.

Chamaeleon: New lightweight materials and processing technologies for common lightweight architecture of electric and hybrid powertrain systems

Coordinator: Jaguar Land Rover
Total funding: £3,826,050; WMG funding: £1M; WP5 Laser Welding funding: £351,823. Funded by UK Advanced Propulsion Centre (APC6).

Project Chamaeleon offers UK capability to deliver high volume, lightweight materials and processing technologies to reduce weight and improve vehicle rigidity in new architectures so that electric and hybrid powertrains can be fitted on common platforms, rather than bespoke designs. The technology will address the torsional stiffness challenge without constraining interior vehicle volume. It will thus improve driveability and bring down the consumer cost of electric and hybrid powertrain options, whilst reducing weight, and therefore emissions, also in diesel and petrol powered vehicles. It will deliver innovation which will, over time, spread into the wider industry, offering export opportunities for UK-based suppliers. Without Government support it would not be possible to move forward at the same speed. JLR and suppliers would source relevant technology from overseas and JLR would not be able to launch the technology on its new Range Rover model architecture in 2020, thereby adding weight and probably reducing take up of electric and hybrid variants of some models for up to 7 years.

RLW demonstration for Aluminium door system. The technology offers solutions for: (1) fixture design and optimisation for non-ideal compliant parts; (2) off-Line Programming of remote welding robot with collision detection; (3) welding parameters selection and optimisation; (4) thermal distortion minimisation based on multi-physic variation simulation.

In-process Quality Improvement (IPQI)

In-process Quality Improvement (IPQI) is a five year EPSRC funded collaborative project with Universities and industrial partners. It aims to develop and implement a systematic methodology and toolsets for modelling, analysis and in-process quality control of a Reconfigurable Assembly System integrated within a multi-station assembly system with compliant (deformable) parts.

For more information: In-process Quality Improvement (IPQI)

Best Care, Anywhere: Integrating Primary Care in Coventry Programme

‘Best Care, Anywhere’ integrates three linked high impact primary care schemes into existing services:

The initiative covers 64 GP practices serving a patient population of 374,335. Researchers at the University of Warwick are involved with large quantitative data collection and analysis for impact evaluation.


Back to the top of the page


Full graphics | Sign in

© MMXVIII  |  Privacy  |  Cookies  |  Accessibility