
 
 
 
 
 

Introduction to Stata 
MSc Research Methods 

2008-2009 
 
 

Michael McMahon1 
 

                                                 
1 This is a version of the course and notes that I have given to PhD students in the Department of Economics at the London School 
of Economics for the past 3 years, as well as to economists at the Bank of England. It builds on earlier courses given by Martin 
Stewart (2004) and Holger Breinlich (2005). Any errors are my own responsibility and should you wish to contact me please 
email me (m.mcmahon@warwick.ac.uk ). 



Full Table of contents 
GETTING TO KNOW STATA AND GETTING STARTED ................................................................................. 5 

WHY STATA? ............................................................................................................................................................. 5 
WHAT STATA LOOKS LIKE ......................................................................................................................................... 5 
GETTING HELP............................................................................................................................................................ 6 

Manuals ................................................................................................................................................................ 6 
Stata’s in-built help and website .......................................................................................................................... 6 
The web................................................................................................................................................................. 6 
Colleagues ............................................................................................................................................................ 6 

DIRECTORIES AND FOLDERS....................................................................................................................................... 7 
READING DATA INTO STATA ...................................................................................................................................... 7 

use......................................................................................................................................................................... 7 
insheet................................................................................................................................................................... 7 
Stat/Transfer program.......................................................................................................................................... 8 
Manual typing....................................................................................................................................................... 8 

VARIABLE AND DATA TYPES ...................................................................................................................................... 9 
Indicator or data variables................................................................................................................................... 9 
Numeric or string data ......................................................................................................................................... 9 
Missing values ...................................................................................................................................................... 9 

EXAMINING THE DATA ............................................................................................................................................. 10 
List ...................................................................................................................................................................... 10 
Browse/Edit ........................................................................................................................................................ 10 
Assert .................................................................................................................................................................. 10 
Describe.............................................................................................................................................................. 11 
Codebook............................................................................................................................................................ 11 
Summarize .......................................................................................................................................................... 11 
Tabulate.............................................................................................................................................................. 11 
Inspect ................................................................................................................................................................ 11 
Graph ................................................................................................................................................................. 12 

SAVING THE DATASET .............................................................................................................................................. 12 
Preserve and restore........................................................................................................................................... 12 

KEEPING TRACK OF THINGS...................................................................................................................................... 13 
Do-files and log-files .......................................................................................................................................... 13 
Labels ................................................................................................................................................................. 14 
Notes................................................................................................................................................................... 15 
Review ................................................................................................................................................................ 15 

SOME SHORTCUTS FOR WORKING WITH STATA ........................................................................................................ 15 
DATABASE MANIPULATION............................................................................................................................... 17 

ORGANISING DATASETS ........................................................................................................................................... 17 
Rename ............................................................................................................................................................... 17 
Recode and Replace ........................................................................................................................................... 17 
Keep and drop (including some notes on if-processing) .................................................................................... 17 
Sort ..................................................................................................................................................................... 18 
By-processing ..................................................................................................................................................... 19 
Append, merge and joinby .................................................................................................................................. 19 
Collapse.............................................................................................................................................................. 20 
Order, aorder, and move .................................................................................................................................... 21 

CREATING NEW VARIABLES ..................................................................................................................................... 22 
Generate, egen, replace...................................................................................................................................... 22 
Converting strings to numerics and vice versa................................................................................................... 22 
Combining and dividing variables...................................................................................................................... 23 
Dummy variables................................................................................................................................................ 23 
Lags and leads.................................................................................................................................................... 24 

CLEANING THE DATA ............................................................................................................................................... 25 
Fillin and expand................................................................................................................................................ 25 
Interpolation and extrapolation.......................................................................................................................... 25 



Splicing data from an additional source ............................................................................................................ 26 
PANEL DATA MANIPULATION: LONG VERSUS WIDE DATA SETS .............................................................................. 27 

Reshape .............................................................................................................................................................. 27 
OPTIONAL EXERCISES:............................................................................................................................................. 29 

1. Penn World Tables 6.1 ................................................................................................................................... 29 
2. Create new variables ...................................................................................................................................... 29 

ESTIMATION............................................................................................................................................................ 30 
PLAN FUTURE TUTORIAL SECTIONS .......................................................................................................................... 30 
LINEAR REGRESSION ................................................................................................................................................ 31 
POST-ESTIMATION.................................................................................................................................................... 34 

Prediction ........................................................................................................................................................... 34 
Hypothesis testing............................................................................................................................................... 34 
Extracting results................................................................................................................................................ 36 
OUTREG2 – the ultimate tool in Stata/Latex or Word friendliness? ................................................................. 37 

EXTRA COMMANDS ON THE NET............................................................................................................................... 38 
Looking for specific commands .......................................................................................................................... 38 
Checking for updates in general......................................................................................................................... 38 

MORE ESTIMATION .............................................................................................................................................. 41 
CONSTRAINED LINEAR REGRESSION......................................................................................................................... 41 
DICHOTOMOUS DEPENDENT VARIABLE .................................................................................................................... 41 
PANEL DATA............................................................................................................................................................ 42 

Describe pattern of xt data ................................................................................................................................. 42 
Summarize xt data .............................................................................................................................................. 43 
Tabulate xt data.................................................................................................................................................. 43 
Panel regressions ............................................................................................................................................... 44 

TIME SERIES DATA ................................................................................................................................................... 47 
Stata Date and Time-series Variables ................................................................................................................ 47 
Getting dates into Stata format........................................................................................................................... 48 
Using the time series date variables................................................................................................................... 50 
Making Use of Dates .......................................................................................................................................... 50 
Time Series Tricks Using Dates.......................................................................................................................... 51 

PROGRAMMING ..................................................................................................................................................... 52 
PROGRAM BASICS .................................................................................................................................................... 52 

Creating or “defining” a program..................................................................................................................... 52 
Naming a program ............................................................................................................................................. 52 
Redefining a program......................................................................................................................................... 53 
Debugging a program ........................................................................................................................................ 53 
Program arguments............................................................................................................................................ 53 
Renaming arguments .......................................................................................................................................... 54 

MACROS .................................................................................................................................................................. 54 
Macro contents ................................................................................................................................................... 57 
Manipulation of macros ..................................................................................................................................... 58 
Temporary objects .............................................................................................................................................. 59 

LOOPING .................................................................................................................................................................. 60 
for ....................................................................................................................................................................... 60 
foreach................................................................................................................................................................ 61 
Incremental shift (number of loops is fixed) ....................................................................................................... 61 
Macro shift (number of loops is variable) .......................................................................................................... 62 

BRANCHING ............................................................................................................................................................. 64 
ADO PROGRAMMING ............................................................................................................................................... 66 

Median Program -- Version #1 .......................................................................................................................... 66 
Median Program -- Version #2 .......................................................................................................................... 66 
Median Program -- Version #3 .......................................................................................................................... 67 



Notes Outline 
 
In the limited lecture time, it is not be possible to cover everything – it never is with a program as large and as flexible as Stata. 
Moreover, you all have such diverse interests that I do not believe I can target the interests of any one of you without leaving the 
others upset. Therefore, I shall endeavour to take you from a position of complete novice (some having never seen the program 
before), to a position from which you are confident users who, through practice, can become intermediate and onto expert users. 
 
In order to help you, the notes are based around practical examples – these examples use macro data but have no 
economic meaning to them. They are simply there to show you how the program works. The optional exercises, for 
which data is provided on my website – http://www2.warwick.ac.uk/fac/soc/economics/pg/modules/rm/notes/stata . 
These are to be completed in your own time if you need some data to work with.  
 

http://www2.warwick.ac.uk/fac/soc/economics/pg/modules/rm/notes/stata


Getting to Know Stata and Getting Started  
 
Why Stata? 
 
There are lots of people who use Stata for their applied econometrics work. But there are also numerous people who use other 
packages (Eviews or Microfit for those getting started, RATS/CATS for the time series specialists, or Matlab, Gauss, or Fortran 
for the really hardcore). So the first question that you should ask yourself is why should I use Stata?  
 
Stata is an integrated statistical analysis packaged designed for research professionals. The official website is 
http://www.stata.com/. Its main strengths are handling and manipulating large data sets (e.g. millions of observations!), and it has 
ever-growing capabilities for handling panel and time-series regression analaysis. The most recent version is Stata9 and with each 
version there are improvements in computing speed, capabilities and functionality. It now also has pretty flexible graphics 
capabilities. It is also constantly being updated or advanced by users with a specific need – this means that even if a particular 
regression approach is not a standard feature, you can usually find someone on the web who has written a programme to carry-out 
the analysis and this is easily integrated with your own software.  
 
What Stata looks like 
 
The Stata package is located under Start menu. The current version is Stata 10.  
 

 
 
There are 4 different packages available: Stata MP (multi-processor) which is the most powerful, Stata SE (special edition), 
Intercooled STATA and Small STATA. The main difference between these versions is the maximum number of variables, 
regressors and observations that can be handled (see http://www.stata.com/order/options-e.html#difference-sm for details). The 
Bank of England is currently running the SE-version, version 9.  

Stata is a command-driven package. Although the newest versions also have pull-down menus from which different commands 
can be chosen, the best way to learn Stata is still by typing in the commands. This has the advantage of making the switch to 
programming much easier which will be necessary for any serious econometric work. However, sometimes the exact syntax of a 
command is hard to get right –in these cases, I often use the menu-commands to do it once and then copy the syntax that appears. 

You can enter commands in either of two ways:  
- Interactively: type the first command and execute it, then the next, and so on.  
- Do-file: type up a list of commands in a “do-file”, essentially a computer programme, and execute the do-file.  

The vast majority of your work should use do-files. If you have a long list of commands, executing a do-file once is a lot quicker 
than executing several commands one after another. Furthermore, the do-file is a permanent record of all your commands and the 

http://www.stata.com/
http://www.stata.com/order/options-e.html#difference-sm


order in which you ran them. This is useful if you need to “tweak” things or correct mistakes – instead of inputting all the 
commands again one after another, just amend the do-file and re-run it. Working interactively is useful for “I wonder what 
happens if …?” situations. When you find out what happens, you can then add the appropriate command to your do-file. To start 
with we’ll work interactively, and once you get the hang of that we will move on to do-files.  
 
Getting help 
 
Stata is a command driven language – there are over 500 different commands and each has a particular syntax 
required to get any various options. Learning these commands is a time-consuming process but it is not hard. At the 
end of each class notes I shall try to list the commands that we have covered but there is no way we will cover all of 
them in this short introductory course. Luckily though, Stata has a fantastic options for getting help. In fact, most of 
your learning to use Stata will take the form of self-teaching by using manuals, the web, colleagues and Stata’s own 
help function.  
 
Manuals 
 
The Stata manuals are available in MA – many people have them on their desks. The User Manual provides an overall view on 
using Stata. There are also a number of Reference Volumes, which are basically encyclopaedias of all the different commands and 
all you ever needed to know about each one. If you want to find information on a particular command or a particular econometric 
technique, you should first look up the index at the back of any manual to find which volumes have the relevant information. 
Finally, there is a separate Graphics Manual, panel data manual (cross-sectional time-series) and one on survey data. 
 
Stata’s in-built help and website 
 
Stata also has an abbreviated version of its manuals built-in. Click on Help, then Contents. Stata’s website has a very useful FAQ 
section at http://www.stata.com/support/faqs/. Both the in-built help and the FAQs can be simultaneously searched from within 
Stata itself (see menu Help>Search). Stata’s website also has a list of helpful links at http://www.stata.com/links/resources1.html. 
 
The web 
 
As with everything nowadays, the web is a great place to look to resolve problems. There are numerous chat-rooms 
about stata commands, and plenty of authors put new programmes on their websites. Google should help you here. 
 
Colleagues 
 
The other place where you can learn a lot is from speaking to colleagues who are more familiar with Stata functions 
than you are – the Bank is littered with people who spend large parts of their days typing different commands into 
Stata, you should make use of them if you get really stuck.  You can use the user group email – see the intranet for 
details. 

http://www.stata.com/support/faqs/
http://www.stata.com/links/resources1.html


Directories and folders 
 
Like Dos and Windows, Stata can organise files in a tree-style directory with different folders. You should use this to organise 
your work in order to make it easier to find things at a later date. For example, create a folder “data” to hold all the datasets you 
use, sub-folders for each dataset, and so on. You can use some Dos commands in Stata, including: 
 
. cd “F:\Stata classes\”  - change directory to “h:”  
. mkdir “stata”  - creates a new directory within the current one (here, h:\stata)  
. dir  - list contents of directory or folder  
 
Note, Stata is case sensitive, so it will not recognise the command CD or Cd. Also, quotes are only needed if the directory or 
folder name has spaces in it – “h:\temp\first folder” – but it’s a good habit to use them all the time.  
 
Reading data into Stata 
 
There are different ways of reading or entering data into Stata: 
 
use 
If your data is in Stata format, then simply read it in as follows: 
 
. use "F:\Stata classes\G7 less Germany pwt 90-2000.dta", clear  
 
The clear option will clear the revised dataset currently in memory before opening the other one.  
 
Or if you changed the directory already, the command can exclude the directory mapping: 
 
use "G7 less Germany pwt 90-2000.dta", clear 
 
insheet  
If your data is originally in Excel or some other format, you need to prepare the data before reading it directly into Stata. You 
need to save the data in the other package (e.g. Excel) as either a csv (comma separated values) or txt (tab-delimited ASCII text) 
file. There are some ground-rules to be followed when saving a csv- or txt-file for reading into Stata: 

- The first line in the spreadsheet should have the variable names, e.g. series/code/name, and the second line onwards should 
have the data. If the top row of the file contains a title then delete this row before saving. 

- Any extra lines below the data or to the right of the data (e.g. footnotes) will also be read in by Stata, so make sure that only 
the data itself is in the spreadsheet before saving. If necessary, select all the bottom rows and/or right-hand columns and 
delete them. 

- The variable names cannot begin with a number. If the file is laid out with years (e.g. 1980, 1985, 1990, 1995) on the top 
line, then Stata will run into problems. In such instances, place an underscore in front of each number (e.g. select the row and 
use the spreadsheet package’s “find and replace” tools): 1980 becomes _1980 and so on. 

- Make sure there are no commas in the data as it will confuse Stata about where rows and columns start and finish (again, use 
“find and replace” to delete any commas before saving – you can select the entire worksheet in Excel by clicking on the 
empty box in the top-left conrer, just above 1 and to the left of A). 

- Some notations for missing values can confuse Stata, e.g. it will read double dots (..) or hyphens (-) as text. Use find & 
replace to replace such symbols with single dots (.) or simply to delete them altogether.  

 
Once the csv- or txt-file is saved, you then read it into Stata using the command: 

. insheet using "F:\Stata classes\G7 less Germany pwt 90-2000.txt", clear 

Note that if we had already changed to F:\Stata classes\ using the cd command, we could simply type: 

. insheet using "G7 less Germany pwt 90-2000.txt", clear 

There are a few useful options for the insheet command (“options” in Stata are additional features of standard commands, usually 
appended after the command and separated by a comma – we will see many more of these). The first option is clear which 
you can use if you want to insheet a new file while there is still data in memory: 
 
. insheet using "F:\Stata classes\G7 less Germany pwt 90-2000.txt", clear  
 
Alternatively, you could first erase the data in memory using the command clear and then insheet as before. 

The second option, names, tells Stata that the file you insheet contains the variable names in the first row. Normally, Stata should 



recognise this itself but sometimes it simply doesn’t – in these cases names forces Stata to use the first line in your data for 
variable names: 
. insheet using "F:\Stata classes\G7 less Germany pwt 90-2000.txt",names clear  
Finally, the option delimiter(“char”) tells Stata which delimiter is used in the data you want to insheet. Stata’s insheet 
automatically recognises tab- and comma-delimited data but sometimes different delimiters are used in datasets (such as “;”): 

. insheet using “h:\wdi-sample.txt”, delimiter(“;”) 

 
Stat/Transfer program 
This is a separate package that can be used to convert a variety of different file-types into other formats, e.g. Excel into Stata or 
vice versa. You should take great care to examine the converted data thoroughly to ensure it was converted properly.  
 
It is used in a very user-friendly way (see screen shot below) and is useful for changing data between lots of different 
packages and format.  
 

 
 
Manual typing  
The tedious last resort – if the data is not available in electronic format, you may have to type it in manually. Start the Stata 
program and use the edit command – this brings up a spreadsheet-like where you can enter new data or edit existing data.  
 
This can be done directly by typing the variables into the window, or indirectly using the input command. 



 
Variable and data types  
 
Indicator or data variables 

You can see the contents of a datafile using the browse or edit command. The underlying numbers are stored in “data 
variables”, e.g. the cgdp variable contains national income data and the pop variable contains population data. To know what 
each data-point refers to, you also need at least one “indicator variable”, in our case countryisocode (or country) and year tell 
us what country and year each particular gdp and population figure refers to. The data might then look as follows: 
 
country countryisocode year pop cgdp openc  
Canada CAN 1990 27700.9 19653.69 51.87665 
France FRA 1990 58026.1 17402.55 43.46339 
Italy ITA 1990 56719.2 16817.21 39.44491 
Japan JPN 1990 123540 19431.34 19.81217 
United Kingdom GBR 1990 57561 15930.71 50.62695 
United States USA 1990 249981 23004.95 20.61974 
 
This layout ensures that each data-point is on a different row, which is necessary to make Stata commands work properly.  
 
Numeric or string data 
Stata stores or formats data in either of two ways – numeric or string. Numeric will store numbers while string will store text (it 
can also be used to store numbers, but you will not be able to perform numerical analysis on those numbers).  
Numeric storage can be a bit complicated. Underneath its Windows platform, Stata, like any computer program, stores numbers in 
binary format using 1’s and 0’s. Binary numbers tend to take up a lot of space, so Stata will try to store the data in a more compact 
format. The different formats or storage types are:  
byte : integer between -127 and 126 e.g. dummy variable  
int : integer between -32,767 and 32,766 e.g. year variable  
long : integer between -2,147,483,647 and 2,147,483646 e.g. population data  
float : real number with about 8 digits of accuracy e.g. production output data  
double : real number with about 16 digits of accuracy  
The Stata default is “float”, and this is accurate enough for most work. However, for critical work you should make sure that your 
data is “double”. Note, making all your numerical variables “double” can be used as an insurance policy against inaccuracy, but 
with large data-files this strategy can make the file very unwieldy – it can take up lots of hard-disk space and can slow down the 
running of Stata. Also, if space is at a premium, you should store integer variables as “byte” or “int”, where appropriate.  

String is arguably more straightforward – any variable can be designated as a string variable and can contain up to 80 characters, 
e.g. the variable name contains the names of the different countries. Sometimes, you might want to store numeric variables as 
strings, too. For example, your dataset might contain an indicator variable id which takes on 9-digit values. If id were stored in 
float format (which is accurate up to only 8 digits), you may encounter situations where different id codes are rounded to the 
same amount. Since we do not perform any calculations on id we could just as well store it in string format and avoid such 
problems.  

To preserve space, only store a variable with the minimum string necessary – so the longest named name is “United Kingdom” 
with 14 letters (including the space). A quick way to store variables in their most efficient format is to use the compress 
command – this goes through every observation of a variable and decides the least space-consuming format without sacrificing 
the current level of accuracy in the data.  
. compress  
 
Missing values  
Missing numeric observations are denoted by a single dot (.), missing string observations are denoted by blank double quotes 
(“”). 



Examining the data  
It is a good idea to examine your data when you first read it into Stata – you should check that all the variables and observations 
are there and in the correct format. 
 
List  
As we have seen, the browse and edit commands start a pop-up window in which you can examine the raw data. You can 
also examine it within the results window using the list command – although listing the entire dataset is only feasible if it is 
small. If the dataset is large, you can use some options to make list more useable. For example, list just some of the variables:  
 
. list name year GDP 
   +--------------------------------------------+ 
     |        country   countr~e   year       pop | 
     |--------------------------------------------| 
  1. |         Canada        CAN   1990   27700.9 | 
  2. |         France        FRA   1990   58026.1 | 
  3. |          Italy        ITA   1990   56719.2 | 
  4. |          Japan        JPN   1990    123540 | 
  5. | United Kingdom        GBR   1990     57561 | 
     |--------------------------------------------| 
  6. |  United States        USA   1990    249981 | 
  7. |         Canada        CAN   1991   28030.9 | 
  8. |         France        FRA   1991   58315.8 | 
  9. |          Italy        ITA   1991   56750.7 | 
 10. |          Japan        JPN   1991    123920 | 
     |--------------------------------------------|  
 
Or list just some of the observations:  
 
. list in 45/49 
 
Or both:  

. list country countryisocode year pop in 45/49 
     +--------------------------------------------+ 
     |        country   countr~e   year       pop | 
     |--------------------------------------------| 
 45. |          Italy        ITA   1997   57512.2 | 
 46. |          Japan        JPN   1997    126166 | 
 47. | United Kingdom        GBR   1997     59014 | 
 48. |  United States        USA   1997    268087 | 
 49. |         Canada        CAN   1998     30248 | 
     |--------------------------------------------| 
  
 
Browse/Edit 

We have already seen that browse starts a pop-up window in which you can examine the raw data. Most of the time we only 
want to view a few variables at a time however, especially in large datasets with a large number of variables. In such cases, 
simply list the variables you want to examine after browse: 

. browse name year gdp 

. browse name year gdp 
 
The difference with edit is that this allows you to manually change the dataset. 
 
Assert  

With large datasets, it often is impossible to check every single observation using list or browse. Stata has a number of 
additional commands to examine data which are described in the following. A first useful command is assert which verifies 
whether a certain statement is true or false. For example, you might want to check whether all GDP values are positive as they 
should be: 
 
assert pop>0 

assert pop<0 



If the statement is true, assert does not yield any output on the screen. If it is false, assert gives an error message and the 
number of contradictions. 

 
Describe  
This reports some basic information about the dataset and its variables (size, number of variables and observations, storage types 
of variables etc.). 
. describe 
 
Note that you can use the describe command for a file that hasn’t yet been read into Stata:  
. describe using “h:\wdi-sample.dta”  
 
Codebook  
This provides extra information on the variables, such as summary statistics of numerics, example data-points of strings, and so 
on. Codebook without a list of variables will give information on all variables in the dataset.  

. codebook country 

 
Summarize  
This provides summary statistics, such as means, standard deviations, and so on.  
 
. summarize 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
     country |         0 
countryiso~e |         0 
        year |        66        1995     3.18651       1990       2000 
         pop |        66    98797.46    79609.33    27700.9     275423 
        cgdp |        66    22293.23    4122.682   15930.71   35618.67 
-------------+-------------------------------------------------------- 
       openc |        66    42.54479    18.64472   15.91972   86.80463 
       csave |        66    24.31195    5.469772    16.2536   37.80159 
          ki |        66    23.52645    4.634476   17.00269   35.12778 
     grgdpch |        66    1.582974    1.858131  -3.981008   5.172524  

Note that code and name are string variables with no numbers, so no summary statistics are reported for them. Also, year is a 
numeric, so it has summary statistics. Additional information about the distribution of the variable can be obtained using the 
detail option:  
 
. summarize, detail 

 
Tabulate  
This is a versatile command that can be used, for example, to produce a frequency table of one variable or a cross-tab of two 
variables. There are also options to get the row, column and cell percentages as well as chi-square and other statistics – check the 
Stata manuals or on-line help for more information.  

. tab name 
          Name |      Freq.     Percent        Cum. 
---------------+----------------------------------- 
        Canada |         10       14.29       14.29 
        France |         10       14.29       28.57 
       Germany |         10       14.29       42.86 
         Italy |         10       14.29       57.14 
         Japan |         10       14.29       71.43 
United Kingdom |         10       14.29       85.71 
 United States |         10       14.29      100.00 
---------------+----------------------------------- 
         Total |         70      100.00 
 
Inspect  
This is another way to eyeball the distribution of a variable, including as it does a mini-histogram. Also useful for identifying 
outliers or unusual values, or for spotting non-integers in a variable that should only contain integers.  
 



. inspect  cgdp 
 
cgdp:                                          Number of Observations 
-------                                                            Non- 
                                               Total   Integers    Integers 
|      #                        Negative           -         -          - 
|  #   #                        Zero               -         -          - 
|  #   #                        Positive          66         -         66 
|  #   #                                       -----     -----      ----- 
|  #   #   #                    Total             66         -         66 
|  #   #   #   .   .            Missing            - 
+----------------------                        ----- 
15930.71       35618.67                           66 

  (66 unique values)  
 
Graph  
Stata has very comprehensive graphics capabilities (type “help graph” for more details). You can graph a simple histogram with 
the command:  

. graph twoway histogram cgdp 

Or a two-way scatterplot using:  

. graph twoway scatter cgdp pop 

While graphs in Stata 9 and Stata 10 have the advantage of looking quite fancy, they are also very slow. Often, you just want to 
visualise data without actually using the output in a paper or presentation. In this case, it is useful to switch to version 7 graphics 
which are much faster: 

. graph7 cgdp pop 
 
Saving the dataset  
The command is simply save:  
. save "F:\Stata classes\G7 less Germany pwt 90-2000.dta", replace 

The replace option overwrites any previous version of the file in the directory you try saving to. If you want to keep an old 
version as back-up, you should save under a different name, such as “new_G7”. Note that the only way to alter the original file 
permanently is to save the revised dataset. Thus, if you make some changes but then decide you want to restart, just re-open the 
original file:  
 
Preserve and restore  
If you are going to make some revisions but are unsure of whether or not you will keep them, then you have two options. First, 
you can save the current version, make the revisions, and if you decide not to keep them, just re-open the saved version. Second, 
you can use the preserve and restore commands; preserve will take a “photocopy” of the dataset as it stands and if 
you want to revert back to that copy later on, just type restore.  
 



Keeping track of things  
Stata has a number of tools to help you keep track of what work you did to datasets, what’s in the datasets, and so on.  
 
Do-files and log-files  
Instead of typing commands one-by-one interactively, you can type them all in one go within a do-file and simply run the do-file 
once. The results of each command can be recorded in a log-file for review when the do-file is finished running.  
Do-files can be written in any text editor, such as Word or Notepad. Stata also has its own editor built in – click the icon along the 
top of the screen with the pad-and-pencil logo (although it looks like an envelope to me). Most do-files follow the following 
format:  
 
clear  
cd “c:\projects\project1\”  
capture log close  
log using class.log, replace  
set more off  
set memory 100m  
 
LIST OF COMMANDS  
 
log close  

To explain the different commands:  
clear – clears any data currently in Stata’s memory. If you try opening a datafile when one is already open, you get the error 

message: no; data in memory would be lost  
cd c:\projects\project1\ - sets the default directory where Stata will look for any files you try to open and save any 

files you try to save. So, if you type use wdi-sample.dta, Stata will look for it in this folder. If, during the session, you 
want to access a different directory, then just type out its destination in full, e.g. use “c:\data\production.dta” 
will look for the file in the c:\data folder. Note again that if you use spaces in file or directory names, you must include 
the file path in inverted commas. 

capture log close – closes any log-files that you might have accidentally left open. If there were no log-file actually 
open, then the command log close on its own would stop the do-file running and give the error message: no log 
file open. Using capture tells Stata to ignore any error messages and keep going.  

log using class1.log, replace – starts a log-file of all the results. The replace option overwrites any log file of 
the same name, so if you re-run an updated do-file again the old log-file will be replaced with the updated results. If, instead, 
you want to add the new log-file to the end of previous versions, then use the append option.  

set more off – when there are a lot of results in the results window, Stata pauses the do-file to give you a chance to review 
each page on-screen and you have to press a key to get more. This command tells Stata to run the entire do-file without 
pausing. You can then review the results in the log file.  

set memory 100m – Stata’s default memory may not be big enough to handle large datafiles. Trying to open a file that is too 
large returns a long error message beginning: no room to add more observations. You can adjust the memory 
size to suit. First check the size of the file using the describe command (remember that you can use describe for a file 
that hasn’t yet been read into Stata). This reports the size of the file in bytes. Then set memory just a bit bigger. Note, setting 
it too large can take the PC’s memory away from other applications and slow the computer down, so only set it as large as 
necessary. For example, describe using “c:\data\WDI-sampe.dta” reports the size of the file to be 2,730 
bytes, so set memory 1m should be sufficient.  

log close – closes the log file.  

It is good practice to keep extensive notes within your do-file so that when you look back over it you know what you were trying 
to achieve with each command or set of commands. You can insert notes in two different ways:  
*  
Stata will ignore a line if it starts with an asterisk *, so you can type whatever you like on that line. Note, the asterisk is also 
useful for getting Stata to temporarily ignore commands – if you decide later to re-insert the command into your do-file, just 
delete the asterisk.  
/* */  
You can place notes after a command by inserting it inside these pseudo-parentheses, for example:  
. use “c:\data\WDI-sample.dta”, clear /* opens 1998 production data */  



These pseudo-parentheses are also useful for temporarily blocking a whole set of commands – place /* at the beginning of the 
first command, */ at the end of the last, and Stata will just skip over them all.  
 
Labels  
You can put labels on datasets, variables or values – this helps to make it clear exactly what the dataset contains.  
A dataset label of up to 80 characters can be used to tell you the data source, it’s coverage, and so on. This label will then appear 
when you describe the dataset. For example, try the following:  
 
. label data " Data from Penn World Tables 6.1" 

. describe 

Variable names tend to be short – you can use up to 32 characters, but for ease of use it’s best to stick to about 8 or 10 as a 
maximum. This can give rise to confusion about what the variable actually represents – what exactly is gdp and in what units is 
it measured? Which is where variable labels, with a capacity of 80 characters, come in.  
. label variable cgdp "GDP per capita in constant international dollars" 

 
It can also be helpful to label different values. Imagine countries were coded as numbers (which is the case in many datasets). In 
this case, a tabulation may be confusing – what country does 1 represent, or 2 or 3?  

. tabulation code 
 
       code |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          1 |         10       33.33       33.33 
          2 |         10       33.33       66.67 
          3 |         10       33.33      100.00 
------------+----------------------------------- 
      Total |         30      100.00 
 
It might be better to label exactly what each value represents. This is achieved by first “defining” a label (giving it a name and 
specifying the mapping), then associating that label with a variable. This means that the same label can be associated with several 
variables – useful if there are several “yes/no/maybe” variables, for example. The label name itself can be up to 32 characters long 
(e.g. countrycode), and each value label must be no more than 80 characters long (e.g. “France” or “Italy”).  

. label define countrycode 1 "Canada" 2 "Germany" 3 "France"  

. label values code countrycode  

Now, the tabulation should make more sense:  

. tabulation code 
 
       code |      Freq.     Percent        Cum. 
------------+----------------------------------- 
     Canada |         10       33.33       33.33 
    Germany |         10       33.33       66.67 
     France |         10       33.33      100.00 
------------+----------------------------------- 
      Total |         30      100.00 

 
 
 
 
 
 
 
 
 
 see what each code represents, use codebook or:  

. label list countrycode 

countrycode: 



           1 Canada 

           2 Germany 

           3 France 

 
Notes  
You can also add Post-it notes to your dataset or to individual variables to, for example, remind you of the source of the data, or to 
remind you of work you did or intend to do on a variable.  

. note: data from PWT 

. note cgdp: This is per capita variable 

You can also time-stamp these notes:  

. note cgdp: TS need to add Germany to complete the G7 

Review your notes by simply typing notes:  
. notes  
 
_dta: 
  1.  data from PWT 
 
cgdp: 
  1.  This is per capita variable 
  2.  15 Feb 2006 13:01 need to add Germany to complete the G7 

Stata will also tell you that there are notes when you use describe:  

. describe 

You can also delete notes. To drop all notes attached to a variable:  

. note drop cgdp  

To drop just one in particular:  

. note drop cgdp in 2  
 
Review  
One final tool for keeping track is reviewing a list of previous commands. To see the last four, for example:  

. #review 4  

This is especially useful if you are working in interactive mode on a “what happens if…”. When you are happy with the sequence 
of commands you’ve tried, you can review, then cut and paste into your do-file.  
 
 
 
 
Some shortcuts for working with Stata  

• Most commands can be abbreviated, which saves some typing. For example: summarize to sum, tabulate to 
tab, save to sa. The abbreviations are noted in the Stata manuals.  

• You can also abbreviate variable names when typing. This should be used with caution, as Stata may choose a 
variable different to the one you intended. For example, suppose you have a dataset with the variables pop, 
popurban and poprural. If you want summary statistics for popurban, the command sum pop will actually 
give statistics for the pop variable.  

• Stata’s default file type is .dta, so you don’t need to type that when opening or saving Stata files: 
sa “G7 less Germany pwt 90-2000” is the same as sa “G7 less Germany pwt 90-2000.dta”  



• You can save retyping commands or variable names by clicking on them in the review and variable windows – they 
will then appear in the command window. You can also cycle back and forth through previous commands using the 
PageUp and PageDown keys on your keyboard. Similarly, variable names can be easily entered by clicking on them in 
the Variables Window (bottom-left of the screen).  

• Over time, you will find yourself using the same commands or the same sequence of commands again and again, e.g. 
the list of commands at the beginning of a log-file. Save these in a “common commands” text file from which you can 
cut and paste into your do-files.  



Database Manipulation  

Now we are going to take the data that is in a form that Stata understands and we will organise those datasets by combining many 
together into a single large dataset, deleting unwanted variables, and also creating some new variables. Finally, we will learn a 
few techniques to close gaps in your data (extrapolation, splicing).  
 
Organising datasets  
 
Rename  
You may want to change the names of your variables, perhaps to make it more transparent what the variable is:  
. rename countryisocode country_code 
. ren grgdpch gdp_growth  
Note, you can only rename one variable at a time.  

Recode and Replace 
You can change the values that certain variables take, e.g. suppose 1994 data actually referred to 1924:  

. recode year 1994=1924  

This command can also be used to recode missing values to the dot that Stata uses to denote missings. And you can recode several 
variables at once. Suppose a dataset codes missing population and gdp figures as –999:  

. recode pop cgdp –999=.  
With string variables, however, you need to use the replace command (see more on this command below):  

. replace country=“United Kingdom” if country_code ==“GBR”  
 
Keep and drop (including some notes on if-processing)  
The original dataset may contain variables you are not interested in or observations you don’t want to analyse. It’s a good idea to 
get rid of these first – that way, they won’t use up valuable memory and these data won’t inadvertently sneak into your analysis. 
You can tell Stata to either keep what you want or drop what you don’t want – the end results will be the same. For example, 
we can get rid of unwanted variables as follows:  
. keep country year pop cgdp  
or  

. drop country_code openc csave ki grgdpch 

or  

. drop country_code openc - gdp_growth 
Each of these will leave you with the same set of variables. Note that the hyphen sign (-) is a useful shortcut, e.g. the first one 
indicates all the variables between openc and gdp_growth are to be dropped. However, you must be careful that the order of 
the variable list is correct, you don’t want to inadvertently drop a variable that you thought was somewhere else on the list. The 
variable list is in the variables window or can be seen using either the desc or sum commands.  

You can also drop or keep observations, such as those after or before 1995:  

. keep if year>=1995  
or  

. drop if year<1995  
Note, the different relational operators are:  

== equal to  
!= not equal to  
> greater than  
>= greater than or equal to  
< less than  
<= less than or equal to  
Keeping observations for the years 1990 to 1995 only:  



. keep if (year>=1990 & year<=1995) 
or  
. drop if (year<1990 | year>1995) 
Or, to get really fancy, keep the observations for 1990-95 and 1997-99:  

. keep if ((year>=1990 & year<=1995) | (year>=1997 & year<=1999)) 
Note, the different logical operators are:  

& and  
| or  
~ not 
! not  
You may want to drop observations with specific values, such as missing values (denoted in Stata by a dot):  

. drop if pop==.  
You may want to keep observations for all countries other than those for Italy:  

. drop if country_code!=“ITA”  
Note, with string variables, you must enclose the observation reference in double quotes. Otherwise, Stata will claim not to be 
able to find what you are referring to.  

If you know the observation number, you can selectively keep or drop different observations. Dropping observations 1 to 10:  

. drop if _n<=10  
Dropping the last observation (number _N) in the dataset:  

. drop if _n==_N  
Finally, you may want to keep only a single occurrence of a specific observation type, e.g. just the first observation of each 
country code:  

. keep if country[_n]~=country[_n-1]  
or simply  

. keep if country~=country[_n-1]  
Stata starts at observation number one and applies the command, then moves onto observation two and applies the command 
again, then onto three and so on. So, starting at one _n=1 but there is no observation _n-1 = 0, so the country in one cannot equal 
the country in zero and the observation will be kept. Moving on to two: the country in two equals the country in one (both AGO), 
so the observation will be dropped. Each subsequent observation with country AGO will also be dropped. When we get to an 
observation with a different country (which will be ALB), the two countries will be different (AGO~=ALB) and the observation 
will be kept. Thus, we will end up being left with just the first observation for each country.  

Sort  
From the previous example, hopefully you will have realised the importance of the order of your observations. If the country 
codes had started out all jumbled up, then we would have ended up with a completely different set of observations. Suppose we 
applied the above command to the following dataset:  

 
Number in dataset country Result 
1 AGO Kept since _n=0 does not exist 
2 AGO Dropped since country==country[_n-1] 
3 ALB Kept 
4 ALB Dropped 
5 AGO Kept 
6 ALB Kept 
7 BEL Kept 

We would actually end up with numerous occurrences of some country codes. This shows how sorting the data first is important:  

. sort country  
If you wanted to make sure the observation that was kept was the earliest (i.e. 1950), then first:  

. sort country year  
This command first sorts the data by country, and then within each country code it sorts the data by year. This ensures that the 
first observation for every country (the one that is kept) will be 1950. 



Note that sorting is in ascending order (A,B,C or 1950, 1951, 1952). To sort in descending order, you need to use the gsort 
command:  

. gsort –country  
This gives ZWE first, then ZMB, ZAR, ZAF, YEM and so on. Note that you need to place a minus sign before every variable you 
want to sort in descending order. This command allows you to sort in complicated ways, e.g. to sort country codes in descending 
order but then years in ascending order:  

. gsort –country year  
 
By-processing  
You can re-run a command for different subsets of the data using the by prefix. For example, to get summary statistics of 
population broken down by year:  
. so year  
. by year: sum pop  
Note that you have to either sort the data first or use the bysort option: 

. bysort year: sum pop  
The by prefix causes the sum command to be repeated for each unique value of the variable year. The result is the same as writing 
a list of sum commands with separate if statements for each year:  

. sum pop if year==1990  

. sum pop if year==1991  

. sum pop if year==1992  

. sum pop if year==1993  

. sum pop if year==1994  
By-processing can be useful when organising your dataset. In our sort examples above we asked Stata to keep only the 1990 
observations for each country. Instead of trying to make sure the data is sorted in the proper order and the keep/drop command is 
coded correctly (both of which can often be very confusing), it is much easier to:  

. bysort country: keep if year==1990  
That’s not to say that the first methodology is entirely useless – you may have a dataset where different countries have 
observations for different years (so not all have 1990 data), and you may want to keep the earliest observation from each country. 
In such a case, you may have to revert to our earlier example.  
 
Append, merge and joinby 
You can combine different datasets into a single large dataset using the append, merge and joinby commands. append is 
used to add extra observations (rows). Suppose you have two datasets containing the G7 less Germany PWT data for different 
countries and/or different years. The datasets have the same variables country / year / pop / etc, but one dataset has 
data for 1970-1990 (called “G7 less Germany pwt 70-90.dta”) and the other has data for 1975-1998 (called “G7 
less Germany pwt 90-2000.dta”).  
. use "F:\Stata classes\G7 less Germany pwt 90-2000.dta", clear  
. append using "F:\Stata classes\G7 less Germany pwt 70-90.dta"  
. save "F:\Stata classes\G7 less Germany pwt.dta", replace   
append is generally very straightforward. There is one important exception, however, if the two datasets you want to append 
have stored their variables in different formats (meaning string vs. numeric – having different numeric formats, for example byte 
vs. float, does not matter). In this case, Stata converts the data in the file to be appended to the format of the original file and in the 
process replaces all values to missing! To detect such problems while using append, watch out for messages like: 

. (note: pop is str10 in using data but will be float now) 

This indicates that a variable (here: pop) has been transformed from string to float – and contains all missing values now for the 
appending dataset (here: all years 1970-1990). It is thus very important to check via describe that the two files you intend to 
append have stored all variables in the same broad data categories (string/numeric). If this is not the case, you will need to 
transform them first (see the commands real and string below). 

merge is used to add extra variables (columns). Suppose we now also have a second dataset containing the same indicator 
variables country / year, but one dataset has data for GDP per capita and other variables, and the second has data for shares 
in GDP per capita of consumption and investment. You must first ensure that both datasets are sorted by their common indicator 
variables, then merge according to these variables.  
. use "F:\Stata classes\G7 less Germany pwt.dta", clear  
. so country year  
. sa "F:\Stata classes\G7 less Germany pwt.dta", replace  
. use "F:\Stata classes\G7 extra data.dta", clear /* “master” data */  



. so country year  

. merge country year using "F:\Stata classes\G7 less Germany pwt.dta" /*“using” data */  

. tab _merge /* 1= master, 2= using, 3= both */  
Stata automatically creates a variable called _merge which indicates the results of the merge operation. It is crucial to tabulate this 
variable to check that the operation worked as you intended. The variable can take on the values:  

1 : observations from the master dataset that did not match observations from the using dataset  
2 : observations from the using dataset that did not match observations from the master dataset  
3 : observations from the both datasets that matched  
Ideally, all observations will have a _merge value of 3. However, it may be possible, for instance, that the master dataset has 
observations for extra countries or extra years. If so, then some observations will have a _merge value of 1. You should tabulate 
these to confirm what the extra observations refer to:  

. tab country if _merge==1  

. tab year if _merge==1   

. tab _merge 
 
     _merge |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          1 |         31       10.95       10.95 
          3 |        252       89.05      100.00 
------------+----------------------------------- 
      Total |        283      100.00 

tab country if _merge==1 then reveals that the these extra observations are for the country “GER” or Germany.  Now 
see if you can successfully incorporate the data on Germany between 1970-2000 for all of these variables? Look at help for how 
to do it.  

Finally, joinby joins, within groups formed by the variables list behind the command, observations of the dataset in memory 
with another Stata-format dataset. “join” means "form all pairwise combinations". For example, you might have an industry 
classification (both codes and names) in one file and corresponding tariff rates in another (with only codes and tariff rates). Tariff 
rates vary across time but the industry classification does not. Now, you would like to match every industry with a time series of 
tariffs and also know what the different industry codes stand for. Since the classification data does not contain a year variable, you 
cannot use merge (unless you create a year variable and expand the data first which we will learn how to do later on). 
However, if you type 

. joinby indclass using tariffs.dta 

this will create all possible combinations between indclass (the variable that contains the different classification categories) 
and year. If the master and using dataset contain common variables, joinby will use the master contents. Also, observations 
unique to one or the other datasets are ignored, unless you overrule this using the option unmatched (see help joinby for 
details). 
 
Collapse  
This command converts the data into a dataset of summary statistics, such as sums, means, medians, and so on. One use is when 
you have monthly data that you want to aggregate to annual data:  
. collapse (sum) monthpop, by(country year)  
or firm-level data that you want to aggregate to industry level:  
. collapse (sum) firmoutput, by(industry year month)  

by() excludes the indicator variable that you are collapsing or summing over (month in the first example, firm in the 
second) – it just contains the indicator variables that you want to collapse by. Note that if your dataset contains other variables 
beside the indicator variables and the variables you are collapsing, they will be erased. 

One possible problem that arises in the use of collapse is in its treatment of missings. It returns the summary statistic of missing 
values as zero. If, for example, when using the PWT Afghanistan (“AFG”) contains all missing values for pop. If you wanted to 
aggregate population data over time (for whatever reasons), collapse would report aggregate population for Afghanistan as zero, 
not missing. If , instead, you want aggregate population figures to be missing if any or all of the year data is missing, then use the 
following coding (the technicalities of it will become clearer later, after you learn how to create dummy variables): 

. gen missing=(pop==.) 

. collapse (sum) pop missing, by(countrygroup) 

. replace firmoutput=. If missing>0 

. rename pop aggpop 

. drop missing 



Note, if you are running this command on a large dataset, it may be worthwhile to use the fast option – this speeds things up 
skipping the preparation of a backup if the command is aborted by the user pressing BREAK, but this is really only useful for 
when you are working interactively). 
 
Order, aorder, and move 
These commands can be used to do some cosmetic changes to the order of your variable list in the variables window, e.g. if you 
want to have the indicator variables on top of the list. aorder alphabetically sorts variables and order brings them in a user-
specified order: 

. aorder 

. order countrycode year pop 

If you do not list certain variables after order, they will remain where they are. move is used if you simply want to swap the 
position of two variables, e.g. bringing year to the top: 

. move year countrycode 



Creating new variables  
 
Generate, egen, replace  
The two most common commands for creating new variables are gen and egen. We can create a host of new variables from the 
existing data with the gen command:  
. gen realgdp=(pop*1000)*cgdp   /* real GDP in current prices */  
. gen lpop=ln(pop)     /* log population */  
. gen popsq=pop^2     /* squared population */  
. gen ten=10      /* constant value of 10 */  
. gen id=_n      /* id number of observation */  
. gen total=_N    /* total number of observations */ 
. gen byte yr=year-1900    /* 50,51,etc instead of 1950,1951 */  
. gen str6 source=“PWT6.1”   /* string variable */  
. gen largeyear=year if pop>5000 & pop!=.  
A couple of things to note. First, Stata’s default data type is float, so if you want to create a variable in some other format (e.g. 
byte, string), you need to specify this. Second, missing numeric observations, denoted by a dot, are interpreted by Stata as a very 
large positive number. You need to pay special attention to such observations when using if statements. If the last command 
above had simply been gen largeyear=year if pop>5000, then largeyear would have included observations 
1950-1959 for AGO, even though data for those years is actually missing.  
The egen command typically creates new variables based on summary measures, such as sum, mean, min and max:  
. egen totalpop=sum(pop), by(year)  /* world population per year */  
. egen avgpop=mean(pop), by(year)  /* average country pop per year */  
. egen maxpop=max(pop)  /* largest population value */  
. egen countpop=count(pop)  /* counts number of non-missing obs */  
. egen groupid=group(country_code) /* generates numeric id variable for countries */ 

The egen command is also useful if your data is in long format (see below) and you want to do some calculations on different 
observations, e.g. year is long, and you want to find the difference between 1995 and 1998 populations. The following routine 
will achieve this:  
. gen temp1=pop if year==1995  
. egen temp2=max(temp1), by(country_code)  
. gen temp3=pop-temp2 if year==1998  
. egen diff=max(temp3), by(country)  
. drop temp*  
 

Note that both gen and egen have sum options. egen generates the total sum, and gen creates a cumulative sum. The 
running cumulation of gen depends on the order in which the data is sorted, so use with caution:  
. egen totpop=sum(pop)    /* sum total of population = single result*/  
. gen cumpop=sum(pop)    /* cumulative total of population */  

As with collapse, egen has problems with handling missing values. For example, summing up data entries that are all 
missing yields a total of zero, not missing (see collapse below for details and how to solve this problem). 

The replace command modifies existing variables in exactly the same way as gen creates new variables:  
. gen lpop=ln(pop)  
. replace lpop=ln(1) if lpop==.   /* missings now ln(1)=0 */  
 
Converting strings to numerics and vice versa  
As mentioned before, Stata cannot run any statistical analyses on string variables. If you want to analyse such variables, you must 
first encode them:  
. encode country, gen(ctyno)  
. codebook  ctyno /*Tells you the link with the data*/ 

This creates a new variable ctyno, which takes a value of 1 for CAN, 2 for FRA, and so on. The labels are automatically 
computed, based on the original string values – you can achieve similar results but without the automatic labels using egen 
ctyno=group(country).  
You can go in the other direction and create a string variable from a numerical one, as long as the numeric variable has labels 
attached to each value:  
. decode ctyno, gen(ctycode)  
If you wanted to convert a numeric with no labels, such as year, into a string, the command is:  
. gen str4 yearcode=string(year)  



And if you have a string variable that only contains numbers, you can convert them to a numeric variable using:  
. gen yearno=real(yearcode)  
This last command can be useful if a numeric variable is mistakenly read into Stata as a string. You can confirm the success of 
each conversion by:  
. desc country ctyno ctycode year yearcode yearno  
 
Combining and dividing variables  
You may wish to create a new variable whose data is a combination of the data values of other variables, e.g. joining country code 
and year to get AGO1950, AGO1951, and so on. To do this, first convert any numeric variables, such as year, to string (see 
earlier), then use the command:  
. gen str7 ctyyear=country_code+yearcode  
If you want to create a new numeric combination, first convert the two numeric variables to string, then create a new string 
variable that combines them, and finally convert this string to a numeric:  
. gen str4 yearcode=string(year)  
. gen str7 popcode=string(pop)  
. gen str11 yearpopcode=yearcode+popcode  
. gen yearpop=real(yearpopcode)  
 
. sum yearpopcode yearpop displays the result 

To divide up a variable or to extract part of a variable to create a new one, use the substr function. For example, you may want 
to reduce the year variable to 70, 71, 72, etc. either to reduce file size or to merge with a dataset that has year in that 
format:  
. gen str2 yr=substr(yearcode,3,2)  
The first term in parentheses is the string variable that you are extracting from, the second is the position of the first character you 
want to extract (--X-), and the third term is the number of characters to be extracted (--XX). Alternatively, you can select your 
starting character by counting from the end (2 positions from the end instead of 3 positions from the start):  
. gen str2 yr=substr(yearcode,-2,2)  
Things can get pretty complicated when the string you want to divide isn’t as neat as yearcode above. For example, suppose 
you have data on city population and that each observation is identified by a single variable called code with values such as “UK 
London, “UK Birmingham”, “UK Cardiff”, “Ireland Dublin”, “France Paris”, “Germany Berlin”, 
“Germany Bonn”, and so on. The code variable can be broken into country and city as follows:  
. gen str10 country=substr(code,1,strpos(code," ")-1) 
. gen str10 city=trim(substr(code, strpos(code," "),11))  
The strpos() function gives the position of the second argument in the first argument, so here it tells you what position the blank 
space takes in the code variable. The country substring then extracts from the code variable, starting at the first character, 
and extracting a total of 3-1=2 characters for UK, 8-1=7 characters for Ireland and so on. The trim() function removes 
any leading or trailing blanks. So, the city substring extracts from the code variable, starting at the blank space, and 
extracting a total of 11 characters including the space, which is then trimmed off. Note, the country variable could also have 
been created using trim():  
. gen str10 country=trim(substr(code,1,strpos(code,“ ”)))  
 
Dummy variables  
You can use generate and replace to create a dummy variable as follows:  
. gen largepop=0  
. replace largepop=1 if (pop>=5000 & pop!=. ) 
Or you can combine these in one command:  
. gen largepop=(pop>=5000 & pop~=.)  
Note, the parenthesis are not strictly necessary, but can be useful for clarity purposes. You may want to create a set of dummy 
variables, for example, one for each country:  
. tab country, gen(cdum)  
This creates a dummy variable cdum1 equal to 1 if the country is “CAN” and zero otherwise, a dummy variable cdum2 if the 
country is “FRA” and zero otherwise, and so on up to cdum7 for “USA”. You can refer to this set of dummies in later 
commands using a wild card, cdum*, instead of typing out the entire list.  
 



Lags and leads  
To generate lagged population in the G7 dataset:  
. so countrycode year  
. by countrycode: gen lagpop=pop[_n-1] if year==year[_n-1]+1  

Processing the statement country-by-country is necessary to prevent data from one country being used as a lag for another, as 
could happen with the following data:  
country  Year  pop  
AUS  1996 18312 
AUS  1997 18532 
AUS  1998 18751 
AUT  1950 6928 
AUT  1951 6938 
AUT  1952 6938  

 
The if argument avoids problems when there isn’t a full panel of years – if the dataset only has observations for 1950, 1955, 
1960-1998, then lags will only be created for 1961 on. A lead can be created in similar fashion:  
 
. so country year  
. by country: gen leadpop=pop[_n+1] if year==year[_n+1]-1  



Cleaning the data  

This section covers a few techniques that can be used to fill in gaps in your data.  
 
Fillin and expand  
Suppose you start with a dataset that has observations for some years for one country, and a different set of years for another 
country:  
country  Year  pop  
AGO  1960 4816 
AGO  1961 4884 
ARG  1961 20996 
ARG  1962 21342  

 
You can “rectangularize” this dataset as follows:  
 
. fillin country year  
 

This creates new missing observations wherever a county-year combination did not previously exist:  
country  Year  pop  
AGO  1960 4816 
AGO  1961 4884 
AGO  1962 . 
ARG  1960 . 
ARG  1961 20996 
ARG  1962 21342  

 
It also creates a variable _fillin that shows the results of the operation; 0 signifies an existing observation, and 1 a new one.  
If no country had data for 1961, then the fillin command would create a dataset like:  

 
country  Year  pop  
AGO  1960 4816 
AGO  1962 . 
ARG  1960 . 
ARG  1962 21342  

 
So, to get a proper “rectangle”, you would first have to ensure that at least one observation with year=1961 exists:  
. expand 2 if _n==1  
. replace year=1961 if _n==_N  
. replace pop=. if _n==_N  
 
expand 2 creates 2 observations identical to observation number one (_n==1) and places the additional observation at the end 
of the dataset, i.e observation number _N. As well as recoding the year in this additional observation, it is imperative to replace all 
other data with missing values – the original dataset has no data for 1961, so the expanded dataset should have missings for 1961. 
After this has been done, you can now apply the fillin command to get a complete “rectangle”.  
These operations may be useful if you want to estimate missing values by, for example, extrapolation. Or if you want to replace 
all missing values with zero or some other amount.  
 
Interpolation and extrapolation  
 
Suppose your population time-series is incomplete – as with some of the countries in the PWT (e.g. STP which is Sao Tome and 
Principe). You can linearly interpolate missing values using:  
. so country  
. by country: ipolate pop year, gen(ipop)  
 
 
 
 
 



 
country  Year  pop  
STP  1995  132 
STP  1996  135.29 
STP  1997  . 
STP  1998  141.7 
STP  1999  144.9 
STP  2000  148  

 

Note, first of all, that you need to interpolate by country, otherwise Stata will simply interpolate the entire list of observations 
irrespective of whether some observations are for one country and some for another. The first variable listed after the ipolate 
command is the variable you actually want to interpolate, the second is the dimension along which you want to interpolate. So, if 
you believe population varies with time, you can interpolate along the time dimension. You then need to specify a name for a new 
variable that will contain all the original and interpolated values – here ipop. You can use this cleaned-up version in its entirety 
in subsequent analysis, or you can select values from it to update the original variable, e.g. to clean values for STP only:  
. replace pop=ipop if country==“STP”  
Linear extrapolation can be achieved with the same command, adding the epolate option, e.g. to extrapolate beyond 2000:  
. so country  
. by country: ipolate pop year, gen(ipop) epolate  
Note, however, that Stata will fail to interpolate or extrapolate if there are no missing values to start with. No 2001 or 2002 
observations actually exist, so Stata will not actually be able to extrapolate beyond 2000. To overcome this, you will first have to 
create blank observations for 2001 and 2002 using expand (alternatively, if these observations exist for other countries, you can 
rectangularise the dataset using fillin).  

 
Splicing data from an additional source  
It is also possible to fill gaps with data from another source, as long as the series from both sources are compatible. For example, 
one source may provide data for 1950-92 and another for 1970-2000 with data for the overlapping years being identical. In such 
cases, you can simply replace the missing years from one source with the complete years from the other.  

It is more common, however, for the data in the overlapping years to be similar but not identical, as different sources will often 
use different methodologies and definitions. In such instances, you can splice the data from one source on to that from the other. 
For example, the latest version of PWT has data for the unified Germany going back to 1970 while the earlier PWT5.6 has data 
for West Germany going all the way back to 1950. It is arguably reasonable to assume that the trends in the total German data 
were similar to those in the West German data and to splice the early series onto the up-to-date version. To do this, you must first 
merge the old series into the new one, making sure to rename the variables first, e.g. rename pop in PWT6.1 to pop61, and to 
ensure that both Germany’s are coded identically, e.g. GER.  

. gen temp1=pop61/pop56 if country==“GER” & year==1970  

. egen diff=mean(temp1), by(country)  

. replace pop61=pop56*diff if pop61==. & year<1970  
 

country year pop56 pop61 temp1 diff 
GER 1968 59499   1.281248 
GER 1969 60069   1.281248 
GER 1970 60651 77709 1.281248 1.281248 
GER 1971 61303 78345  1.281248 
GER 1972 61675 78715  1.281248 

 



Panel Data Manipulation: Long versus Wide data sets 
 
Reshape  
Datasets may be laid out in wide or long formats. Suppose we keep population data for 1970-75 only: 

. keep country country_code year pop 

. keep if year<=1975 

In long format, this looks like:  

country country_code year Pop 
Canada CAN 1970 21324 
Canada CAN 1971 21962.1 
Canada CAN 1972 22219.6 
Canada CAN 1973 22493.8 
Canada CAN 1974 22808.4 
Canada CAN 1975 23142.3 
France FRA 1970 52040.8 
France FRA 1971 52531.8 
France FRA 1972 52993.1 
France FRA 1973 53420.5 
France FRA 1974 53771 
France FRA 1975 54016 

And the same data in wide format looks like:  

countryisocode pop1970 pop1971 pop1972 pop1973 pop1974 pop1975 country 
CAN 21324 21962.1 22219.6 22493.8 22808.4 23142.3 Canada 
FRA 52040.8 52531.8 52993.1 53420.5 53771 54016 France 
GBR 55632 55928 56097 56223 56236 56226 United 

Kingdom 
GER 77709 78345 78715 78956 78979 78679 Germany 
ITA 53821.9 54073.5 54381.3 54751.4 55110.9 55441 Italy 
JPN 103720 104750 106180 108660 110160 111520 Japan 
USA 205089 207692 209924 211939 213898 215981 United 

States 

The vast majority of Stata commands work best when the data is in long format. In any case, to convert formats from long to 
wide:  

. reshape wide pop, i(country_code) j(year)  
or from wide to long:  

. reshape long pop, i(country_code) j(year)  
The variable(s) immediately behind long or wide is the one that contains the data we want to reshape (the “data variable”, in 
our case pop). Note that in the reshape long case, Stata will reshape all variables that start with the letters you put behind 
long. Here, there are actually six of them (pop1970-pop1975, all starting with pop). The i() specifies the variable(s) whose unique 
values denote a logical observation in wide format. In our case, this is country. It uniquely identifies every data entry in wide 
format (here: pop). The j() specifies the variable whose unique values denote a sub-observation, in our case year. That is, within 
every group of countries, year uniquely identifies observations. In long format, i() and j() together completely identify each 
observation. 

If there are more than two indicator variables in wide format, then be careful to include the correct list in i(). For example, if there 
were also an agegroup indicator variable, so that pop actually referred to population in a given age group, then we could reshape 
the data from country / agegroup / year / pop to country / agegroup / pop1960 / pop1961 / etc using:  

. reshape wide pop, i(country agegroup) j(year)  
If there is more than one data variable, first drop the variables you are not interested in, and then make sure to include the full 
list you are interested in reshaping within the command:  
. reshape wide pop cgdp pi, i(country) j(year)  
This will create new variables pop1970-1975, cgdp1970-1975 and pi1970-1975. Note if you had not dropped all other variables 
beforehand, you would get an error message. For example, if you had forgotten to delete cc: 

. cc not constant within country 

. Type "reshape error" for a listing of the problem observations. 

As Stata suggests, “reshape error” will list all observations for which country does not uniquely identify observations 
in wide format (here, these are actually all observations!). More generally, any variable that varies across both i() and 
j() variables either needs to be dropped before reshape wide or be included in the data variable list. Intuitively, 



Stata would not know where to put the data entries of such variables once year has gone as an identifier. 

We could also have reshaped the original long data to have the country variable as wide:  

. reshape wide pop, i(year) j(country) string  
Note, you need to specify the string option when j() is a string variable. Browsing the resulting data:  

year popCAN popFRA popGBR popGER popITA popJPN popUSA 
1970 21324 52040.8 55632 77709 53821.9 103720 205089 
1971 21962.1 52531.8 55928 78345 54073.5 104750 207692 
1972 22219.6 52993.1 56097 78715 54381.3 106180 209924 
1973 22493.8 53420.5 56223 78956 54751.4 108660 211939 
1974 22808.4 53771 56236 78979 55110.9 110160 213898 
1975 23142.3 54016 56226 78679 55441 111520 215981 

 

To create variables named CANpop / FRApop / GBRpop instead of popCAN/popFRA/popGBR, use:  

. reshape wide @pop, i(year) j(country) string  
The @ is useful when, for example, you start with a dataset that has the dimension you want to reshape written the “wrong” way 
around. Suppose you are given a dataset with country / youngpop / oldpop. You can reshape the pop variable to long to give 
country / agegroup / pop using:  

. reshape long @pop, i(country) j(agegroup) string  



Optional Exercises:  
 
1. Penn World Tables 6.1  
Download a broader Penn World Tables dataset from http://pwt.econ.upenn.edu/ (hint: download the csv-version pwt61.csv 
which should be ready for use in Stata). Select a few variables and a number of different countries.  

Complete the following commands for your data and make sure to keep a log-file of your work:  
- read the dataset into Stata using insheet 
- examine the data, e.g. desc, sum, etc – especially population, real per capita GDP, investment price level, government share 

of GDP (have a look at the documentation on above website if you’re unsure which variable is which). 
- generate a histogram of the population data  
- label the dataset and a few variables 
- insert a note on where you got the data from  
- save the dataset in Stata format in your H: or J: space  
 
Use the log file to create a do-file that will instantly recreate your work. Now, download the same variables but for a 
different set of countries; by simply changing a few commands in your do-file, you can easily replicate the work that 
you have just done. 
 

Now, create a do-file to  
- read the variables into Stata:  
- examine the data, e.g. describe, summarise, etc  
- label the dataset and each variable  
- insert a note on where you got the data from  
- save each dataset in Stata format in your H: or J: space  
 
2. Create new variables  
- GR9095: average annual growth rate of real per capita GDP between 1990 and 1995  
- high_growth: A dummy for each year in which growth exceeds 5% 
- OECD: dummy variable for OECD membership (Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, 
Greece, Ireland, Iceland, Italy, Japan, Luxembourg, Netherlands, Norway, New Zealand, Portugal, Spain, Sweden, Switzerland, 
Turkey, United Kingdom, United States)  

http://pwt.econ.upenn.edu/


Estimation 
We now move on from the manipulation of databases to the more exciting material of running regressions. In this tutorial, we 
shall use data from Prof. Caselli’s “Accounting for Cross-Country Income Differences” which is forthcoming in Handbook of 
Economic Growth. There is a link to these data on my website. But before we start looking at the basics of regression commands, 
let us look in Stata help for the details on estimation. The basic information is: 
 

• There are many different models of estimation. The main commands include regress, logit, logistic, sureg.  
• Most have a similar syntax:  

 
command varlist [weight] [if exp] [in range] [, options] 

 
• 1st variable in the varlist is the dependent variable, and the remaining are the independent variables.   
• You can use Stata's syntax to specify the estimation sample; you do not have to make a special dataset. 
• You can, at any time, review the last estimates by typing the estimation command without arguments. 
• The level() option to indicate the width of the confidence interval.  The default is level(95). 

 
Once you have carried out your estimation, there are a number of post-estimation commands that are useful: 
 

• You can recall the estimates, VCM, standard errors, etc…; 
• You can carry out hypothesis testing => test (Wald tests), testnl (non-linear Wald tests), lrtest (likelihood-

ratio tests), hausman (Hausman's specification test); 
• You can use Stata's predict command, which does predictions and residual calculations.  

 
Plan future tutorial sections 
 
From now on, we shall work almost exclusively with “do files”. Therefore, I want you all to download the blank do-
file from my website and then we will start running through the basics of regression analysis in Stata.  
 
Today’s session will use Prof. Francesco Caselli’s database from his handbook of Economic Growth paper which 
contains real GDP and other variables on up to 105 countries. This data is downloadable in .dta  form from his 
website or using a link on the course webpage. Download this data to the relevant directory on your computer and 
save it as you wish to call it. I have called it “Caselli_handbook.dta”. 
 
The last thing to bear in mind for the next 2 sessions is that they are much more “in your hands” in terms of playing 
with Stata and seeing what it can do and figuring out how to do it by yourself (with me there to help of course!) 



Linear regression  
 
Stata can do most of fancy regressions (and most of which we will not talk about in these classes). Just so that you 
know the main ones, here is an abbreviated list of other regression commands that may be of interest: 
 
anova  analysis of variance and covariance 
cnreg  censored-normal regression 
heckman Heckman selection model 
intreg  interval regression 
ivreg  instrumental variables (2SLS) regression 
newey  regression with Newey-West standard errors 
prais  Prais-Winsten, Cochrane-Orcutt, or Hildreth-Lu regression 
qreg   quantile (including median) regression 
reg   ordinary least squares regression 
reg3   three-stage least squares regression 
rreg   robust regression (NOT robust standard errors) 
sureg  seemingly unrelated regression 
svyheckman Heckman selection model with survey data 
svyintreg interval regression with survey data 
svyivreg  instrumental variables regression with survey data 
svyregress linear regression with survey data 
tobit  tobit regression 
treatreg  treatment effects model 
truncreg  truncated regression 
xtabond  Arellano-Bond linear, dynamic panel-data estimator 
xtintreg  panel data interval regression models 
xtreg  fixed- and random-effects linear models 
xtregar  fixed- and random-effects linear models with an AR(1) disturbance 
xttobit  panel data tobit models 
 
We will focus on this is the most basic form of linear regression. regress fits a model of depvar on varlist using 
linear regression. The help regress command will bring up the following instructions for using regress.   
 
regress depvar [varlist] [weight] [if exp] [in range] [, level(#) beta robust cluster(varname) score(newvar) hc2 hc3 
hascons noconstant tsscons noheader eform(string) depname(varname) mse1 plus ] 
 
Looking in the bottom of this help file will explain the options as follows: 
 
Options 
level(#)   specifies the confidence level, in %, for confidence intervals of the coefficients; see help level. 
 
beta   requests that normalized beta coefficients be reported instead of confidence intervals.  beta may 
not be specified with cluster(). 
 
robust   specifies that the Huber/White/sandwich estimator of variance is to be used in place of the 
traditional calculation. robust combined with cluster() further allows observations which are not independent within 
cluster (although they must be independent between clusters).  See [U] 23.14 Obtaining robust variance estimates. 
 
cluster(varname) specifies that the observations are independent across groups (clusters) but not necessarily 
independent within groups.  varname specifies to which group each observation belongs; e.g., cluster(personid) in 
data with repeated observations on individuals.  cluster() can be used with pweights to produce estimates for 
unstratified cluster-sampled data, but see help svyregress for a command especially designed for survey data. 
Specifying cluster() implies robust. 
 
score(newvar) creates a new variable for the scores from the equation in the model.  The new variable contains 
each observation's contribution to the score; see [U] 23.15 Obtaining scores. 
 
hc2 and hc3  specify an alternative bias correction for the robust variance calculation.  hc2 and hc3 may not be 



specified with cluster(). hc2 uses u_j^2/(1-h_j) as the observation's variance estimate. hc3 uses u_j^2/(1-h_j)^2 as the 
observation's variance estimate. Specifying either hc2 or hc3 implies robust. 
 
Hascons   indicates that a user-defined constant or its equivalent is specified among the independent 
variables.  Some caution is recommended when using this option as resulting estimates may not be as accurate as 
they otherwise would be.  Use of this option requires "sweeping" the constant last, so the moment matrix must be 
accumulated in absolute rather than deviation form.  This option may be safely specified when the means of the 
dependent and independent variables are all "reasonable" and there are not large amounts of collinearity between the 
independent variables.  The best procedure is to view hascons as a reporting option -- estimate with and without 
hascons and verify that the coefficients and standard errors of the variables not affected by the identity of the 
constant are unchanged.  If you do not understand this warning, it is best to avoid this option. 
 
noconstant  suppresses the constant term (intercept) in the regression. 
 
tsscons   forces the total sum of squares to be computed as though the model has a constant; i.e., as 
deviations from the mean of the dependent variable.  This is a rarely used option that has an effect only when 
specified with nocons.  It affects only the total sum of squares and all results derived from the total sum of squares. 
 
noheader, eform(), depname(), mse1, and plus are for ado-file writers; see [R] regress. 
 
 
As described above, most estimation commands will follow this type of syntax but the available options will differ 
and so you should check the relevant help files if you wish to use these approaches. Of course, Stata has a number of 
defaults and so you don’t need to include any options if you don’t wish to change the default (though it is always 
good to figure out what the default is!) 
 
Lets start with a very simple regression of GDP per worker (y) on capital-output ratio (k).  
 
. regress  y k 
 
      Source |       SS       df       MS              Number of obs =     104 
-------------+------------------------------           F(  1,   102) = 1110.99 
       Model |  2.5465e+10     1  2.5465e+10           Prob > F      =  0.0000 
    Residual |  2.3380e+09   102  22921482.3           R-squared     =  0.9159 
-------------+------------------------------           Adj R-squared =  0.9151 
       Total |  2.7803e+10   103   269936187           Root MSE      =  4787.6 
 
------------------------------------------------------------------------------ 
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           k |   .3319374   .0099587    33.33   0.000     .3121844    .3516904 
       _cons |   4720.016   617.1018     7.65   0.000     3495.998    5944.035 

 

There are a few points to note here:  
- The first variable listed after the regress (or reg for short) command is the dependent variable, and all subsequently 

listed variables are the independent variables.  
- Stata automatically adds the constant term or intercept to the list of independent variables (use the noconstant option if 

you want to exclude it).  
- The top-left corner gives the ANOVA decomposition of the sum of squares in the dependent variable (Total) into the 

explained (Model) and unexplained (Residual).  
- The top-right corner gives the statistical significance results for the model as a whole.  
- The bottom section gives the results for the individual independent variables.  
The regress command can be used with the robust option for estimating the standard errors using the Huber-White 
sandwich estimator (to correct the standard errors for heteroscedasticity):  

. regress y k, robust  

 
Regression with robust standard errors                 Number of obs =     104 
                                                       F(  1,   102) =  702.15 
                                                       Prob > F      =  0.0000 



                                                       R-squared     =  0.9159 
                                                       Root MSE      =  4787.6 
 
------------------------------------------------------------------------------ 
             |               Robust 
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           k |   .3319374   .0125268    26.50   0.000     .3070905    .3567842 
       _cons |   4720.016   506.2807     9.32   0.000     3715.811    5724.222 

 

The coefficient estimates are exactly the same as in straightforward OLS, but the standard errors take into account 
heteroscedasticity. Note, the ANOVA table is deliberately suppressed as it is no longer appropriate in a statistical sense.  

Sometimes you also want to allow for more general deviations from the iid-assumption on the error term. The option 
cluster(group) allows for arbitrary correlation within specified groups (see Wooldridge, “Econometrics of Cross-Section 
and Panel Data”, chapter 4, for more details and limitations of this approach). For example, you might think that in a panel of 
countries, errors are correlated across time but independent across countries. Then, you should cluster standard errors on 
countries. In our example, we do not have a time dimension so clustering on country yields the same results as the robust option 
(which is a special case of the cluster option): 

. regress y k, cluster(country) 

Stata comes with a large amount of regression diagnostic tools, such as tests for outliers, heteroskedasticity in the errors etc. A 
good survey is available at http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter2/statareg2.htm. We will focus on two useful 
tools for detecting influential observations and looking at partial correlations. The first tool is the command lvr2plot (read 
leverage-versus-residual squared plot). This is not available after the robust option is used so lets revert back to the original 
regression: 

. regress y k 

. lvr2plot, mlabel(country) 

This plots the leverages of all observations against their squared residuals (the option mlabel labels points according to the 
variable listed in brackets behind it). Leverage tells you how large the influence of a single observation on the estimated 
coefficients is. Observations with high values could potentially be driving the results obtained (especially if they also have a large 
squared residual) so we should check whether excluding them changes anything.  

The second command is avplot (added-variable plot) which graphs the partial correlation between a specified regressor and the 
dependent variable. For this not to be simply the fitted values, we should add another variable such as human capital (h). Formally 

. regress y k 

. avplot k, mlabel(country) 

For some very basic econometrics which also comes with the necessary Stata commands, see 
http://www.cas.lancs.ac.uk/short_courses/notes/stata/session5.pdf for model diagnostics. 

 

Now you should play around with the regressions by adding constants, dropping variables from the regression.  

http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter2/statareg2.htm
http://www.cas.lancs.ac.uk/short_courses/notes/stata/session5.pdf


Post-estimation 
 
Once you have done your regression, you usually want to carry out some extra analysis such as forecasting or 
hypothesis testing. Here is a list of the most useful post-estimation commands: 
 
Command Description 
adjust  Tables of adjusted means and proportions 
estimates Store, replay, display, ... estimation results 
hausman  Hausman's specification test after model fitting 
lincom  Obtain linear combinations of coefficients 
linktest  Specification link test for single-equation models 
lrtest   Likelihood-ratio test after model fitting 
mfx   Marginal effects or elasticities after estimation 
nlcom  Nonlinear combinations of estimators 
predict   Obtain predictions, residuals, etc. after estimation 
predictnl  Nonlinear predictions after estimation 
suest   Perform seemingly unrelated estimation 
test    Test linear hypotheses after estimation 
testnl  Test nonlinear hypotheses after estimation 
vce   Display covariance matrix of the estimators 
 
Prediction  
A number of predicted values can be obtained after all estimation commands, such as reg, cnsreg, logit or probit. The 
most important are the predicted values for the dependent variable and the predicted residuals. For example, suppose we run the 
basic regression again:  

. regress  y k h 

. predict y_hat  /* predicted values for dependent var */  

. predict r, residual   /* predicted residuals */  

Stata creates new variables containing the predicted values, and these variables can then be used in any other Stata command, e.g. 
you can graph a histogram of the residuals to check for normality.  

If we run a selected regression (e.g. just using OECD countries) and then wish to know how well this regression fits, we could run 
the following commands: 
 
regress  y k h if oecd==1 
 
predict y_hat_oecd  if oecd==1 
predict r_oecd  if oecd==1, residual  

The if statements are only necessary if you are running the analysis on a subset of dataset currently loaded into Stata. If you 
want to make out-of-sample predictions, just drop the if statements in the predict commands.  
 
predict y_hat_oecd_full  
predict r_oecd_full, residual   
 
Hypothesis testing  
The results of each estimation automatically include for each independent variable a t-test (for linear regressions) and a z-test (for 
regressions such as logit or probit) on the null hypothesis that the “true” coefficient is equal to zero. You can also perform an F-
test or  χ2 test on this hypothesis using the test command:  
. regress  y k h y1985 ya 
. test y1985  /*since Stata defaults to comparing the listed terms to zero, you can simply use the variable*/ 
 
 ( 1)  y1985 = 0 
 
       F(  1,    63) =   15.80 
            Prob > F =   0.0002 

The F-statistic with 1 numerator and 63 denominator degrees of freedom is 15.80. The p-value or significance level of the test is 
basically zero (up to 4 digits at least), so we can reject the null hypothesis even at the 1% level – y1985 is significantly different 
from zero. Notice that, since the F-distribution with 1 numerator degree of freedom is identical to the t-distribution, so the F-test 



result is the same as the square of the t-test result in the regression. Also the p-values associated with each test agree.  
 

You can perform any test on linear hypotheses about the coefficients, such as:  

. test y1985=0.5   /* test coefficient on y1985 equals 0.5 */  

. test y1985 h   /* test coefficients on y1985 & h jointly zero */  

. test y1985+h=-0.5 /* test coefficients on y1985 & h sum to –0.5 */  

. test y1985=h   /* test coefficients on y1985 & h are the same */  

With many Stata commands, you can refer to a list of variables using a hyphen, e.g. desc k- ya gives descriptive statistics on 
exp, ya and every other variable on the list between them. However, the test command interprets the hyphen as a minus, and gets 
confused because it thinks you are typing a formula for it to test. If you want to test a long list of variables, you can use the 
testparm command (but remember to use the order command to bring the variables in the right order first)  
 
. order k h y1985 ya 
 
. testparm k-ya 
 
 ( 1)  k = 0 
 ( 2)  h = 0 
 ( 3)  y1985 = 0 
 ( 4)  ya = 0 
 
       F(  4,    63) =  370.75 
            Prob > F =    0.0000 
 



Extracting results  
We have already seen how the predict command can be used to extract predicted values from Stata’s internal memory for use 
in subsequent analyses. Using the generate command, we can also extract other results following a regression, such as 
estimated coefficients and standard errors:  
 
regress  y k h y1985 ya, robust  
gen b_cons=_b[_cons]  /* beta coefficient on constant term */  
gen b_k=_b[k]  /* beta coefficient on GDP60 variable */  
gen se_k=_se[k]  /* standard error */  
 
You can tabulate the new variables to confirm that they do indeed contain the results of the regression. You can then use 
these new variables in subsequent Stata commands, e.g. to create a variable containing t-statistics:  
. gen t_k=b_k/se_k  
or, more directly:  
. gen t_k=_b[k]/_se[k]  
 
Stata stores extra results from estimation commands in e(), and you can see a list of what exactly is stored using the ereturn 
list command:  
. regress y k h y1985 ya, robust 
. ereturn list 
 
. ereturn list 
 
scalars: 
                 e(N) =  68 
              e(df_m) =  4 
              e(df_r) =  63 
                 e(F) =  273.7198124833108 
                e(r2) =  .9592493796249692 
              e(rmse) =  3451.985251440704 
               e(mss) =  17671593578.3502 
               e(rss) =  750720737.0983406 
              e(r2_a) =  .9566620386487768 
                e(ll) =  -647.8670640006279 
              e(ll_0) =  -756.6767273270843 
 
macros: 
            e(depvar) : "y" 
               e(cmd) : "regress" 
           e(predict) : "regres_p" 
             e(model) : "ols" 
           e(vcetype) : "Robust" 
 
matrices: 
                 e(b) :  1 x 5 
                 e(V) :  5 x 5 
 
functions: 
            e(sample)    

e(sample) is a useful tool to have. Earlier we ran the following commands: 
 
regress  y k h if oecd==1 
 
predict y_hat_oecd if oecd==1 
 
but in the event that the “if” statement is complex, we may wish to simple tell Stata to predict using the same sample 
it used in the regression. We can do this using the e(sample): 
 
predict y_hat_oecd if e(sample) 
 

e(N) stores the number of observations, e(df_m) the model degrees of freedom, e(df_r) the residual degrees of freedom, 
e(F) the F-statistic, and so on. You can extract any of these into a new variable:  

. gen residualdf=e(df_r)  
And you can then use this variable as usual, e.g. to generate p-values:  



. gen p_k=tprob(residualdf,t_k)  

The tprob function uses the two-tailed cumulative Student’s t-distribution. The first argument in parenthesis is the relevant 
degrees of freedom, the second is the t-statistic.  
In fact, most Stata commands – not just estimation commands – store results in internal memory, ready for possible extraction. 
Generally, the results from other commands are stored in r(). You can see a list of what exactly is stored using the return 
list command, and you can extract any you wish into new variables:  
 
. sum y 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
           y |       105    18103.09    16354.09   630.1393   57259.25 
 

. return list 

 
scalars: 
                 r(N) =  105 
             r(sum_w) =  105 
              r(mean) =  18103.08932466053 
               r(Var) =  267456251.2136306 
                r(sd) =  16354.08973968379 
               r(min) =  630.1392822265625 
               r(max) =  57259.25 
               r(sum) =  1900824.379089356 

. gen mean_y=r(mean) 

Note that the last command will give exactly the same results as egen mean_y=mean(y).  
 
 
OUTREG2 – the ultimate tool in Stata/Latex or Word friendliness? 
 
There is a tool which will automatically create excel, word or latex tables or regression results and it will save you 
loads of time and effort. It formats the tables to a journal standard and was originally just for word (outreg) but now 
the updated version will also do tables for latex also.  
 
However, it does not come as a standard tool and so before we can use it, we must learn how to install extra ado files 
(not to be confused with running our own do files).  



Extra commands on the net  
 
Looking for specific commands 
If you are trying to perform an exotic econometric technique and cannot find any useful command in the Stata manuals, you may 
have to programme in the details yourself. However, before making such a rash move, you should be aware that, in addition to the 
huge list of commands available in the Stata package and listed in the Stata manuals, a number of researchers have created their 
own extra commands. These extra commands range from the aforementioned exotic econometric techniques to mini time-saving 
routines. For example, the command outreg.  

You need to first locate the relevant command and then install it into your copy of Stata. The command can be located by trying 
different searches, e.g. to search for a command that formats the layout of regression results, I might search for words like 
“format” or “table”:  

. search format regression table 
 
Keyword search 
 
Keywords:  format regression table 
  Search:  (1) Official help files, FAQs, Examples, SJs, and STBs 
 
Search of official help files, FAQs, Examples, SJs, and STBs 
 
 
FAQ     Can I make regression tables that look like those in journal articles? 
. . . . . . . . . . . . . . . . . .  UCLA Academic Technology Services 
5/01    http://www.ats.ucla.edu/stat/stata/faq/outreg.htm 
 
STB-59  sg97.3  . . . . . . . . . . . . Update to formatting regression output 
(help outreg if installed)  . . . . . . . . . . . . . . . J. L. Gallup 
1/01    p.23; STB Reprints Vol 10, p.143 
small bug fixes 
 
STB-58  sg97.2  . . . . . . . . . . . . Update to formatting regression output 
(help outreg if installed)  . . . . . . . . . . . . . . . J. L. Gallup 
11/00   pp.9--13; STB Reprints Vol 10, pp.137--143 
update allowing user-specified statistics and notes, 10% 
asterisks, table and column titles, scientific notation for 
coefficient estimates, and reporting of confidence interval 
and marginal effects 
 
STB-49  sg97.1  . . . . . . . . . . . . . . . . . . . . . . Revision of outreg 
(help outreg if installed)  . . . . . . . . . . . . . . . J. L. Gallup 
5/99    p.23; STB Reprints Vol 9, pp.170--171 
updated for Stata 6 and improved 
 
STB-46  sg97  . . . . . . .  Formatting regression output for published tables 
(help outreg if installed)  . . . . . . . . . . . . . . . J. L. Gallup 
11/98   pp.28--30; STB Reprints Vol 8, pp.200--202 
takes output from any estimation command and formats it as 
in journal articles 
 
(end of search) 
 
You can read the FAQ by clicking on the blue hyperlink. This gives some information on the command. You can install the 
command by first clicking on the blue command name (here sg97.3, the most up-to-date version) and, when the pop-up window 
appears, clicking on the install hyperlink. Once installed, you can create your table and then use the command outreg as any other 
command in Stata.  The help file will tell you the syntax. 
 
However, I mentioned outreg2 and this has not appeared here, so I may need to update more.  
 
Checking for updates in general 
New Stata routines and commands appear all the time and existing ones get updates. A simple way to keep up-to-date with any 
changes is to use the update commands. The first step is to check when your version was last updated: 

. update 
 
Stata executable 
    folder:               C:\Stata8\ 
    name of file:         wstata.exe 



    currently installed:  10 Jan 2005 
 
Ado-file updates 
    folder:               C:\Stata8\ado\updates\ 
    names of files:       (various) 
    currently installed:  24 Feb 2005 
 
Recommendation 
    Type -update query- to compare these dates with what is available from 
    http://www.stata.com 

Stata consists of two sets of files, the executable file and the ado-files. The former is the main programme while the latter present 
the different Stata commands and routines. In order to check whether there are any more up-to-date versions use the update 
query command: 

 
. update query 
(contacting http://www.stata.com) 
 
Stata executable 
    folder:               C:\Stata8\ 
    name of file:         wstata.exe 
    currently installed:  10 Jan 2005 
    latest available:     10 Jan 2005 
 
Ado-file updates 
    folder:               C:\Stata8\ado\updates\ 
    names of files:       (various) 
    currently installed:  24 Feb 2005 
    latest available:     24 Feb 2005 
 
Comment 
    Stata 9, a new release, is available. 
    For details, point your browser at 
        http://www.stata.com/stata9 
 
Recommendation 
    Do nothing; all files up-to-date.  

It looks like my executable and ado files are okay. If I needed to update my ado files, Stata would have told me to type update ado 
which would lead to the following type of update: 

. update ado 
(contacting http://www.stata.com) 
 
Ado-file update log 
    1.  verifying C:\Programme\Stata8\ado\updates\ is writeable 
    2.  obtaining list of files to be updated 
    3.  downloading relevant files to temporary area 
downloading checksum.hlp 
  ... 
downloading varirf_ograph.ado 
downloading whatsnew.hlp 
    4.  examining files 
    5.  installing files 
    6.  setting last date updated 
 
Updates successfully installed. 
 
Recommendation 
    See help whatsnew to learn about the new features 
 

Finally, to learn about the new features installed, simply type help whatsnew. 
 
But we know that outreg2 exists so how do we find it to install? Well, type outreg2 into google to 
convince yourself that it exists. Then type: 
 
search outreg2, net  
 

http://www.stata.com/


Web resources from Stata and other users 
 
(contacting http://www.stata.com) 
 
1 package found (Stata Journal and STB listed first) 
---------------------------------------------------- 
 
outreg2 from http://fmwww.bc.edu/RePEc/bocode/o 
    'OUTREG2': module to arrange regression outputs into an illustrative table 
    / outreg2 provides a fast and easy way to produce an illustrative / table 
    of regression outputs. The regression outputs are produced / piecemeal and 
    are difficult to compare without some type of / rearrangement. outreg2 
 
(click here to return to the previous screen) 
 
(end of search) 
 
Click on the blue link and follow instructions to install the ado file and help.  
 
Now using the help, try to figure out the syntax and then run the regressions from 
earlier in your do file but create a table which places the results of, for example, 6 
regressions next to each other in either word or latex. 
 

http://fmwww.bc.edu/RePEc/bocode/o


More Estimation 
There are a host of other estimation techniques which Stata can handle efficiently. Below is a brief look at a couple of these. 
Further information on these or any other technique you may be interested in can be obtained from the Stata manuals.  
 
Constrained linear regression  
 
Suppose the theory predicts that the coefficients for REV and ASSASS should be identical. We can estimate a regression model 
where we constrain the coefficients to be equal to each other. To do this, first define a constraint and then run the cnsreg 
command:  
 
. constraint define 1 rev=assass   /* constraint is given the number 1 */ 
. cnsreg gr6085 lgdp60 sec60 prim60 gcy rev assass pi60 if year==1990, constraint(1) 
 
Constrained linear regression                          Number of obs =     100 
                                                       F(  6,    93) =   12.60 
                                                       Prob > F      =  0.0000 
                                                       Root MSE      =  1.5025 
 ( 1) - rev + assass = 0 
------------------------------------------------------------------------------ 
      gr6085 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      lgdp60 |  -1.617205   .2840461    -5.69   0.000    -2.181264   -1.053146 
       sec60 |   .0429134    .012297     3.49   0.001     .0184939    .0673329 
      prim60 |   .0352023    .007042     5.00   0.000     .0212183    .0491864 
         gcy |  -.0231969    .017786    -1.30   0.195    -.0585165    .0121226 
         rev |  -.2335536   .2877334    -0.81   0.419     -.804935    .3378279 
      assass |  -.2335536   .2877334    -0.81   0.419     -.804935    .3378279 
        pi60 |  -.0054616   .0024692    -2.21   0.029    -.0103649   -.0005584 
       _cons |    12.0264   2.073177     5.80   0.000     7.909484    16.14332 
------------------------------------------------------------------------------ 
 
Notice that the coefficients for REV and ASSASS are now identical, along with their standard errors, t-stats, etc. We can define 
and apply several constraints at once, e.g. constrain the lGDP60 coefficient to equal –1.5:  
 
. constraint define 2 lgdp60=-1.5  
. cnsreg gr6085 lgdp60 sec60 prim60 gcy rev assass pi60 if year==1990, constraint(1 2) 
 

Dichotomous dependent variable  
When the dependent variable is dichotomous (zero/one), you can run a Linear Probability Model using the regress command. 
You may also want to run a logit or a probit regression. The difference between these three models is the assumption that 
you make about the probability distribution of the latent dependent variable (LPM assumes an identity function, Logit a logistic 
distribution function, and Probit a normal distribution function).  

For the sake of trying out these commands, let us “explain” why a country is an OECD member using a logit regressions: 

. logit OECD lrgdpl if year==1990 
 
Iteration 0:   log likelihood = -63.180951 
Iteration 1:   log likelihood = -37.103818 
Iteration 2:   log likelihood =  -27.90043 
Iteration 3:   log likelihood = -23.711149 
Iteration 4:   log likelihood = -22.238616 
Iteration 5:   log likelihood = -21.999486 
Iteration 6:   log likelihood = -21.991401 
Iteration 7:   log likelihood =  -21.99139 
 
Logit estimates                                   Number of obs   =        135 
                                                  LR chi2(1)      =      82.38 
                                                  Prob > chi2     =     0.0000 
Log likelihood =  -21.99139                       Pseudo R2       =     0.6519 
 
------------------------------------------------------------------------------ 
        OECD |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      lrgdpl |    4.94118   1.119976     4.41   0.000     2.746067    7.136292 
       _cons |  -47.38448    10.7335    -4.41   0.000    -68.42176    -26.3472 
------------------------------------------------------------------------------------------------------------------------------- 



Panel Data  
 
If you are lucky enough to have a panel dataset, you will have data on n countries/people/firms/etc, over t time periods, for a total 
of n x t observations. If t is the same for each country/person/firm then the panel is said to be balanced; but for most things Stata is 
capable of working out the optimal/maximum dataset available. There are a few things to note before using panel data commands: 
 

1. Panel data should be kept in long form (with separate person and time variables). However, sometimes your data may 
be in wide form and needs to be converted to long form using the reshape command (see class 2).  
 

2. You have to declare your data a panel. One way to do this is using the command iis and tss. Another is using the 
tsset command. To do this, you need two indicator variables, indicating the unit (iss) and time (tss) dimensions of 
your panel. In our case, these are simply year and country. Note that panel dimensions cannot be string variables so 
you should first encode country (see last week). Once you have done this, use the tsset command: 

. encode country, gen(country_no) 

. tsset country_no year 
 

You are now free to use Stata’s panel data commands, although I will only make use of a few main ones (bolded):  

xtdes  Describe pattern of xt data 

xtsum  Summarize xt data 

xttab  Tabulate xt data 

xtdata  Faster specification searches with xt data 

xtline  Line plots with xt data 

xtreg  Fixed-, between- and random-effects, and population-averaged linear models 

xtregar  Fixed- and random-effects linear models with an AR(1) disturbance 

xtgls  Panel-data models using GLS 

xtpcse  OLS or Prais-Winsten models with panel-corrected standard errors 

xtrchh  Hildreth-Houck random coefficients models 

xtivreg  Instrumental variables and two-stage least squares for panel-data models 

xtabond  Arellano-Bond linear, dynamic panel data estimator 

xttobit  Random-effects tobit models 

xtintreg  Random-effects interval data regression models 

xtlogit  Fixed-effects, random-effects, & population-averaged logit models 

xtprobit  Random-effects and population-averaged probit models 

xtcloglog  Random-effects and population-averaged cloglog models 

xtpoisson  Fixed-effects, random-effects, & population-averaged Poisson models 

xtnbreg  Fixed-effects, random-effects, & population-averaged negative binomial models 

xtgee  Population-averaged panel-data models using GEE 

 
Describe pattern of xt data 
xtdes is very useful to see if your panel is actually balanced or whether there is large variation in the number of years for which 
each cross-sectional unit is reporting.  
 
. xtdes 
 
country_no:  1, 2, ..., 168                                  n =        168 
    year:  1950, 1951, ..., 2000                             T =         51 
           Delta(year) = 1; (2000-1950)+1 = 51 
           (country_no*year uniquely identifies each observation) 
 
Distribution of T_i:   min      5%     25%       50%       75%     95%     max 
                        51      51      51        51        51      51      51 



 
     Freq.  Percent    Cum. |  Pattern 
 ---------------------------+----------------------------------------------------- 
      168    100.00  100.00 |  111111111111111111111111111111111111111111111111111 
 ---------------------------+----------------------------------------------------- 
      168    100.00         |  XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

 

Of course, in our sample there are year entries for every country and every year, but much of the data is missing. Looking at the 
patterns given that GDP per capita data exists tells a much more mixed story. Some 50 countries have data for all years, but many 
other variant patterns are evident (especially samples than begin after 1950). 

 
. xtdes if cgdp!=. 
 
country_no:  1, 2, ..., 168                                  n =        168 
    year:  1950, 1951, ..., 2000                             T =         51 
           Delta(year) = 1; (2000-1950)+1 = 51 
           (country_no*year uniquely identifies each observation) 
 
Distribution of T_i:   min      5%     25%       50%       75%     95%     max 
                         1       1      15        41        51      51      51 
 
     Freq.  Percent    Cum. |  Pattern 
 ---------------------------+----------------------------------------------------- 
       50     29.76   29.76 |  111111111111111111111111111111111111111111111111111 
       29     17.26   47.02 |  ..........11111111111111111111111111111111111111111 
       14      8.33   55.36 |  ..............................................1.... 
        6      3.57   58.93 |  ........................................11111111111 
        6      3.57   62.50 |  .11111111111111111111111111111111111111111111111111 
        5      2.98   65.48 |  ..........1111111111111111111111111111111111111111. 
        4      2.38   67.86 |  ...........................111111111111111111111111 
        4      2.38   70.24 |  .........111111111111111111111111111111111111111111 
        4      2.38   72.62 |  .....1111111111111111111111111111111111111111111111 
       46     27.38  100.00 | (other patterns) 
 ---------------------------+----------------------------------------------------- 
      168    100.00         |  XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

 
Summarize xt data  
 
xtsum is similarly very useful and can be used in the same way that sum is used for non-panel data. 
 
. xtsum pop cgdp 
 
Variable         |      Mean   Std. Dev.       Min        Max |    Observations 
-----------------+--------------------------------------------+---------------- 
pop      overall |  31252.47   108217.8      40.82    1258821 |     N =    5847 
         between |             89099.92      42.48   913862.3 |     n =     168 
         within  |             28391.67  -313609.8   405753.2 | T-bar = 34.8036 
                 |                                            | 
cgdp     overall |  7.467798   1.272928   4.417209   10.79891 |     N =    5847 
         between |             1.052756   5.527193   10.05989 |     n =     168 
         within  |             .8357679   5.050297   9.835527 | T-bar = 34.8036 
 
This tables tells us the minimum and maximum, standard deviation and mean (in the overall case) of our selected variables (pop 
and cgdp) in three ways that are of interest: 

1. the overall sample 
2. the between sample – i.e. x(bar)i 
3. the within sample – i.e. xit - x(bar)i - x(global bar) 

 
Tabulate xt data  
 
xttab is also a generalisation of the tabulate command for panel data and will show overall, within and between variation.  
 
. xttab  G7 



 
                  Overall             Between            Within 
       G7 |    Freq.  Percent      Freq.  Percent        Percent 
----------+----------------------------------------------------- 
        0 |    8211     95.83       161     95.83         100.00 
        1 |     357      4.17         7      4.17         100.00 
----------+----------------------------------------------------- 
    Total |    8568    100.00       168    100.00         100.00 
                               (n = 168) 
 
Panel regressions 
 
xtreg is a generalisation of the regress commands. As with the summary data above, we can make use of the information in the 
cross-section (between) and also in the time-series (within). Also, as per your econometrics training, Stata allows you to run 
fixed-effects (fe), random effects (re) and between estimators using xtreg. More complicated estimation (such as Arellano-Bond) 
have specific xt estimation commands. 
 
Fixed Effects Regression 
Fixed effects regression controls for unobserved, but constant, variation across the cross-sectional units. It is equivalent to 
including a dummy for each country/firm in our regression. Let us use the xtreg command with the fe option: 
 
. xtreg grgdpch gdp60 openk kc kg ki, fe 
 
Fixed-effects (within) regression               Number of obs      =      5067 
Group variable (i): country_no                  Number of groups   =       112 
 
R-sq:  within  = 0.0164                         Obs per group: min =         2 
       between = 0.2946                                        avg =      45.2 
       overall = 0.0306                                        max =        51 
 
                                                F(4,4951)          =     20.58 
corr(u_i, Xb)  = -0.4277                        Prob > F           =    0.0000 
 
------------------------------------------------------------------------------ 
     grgdpch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       gdp60 |  (dropped) 
       openk |  -.0107672   .0042079    -2.56   0.011    -.0190166   -.0025178 
          kc |  -.0309774   .0089545    -3.46   0.001    -.0485322   -.0134225 
          kg |  -.0733306   .0147568    -4.97   0.000    -.1022604   -.0444007 
          ki |   .1274592   .0178551     7.14   0.000     .0924552    .1624631 
       _cons |   4.425707   .7451246     5.94   0.000     2.964933    5.886482 
-------------+---------------------------------------------------------------- 
     sigma_u |  1.6055981 
     sigma_e |  6.4365409 
         rho |  .05858034   (fraction of variance due to u_i) 
------------------------------------------------------------------------------ 
F test that all u_i=0:     F(111, 4951) =     1.82           Prob > F = 0.0000 
 
Notice that gdp60, the log of GDP in 1960 for each country, is now dropped as it is constant across time for each country and so is 
subsumed by the country fixed-effect. 
 
 
Between Effects 
We can now use the xtreg command with the be option. This is equivalent to running a regression on the dataset of means by 
cross-sectional identifier. As this results in loss of information, between effects are not used much in practice.  
 
. xtreg grgdpch gdp60 openk kc kg ki, be 
 
Between regression (regression on group means)  Number of obs      =      5067 
Group variable (i): country_no                  Number of groups   =       112 
 
R-sq:  within  = 0.0100                         Obs per group: min =         2 
       between = 0.4575                                        avg =      45.2 
       overall = 0.0370                                        max =        51 
 



                                                F(5,106)           =     17.88 
sd(u_i + avg(e_i.))=  1.277099                  Prob > F           =    0.0000 
 
------------------------------------------------------------------------------ 
     grgdpch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       gdp60 |  -.5185608   .1776192    -2.92   0.004    -.8707083   -.1664134 
       openk |   .0008808   .0029935     0.29   0.769    -.0050541    .0068156 
          kc |  -.0151328    .009457    -1.60   0.113    -.0338822    .0036166 
          kg |  -.0268036   .0149667    -1.79   0.076    -.0564765    .0028693 
          ki |   .1419786   .0213923     6.64   0.000     .0995662     .184391 
       _cons |   4.657591   1.587533     2.93   0.004     1.510153     7.80503 
------------------------------------------------------------------------------ 
 
Random Effects 
The command for a linear regression on panel data with random effects in Stata is xtreg with the re option. Stata's random-effects 
estimator is a weighted average of fixed and between effects. 
 
. xtreg grgdpch gdp60 openk kc kg ki, re 
 
Random-effects GLS regression                   Number of obs      =      5067 
Group variable (i): country_no                  Number of groups   =       112 
 
R-sq:  within  = 0.0143                         Obs per group: min =         2 
       between = 0.4235                                        avg =      45.2 
       overall = 0.0389                                        max =        51 
 
Random effects u_i ~ Gaussian                   Wald chi2(5)       =    159.55 
corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000 
 
------------------------------------------------------------------------------ 
     grgdpch |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       gdp60 |  -.5661554   .1555741    -3.64   0.000    -.8710751   -.2612356 
       openk |  -.0012826   .0024141    -0.53   0.595    -.0060142     .003449 
          kc |  -.0270849   .0061971    -4.37   0.000     -.039231   -.0149388 
          kg |  -.0506839   .0101051    -5.02   0.000    -.0704895   -.0308783 
          ki |   .1160396   .0127721     9.09   0.000     .0910067    .1410725 
       _cons |   6.866742   1.239024     5.54   0.000       4.4383    9.295185 
-------------+---------------------------------------------------------------- 
     sigma_u |  .73122048 
     sigma_e |  6.4365409 
         rho |  .01274156   (fraction of variance due to u_i) 
------------------------------------------------------------------------------ 
 
Choosing Between Fixed and Random Effects 
 
Choosing between FE and RE models is usually done using a Hausman test, and this is easily completed in Stata using the 
Hausman command. To run a Hausman test we need to run the RE and FE models and save the results using the store 
command. We then instruct Stata to retrieve the 2 sets of results and carry-out the test. 
 
For example, using the same estimates as above, we can write the following in our do file: 
 
xtreg grgdpch gdp60 openk kc kg ki, fe 
estimates store fe 
 
xtreg grgdpch gdp60 openk kc kg ki, re 
estimates store re 
 
hausman fe re 
 
                 ---- Coefficients ---- 
             |      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B)) 
             |       fe           re         Difference          S.E. 
-------------+---------------------------------------------------------------- 
       openk |   -.0107672    -.0012826       -.0094846        .0034465 



          kc |   -.0309774    -.0270849       -.0038924        .0064637 
          kg |   -.0733306    -.0506839       -.0226467        .0107541 
          ki |    .1274592     .1160396        .0114196        .0124771 
------------------------------------------------------------------------------ 
                           b = consistent under Ho and Ha; obtained from xtreg 
            B = inconsistent under Ha, efficient under Ho; obtained from xtreg 
 
    Test:  Ho:  difference in coefficients not systematic 
 
                  chi2(4) = (b-B)'[(V_b-V_B)^(-1)](b-B) 
                          =       20.15 
                Prob>chi2 =      0.0005 
 
As described in the results, the null hypothesis is that there is no difference in the coefficients estimated by the efficient RE 
estimator and the consistent FE estimator. If there is no difference, then use the RE estimator – i.e. if  the P-value is insignificant 
and the Prob>chi2 larger than .05. Otherwise, you should use FE, or one of the other solutions for unobserved heterogeneity as 
outlined by Vassilis in his lectures..  
 



Time series data 
 
Stata has a very particular set of functions that control time series commands. But in order to use these commands, you must 
ensure that you tell Stata. As with the panel data commands above, we can do this using the tsset command – data must be sorted 
by the time series (or with panel data, by the panel data variable and then the date variable). For example: 

sort datevar 

tsset datevar 

 
or 

sort panelvar datevar 

tsset panelvar datevar 
 
Once you have done this, you are free to use the time series commands – I present a selection of these below (type help time for 
the full list): 
 
tsset         Declare a dataset to be time-series data 
tsfill        Fill in missing times with missing observations in time-series data 
tsappend      Add observations to a time-series dataset 
tsreport      Report time-series aspects of a dataset or estimation sample 
 
arima         Autoregressive integrated moving-average models 
arch          Autoregressive conditional heteroskedasticity (ARCH) family of estimators 
 
tssmooth_ma            Moving-average filter 
tssmooth_nl            Nonlinear filter 
 
corrgram      Tabulate and graph autocorrelations 
xcorr         Cross-correlogram for bivariate time series 
dfuller       Augmented Dickey-Fuller unit-root test 
pperron       Phillips-Perron unit-roots test 
archlm        Engle's LM test for the presence of autoregressive conditional heteroskedasticity 
 
var           Vector autoregression models 
svar          Structural vector autoregression models 
varbasic      Fit a simple VAR and graph impulse-response functions 
vec           Vector error-correction models 
 
varsoc        Obtain lag-order selection statistics for VARs and VECMs 
varstable     Check the stability condition of VAR or SVAR estimates 
vecrank       Estimate the cointegrating rank using Johansen's framework 
 
irf create    Obtain impulse-response functions and FEVDs 
vargranger    Perform pairwise Granger causality tests after var or svar 
 
irf graph     Graph impulse-response functions and FEVDs 
irf cgraph    Combine graphs of impulse-response functions and FEVDs 
irf ograph    Graph overlaid impulse-response functions and FEVDs 
 
All of these can be implemented where appropriate by using the help function, manuals and internet resources (or colleagues 
know-how).  
 
Stata Date and Time-series Variables 
 
However, one of the issues with time series in Stata, and something that particularly challenges new users of Stata, is the data 
format used in the program. Therefore, I below provide some more advanced notes on this specialist topic.  
 
The key thing is that there are 2 possible types of entry – date entries (which work in general for storing dates in Stata) and time-
series entries (which are useful when we are not using daily data).Stata stores dates as the number of elapsed periods since 
January 1, 1960. When using a data-set that is not daily data, we want to use Stata’s time-series function rather than the date 
function – the reason is that the dates for quarterly data will be about 3 months apart but the number of days between them will 



vary so telling Stata to go from Q1 to Q2 will involve changing the date from (for example) January 1st to April 1st – which is 
either 90 days or 91 days depending on whether it is a leap-year. Obviously our life would be easier if we could just tell Stata that 
one entry is Q1, and the other entry is Q2. For example, if we want to take first-differences between quarters, or even more tricky 
if we wanted to take seasonal differences – Q1 minus Q1 from previous year. 
 
Therefore when we have a variable that identifies the time-series elements of a dataset, we must tell Stata what type of data we are 
using – is it daily, weekly, monthly, quarterly, half-yearly or yearly. Therefore, if you use daily data it will be the number of 
elapsed days since January 1st 1960 (which is therefore zero), but if you use quarterly data, it is the number of elapsed quarters 
since 1960 Q1. The following table explains the different formats –: 
 
There is a format for each of these time periods:  
 
 
Format Description Beginning +1 Unit  +2 Units  +3 Units 
%td daily  01jan1960 02jan1960 03Jan1960 04Jan1960 
%tw weekly  week 1, 1960 week 2, 1960 week 3, 1960 week 4, 1960 
%tm monthly  Jan, 1960  Feb, 1960 Mar, 1960 Apr, 1960 
%tq quarterly  1st qtr, 1960 2nd qtr, 1960 3rd qtr, 1960 4th qtr, 1961 
%th half-yearly 1st half, 1960 2nd half, 1960 1st half, 1961 2nd half, 1961 
%ty yearly  1960  1961  1962  1963 
 
Obviously, what you tell Stata here is highly important; we will see how to convert our data into Stata dates in a moment, but for 
now assume that we have a Stata date for January 1, 1999 – this is an elapsed date of 14245 (the number of days since January 1st 
1960). If we were to use this number as different types of time-series data, then there would be very different outcomes as shown 
in the following table: 
  
Daily  Weekly  Quarterly Half-yearly Yearly 
%td  %tw  %tq  %th  %ty 
01 Jan 1999 2233 W50 5521 Q2  9082 H2  - 
 
These dates are so different because the elapsed date is actually the number of weeks, quarters, etc., from the first week, quarter, 
etc of 1960. The value for %ty is missing because it would be equal to the year 14,245 which is beyond what Stata can accept.  
 
Therefore if we have a date format of 14245, but we want this to point to quarterly data, then we would need to convert it using 
special Stata functions. These functions translate from %td dates:  
 

wofd(varname)  daily to weekly 

mofd(varname)  daily to monthly 

qofd(varname)  daily to quarterly 

yofd(varname)  daily to yearly 
 
Looking up in help can also show how to convert numbers between other formats. 
 
Getting dates into Stata format 
 
This section covers how we get an existing date or time variable into the Stata format for dates – from here we can rewrite it as 
quarterly, monthly, etc… using the above commands. There are 3 different considerations depending on how your existing “date 
variable” is set up:  
 

1. Date functions for single string variables 
For example, your existing date variable is called raw_date and is of the form “20mar1999” – then it is said to be a 
single string variable (the string must be easily separated into its components so strings like "20mar1999" and "March 
20, 1999" are acceptable). If you have a string like "200399", we would need to convert it to a numeric variable first and 
then use technique 3 below.  
To convert the raw_date variable to a daily time-series date, we use the command: 
 

gen daily=date(raw_date,"dmy")  
 
The "dmy" portion indicates the order of the day, month and year in the variable; so if the variable was of the form 



values been coded as "March 20, 1999" we would have used "mdy" instead.  
The year must have 4 digits or else it returns missing values – therefore if the original date only has two digits, we place 
the century before the "y.": 
 

gen daily=date(raw_date,"dm19y") 
 
Or, if we have non-daily dates, we can use the following functions: 

weekly(stringvar,"wy") 

monthly(stringvar,"my") 

quarterly(stringvar,"qy") 

halfyearly(stringvar,"hy") 

yearly(stringvar,"y")  
 
For example, if our data is 2002Q1, then 
 

gen quarterly= quarterly(raw_data,"yq")  
 
will get our elapsed quarters since 1960 Q1.  
 

 
2. Date functions for partial date variables  

If there are separate variables for each element of the date; for example: 
 
month  day  year  
7  11  1948 
1  21  1952 
11  2  1994 
8  12 1993 
 
We can use the mdy() function to create an elapsed Stata date variable. The month, day and year variables must be 
numeric. Therefore we can write: 
 

gen mydate = mdy(month,day,year) 
 
Or, with quarterly data, we would use the "yq()" function: 

gen qtr=yq(year,quarter) 
 
All of the functions are: 
 

mdy(month,day,year)  for daily data 

yw(year, week)  for weekly data 

ym(year,month)  for monthly data 

yq(year,quarter)  for quarterly data 

yh(year,half-year)  for half-yearly data 
 

3. Converting a date variable stored as a single number  
 
As discussed above, if you have a single numeric variable, we need to first convert it into its component parts in order to 
use the mdy function. For example, imagine the variable is of the form yyyymmdd (for example, 19990320 for March 
20 1999); now we need to split it into year, month and day as follows: 



 

gen year = int(date/10000) 

gen month = int((date-year*10000)/100) 

gen day = int((date-year*10000-month*100)) 

gen mydate = mdy(month,day,year) 
 
In each case the int(x) command returns the integer obtained by truncating x towards zero. 

 
Using the time series date variables 
 
Once we have the date variable in Stata elapsed time form, it is not the most intuitive to work with. For example, here is how a 
new variable called stata_data will look by using the command  
 

gen stata_date = mdy(month,day,year) 
 
 
month day year stata_date 
7 11 1948 -4191 
1 21 1952 -2902 
8 12 1993 12277 
11 2 1994 12724 
 
Therefore to display the stata_date in a more user-friendly manner, we can use the format command as follows: 
 

format  stata_date %d 
 
This means that stata_date will now be displayed as: 
 
month day year stata_date7 11 1948 11jul1948 
1 21 1952 21jan1952 
8 12 1993 12aug1993 
11 2 1994 02nov1994 
 
It is possible to use alternatives to %d, or to use %td to display elapsed dates in numerous other ways – in fact, we can control 
everything about the display. For example if I had instead written: 
 

format  stata_date %dM_d,_CY 
 
Then we would get: 
 
month day year stata_date7 11 1948 July 11, 1948 
1 21 1952 January 21, 1952 
8 12 1993 August 12, 1993 
11 2 1994 November 2, 1994 
 
See help dfmt for more details.  
 
Making Use of Dates 
 
If we want to use our dates in an if command, we have a number of options: 
 

1. Exact dates 
We have a selection of functions d(), w(), m(), q(), h(), and y() to specify exact daily, weekly, monthly, quarterly, half-
yearly, and yearly dates respectively. For example: 
 

reg x y if w(1995w9) 



sum income if q(1988-3) 

tab gender if y(1999) 
 
2. A date range 

If you want to specify a range of dates, you can use the tin() and twithin() functions:  

reg y x if tin(01feb1990,01jun1990) 

sum income if twithin(1988-3,1998-3) 

 
The difference between tin() and twithin() is that tin() includes the beginning and end dates, whereas twithin() excludes 
them. Always enter the beginning date first, and write them out as you would for any of the d(), w(), etc. functions.  

 
Time Series Tricks Using Dates 
 
Often in time-series analyses we need to "lag" or "lead" the values of a variable from one observation to the next. Or we need to 
take differences or seasonal differences. One way is to generate a whole bunch of variables which represent the lag or the lead, the 
difference, etc… But if we have many variables, this can be take up a lot of memory.   
 
You should use the tsset command before any of the "tricks" in this section will work. This has the added advantage that if you 
have defined your data as a panel, Stata will automatically re-start any calculations when it  comes to the beginning of a new 
cross-sectional unit so you need not worry about values from one panel being carried over to the next.  
 

• Lags and Leads 
These use the L.varname (to lag) and F.varname (to lead) commands. Both work the same way:  
 

reg income L.income 
 
This regresses income(t) on income(t-1)  
 
If you wanted to lag income by more than one time period, you would simply change the L. to something like "L2." or 
"L3." to lag it by 2 and 3 time periods respectively.  
 

• Differencing 
 
Used in a similar way, the D.varname command will take the first difference, D2.varname will take the double 
difference (difference in difference), etc… For example: 
 
Date  income  D.income  D2.income 
02feb1999 120  .  . 
02mar1999 230  110  . 
02apr1999 245  15  5 
 

• Seasonal Differencing 
 
The S.varname command is similar to the D.varname, except that the difference is always taken from the current 
observation to the nth observation: In other words: S.income=income(t)-income(t-1) and S2.income=income(t)-
income(t-2) 
 
Date  income  S.income  S2.income 
02feb1999 120  .  . 
02mar1999 230  110  . 
02apr1999 245  15  125 



Programming  
 
Program Basics 
 
Creating or “defining” a program  
A program contains a set of commands and is activated by a single command. A do-file is essentially one big program – it 
contains a list of commands and is activated by typing:  

. do "class 4.do" 

You can also create special programs within a do-file, especially useful when you have a set of commands that are going to be 
used repetitively. The use of these programs will initially be demonstrated interactively, but they are best used within a do-file.  
 

We will keep on using the PWT dataset from last week’s classes. Suppose you want to create new variables that contain the 
average values (across countries and years) of some of the underlying variables in the dataset and at the same time display on 
screen these averages. No single Stata command will do this for you, but there are a couple of ways you can combine separate 
Stata commands to reach your goal. The most efficient method is:  

. egen mean_kc=mean(kc)  

. tab mean_kc  
 
    mean_kc |      Freq.     Percent        Cum. 
------------+----------------------------------- 
   72.53644 |      8,568      100.00      100.00 
------------+----------------------------------- 
      Total |      8,568      100.00 
 
. egen mean_kg=mean(kg)  
. tab mean_kg  
 
    mean_kg |      Freq.     Percent        Cum. 
------------+----------------------------------- 
   20.60631 |      8,568      100.00      100.00 
------------+----------------------------------- 
      Total |      8,568      100.00.  
 

The tasks are the same for each variable you are interested in. To avoid repetitive typing or repetitive cutting and pasting, you can 
create your own program that combines both tasks into a single command (note, in what follows the first inverted comma or 
single-quote of `1’ is on the top-left key of your keyboard, the second inverted comma is on the right-hand side on the key with 
the @ symbol, and inside the inverted commas is the number one, not the letter L):  

program define mean  
egen mean_`1’=mean(`1’)  
tab mean_`1’  
end  

You have now created your own Stata command called mean, and the variable you type after this new command will be used in 
the program everywhere there is a `1’. For example, mean kg will use kg everywhere there is a `1’. This command can now 
be applied to any variable you wish:  
 
. mean ki 
 
    mean_ki |      Freq.     Percent        Cum. 
------------+----------------------------------- 
   15.74088 |      8,568      100.00      100.00 
------------+----------------------------------- 
      Total |      8,568      100.00 
Naming a program  
You can give your program any name you want as long as it isn’t the name of a command already in Stata, e.g. you cannot name 
it summarize. Actually, you can create a program called summarize, but Stata will simply ignore it and use its own 
summarize program every time you try using it. To check whether Stata has already reserved a particular name:  



. which sum 
built-in command:  summarize 
 
. which mean 
command mean not found as either built-in or ado-file 
r(111); 

 
Redefining a program  
You may want to change your program in some way, such as altering a line, or adding or dropping a line. For example, the 
tabulate command displays more than just the single number we are interested in. We can provide a more user-friendly result 
using the display command, where everything in double-quotes (“”) is interpreted as straightforward text and anything not in 
double-quotes is interpreted as something in Stata memory, such as a variable name or results of a previous command (e.g. 
e(_b) or e(_se) from a regress command):  

. display "Mean of kg = " mean_kg  
Mean of kg = 21.15341 

Note, the value of mean_kg that is displayed is that of the first observation (_n=1). In our example, the value just so happens to 
be the same for all observations so we don’t care whether it is displaying the first, tenth or one-hundredth observation. However, 
this will not be so in many other examples, so care needs to be taken when using this command in this way.  
We can redefine our mean program by replacing the tabulate command with this display command. To do so, we must 
first drop the old mean program (placing capture before the command avoids Stata tripping up if there is no program called 
mean defined in the first place – useful for preventing Stata crashing in the middle of a long do-file):  
 
capture program drop mean  
program define mean  
egen mean_`1’=mean(`1’)  
display “Mean of `1’ = ” mean_`1’  
end  
 
Now we need to drop the existing mean_kc and mean_kg variables and re-run the commands to get: 
 
. mean kc 
Mean of kc = 72.536438 
 
. mean kg 
Mean of kg = 20.606308 

 
Debugging a program  
Your program may crash out half-way through for some reason:  

. mean kc  
mean_kc already defined  
r(110);  

Here, Stata tells us the reason why the program has crashed – you are trying to create a new variable called mean_kc but there 
is an old variable already called that. Our mean program is a very simple one, so we can figure out very quickly that the problem 
arises with the first line, egen mean_`1’=mean(`1’). However, with more intricate programs, it is not always so obvious 
where the problem lies. This is where the set trace command comes in handy. This command traces the execution of the 
program line-by-line so you can see exactly where it trips up. Because the trace details are often very long, it is usually a good 
idea to log them for review afterwards.  

. log using “debug.log”,replace  

. set more off  

. set trace on  

. mean kg  

. set trace off  

. log close  
 
Program arguments  
Our mean command was defined to handle only one argument – `1’. It is possible to define more complicated programs to 
handle several arguments, `1’, `2’, `3’, and so on. These arguments can refer to anything you want – variable names, specific 
values, strings of text, command names, if statements, and so on. For example, we can define a program that displays the value of 
a particular variable (argument `1’) for a particular country (argument `2’) and year (argument `3’):  



capture program drop show  
program define show 

tempvar obs  
quietly gen `obs’=`1’ if (countryisocode==“`2’” & year==`3’)  
so `obs’  
display “`1’ of country `2’ in `3’ is: ” `obs’  
end  

To see this in action:  
 
. show pop USA 1980 
pop of country USA in 1980 is: 227726 
 
. show pop FRA 1990 
pop of country FRA in 1990 is: 58026.102 

Some things to note about this program:  
- Line 1 creates a temporary variable that will exist while the program is running but will be automatically dropped once the 

program has finished running. Once this tempvar has been defined, it must be referred to within the special quotes (`’), 
just as with the arguments.  

- Line 2 starts with quietly, which tells Stata to suppress any onscreen messages resulting from the operation of the 
command on this line.  

- Make sure to properly enclose any string arguments within double-quotes. `2’ will contain a string of text, such as ARG or 
FRA, so when `2’ is being used in a command it should be placed within double-quotes (“”).  

- Line 3 ensures that observation number one will contain the value we are interested in. Missings are interpreted by Stata as 
arbitrarily large, so when the data is sorted in ascending order our value will be at the top of the list, ahead of these missings.  

As we have seen, use of strings can cause a bit of a headache. A further complication may arise if the argument itself is a string 
containing blank spaces, such as United States instead of USA. Stata uses blank spaces to number the different arguments, so if 
we tried show kg United States 1980, Stata would assign kg to `1’, United to `2’, States to `3’ and 1980 to `4’. 
The way to get around this is to enclose any text containing important blank spaces within double-quotes – the proper command 
then would be:  

. show kg “United States” 1980  
 
Renaming arguments  
Using `1’, `2’, `3’, and so on can be confusing and prone to error. It is possible to assign more meaningful names to the 
arguments at the very beginning of your program so that the rest of the program is easier to create. Make sure to continue to 
include your new arguments within the special quotes (`’):  

. capture program drop show  

. program define show  
1. args var cty yr  
2. tempvar obs  
3. quietly gen `obs’=`var’ if countryisocode==“`cty’” & year==`yr’  
4. so `obs’  
5. display “`var’ of country `cty’ in `yr’ is: ” `obs’  
6. end  

show kg USA 1980  

kg of country USA in 1980 is: 13.660507 

 

Macros  
A Stata macro is different to an Excel macro. In Excel, a macro is like a recording of repeated actions which is then stored as a 
mini-program that can be easily run – this is what a do file is in Stata. Macros in Stata are the equivalent of variables in other 
programming languages. A macro is used as shorthand – you type a short macro name but are actually referring to some longer 
name or string of characters. For example, you may use the same list of independent variables in several regressions and want to 
avoid retyping the list several times. Just assign this list to a macro. Using the PWT dataset:  
 
. local varlist gdp60 openk kc kg ki   
. regress  grgdpch `varlist' if year==1990 
 



      Source |       SS       df       MS              Number of obs =     111 
-------------+------------------------------           F(  5,   105) =    6.70 
       Model |  694.520607     5  138.904121           Prob > F      =  0.0000 
    Residual |  2175.67123   105  20.7206784           R-squared     =  0.2420 
-------------+------------------------------           Adj R-squared =  0.2059 
       Total |  2870.19184   110  26.0926531           Root MSE      =   4.552 
 
------------------------------------------------------------------------------ 
     grgdpch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       gdp60 |  -1.853244   .6078333    -3.05   0.003    -3.058465   -.6480229 
       openk |  -.0033326   .0104782    -0.32   0.751    -.0241088    .0174437 
          kc |  -.0823043   .0356628    -2.31   0.023     -.153017   -.0115916 
          kg |  -.0712923   .0462435    -1.54   0.126    -.1629847    .0204001 
          ki |   .2327257   .0651346     3.57   0.001     .1035758    .3618757 
       _cons |   16.31192   5.851553     2.79   0.006     4.709367    27.91447 
 
 
. regress  grgdpch `varlist' if year==1980 
 
      Source |       SS       df       MS              Number of obs =     111 
-------------+------------------------------           F(  5,   105) =    2.27 
       Model |  880.685302     5   176.13706           Prob > F      =  0.0524 
    Residual |  8130.51957   105  77.4335197           R-squared     =  0.0977 
-------------+------------------------------           Adj R-squared =  0.0548 
       Total |  9011.20487   110  81.9200443           Root MSE      =  8.7996 
 
------------------------------------------------------------------------------ 
     grgdpch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       gdp60 |  -.2969159   1.143709    -0.26   0.796    -2.564679    1.970847 
       openk |   .0023893   .0218479     0.11   0.913    -.0409311    .0457097 
          kc |  -.1349823   .0518524    -2.60   0.011     -.237796   -.0321686 
          kg |  -.1363929   .0845697    -1.61   0.110     -.304079    .0312932 
          ki |  -.1307708   .1124651    -1.16   0.248    -.3537683    .0922267 
       _cons |   16.98343   9.885368     1.72   0.089    -2.617433    36.58429 

 

Macros are of two types – local and global. Local macros are “private” – they will only work within the program or do-file in 
which they are created. Thus, for example, if you are using several programs within a single do-file, using local macros for each 
means that you need not worry about whether some other program has been using local macros with the same names – one 
program can use varlist to refer to one set of variables, while another program uses its varlist to refer to a completely 
different set of variables. Global macros are “public” – they will work in all programs and do files – varlist refers to exactly 
the same list of variables irrespective of the program that uses it. Each type of macro has its uses, although local macros are the 
most commonly used type.  
 
Just to illustrate this, let’s work with an example. The program reg1 will create a local macro called varlist and will also 
use that macro. The program reg2 will not create any macro, but will try to use a macro called varlist. Although reg1 has 
a macro by that name, it is local or private to it, so reg2 cannot use it:  
 
. program define reg1  
  1. local varlist gdp60 openk kc kg ki  
  2. reg  grgdpch `varlist' if year==1990 
  3. end  
 
.  
. reg1 
 
      Source |       SS       df       MS              Number of obs =     111 
-------------+------------------------------           F(  5,   105) =    6.70 
       Model |  694.520607     5  138.904121           Prob > F      =  0.0000 
    Residual |  2175.67123   105  20.7206784           R-squared     =  0.2420 
-------------+------------------------------           Adj R-squared =  0.2059 
       Total |  2870.19184   110  26.0926531           Root MSE      =   4.552 
 
------------------------------------------------------------------------------ 
     grgdpch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       gdp60 |  -1.853244   .6078333    -3.05   0.003    -3.058465   -.6480229 
       openk |  -.0033326   .0104782    -0.32   0.751    -.0241088    .0174437 
          kc |  -.0823043   .0356628    -2.31   0.023     -.153017   -.0115916 



          kg |  -.0712923   .0462435    -1.54   0.126    -.1629847    .0204001 
          ki |   .2327257   .0651346     3.57   0.001     .1035758    .3618757 
       _cons |   16.31192   5.851553     2.79   0.006     4.709367    27.91447 
------------------------------------------------------------------------------ 
 
.  
. capture program drop reg2 
 
. program define reg2  
  1. reg  grgdpch `varlist' if year==1990 
  2. end  
 
.  
. reg2 
      Source |       SS       df       MS              Number of obs =     129 
-------------+------------------------------           F(  0,   128) =    0.00 
       Model |           0     0           .           Prob > F      =       . 
    Residual |  4008.61956   128  31.3173404           R-squared     =  0.0000 
-------------+------------------------------           Adj R-squared =  0.0000 
       Total |  4008.61956   128  31.3173404           Root MSE      =  5.5962 
 
------------------------------------------------------------------------------ 
     grgdpch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |   .9033816    .492717     1.83   0.069    -.0715433    1.878306 
------------------------------------------------------------------------------ 
 

Now, suppose we create a global macro called varlist – it will be accessible to all programs. Note, local macros are enclosed 
in the special quotes (`’), global macros are prefixed by the dollar sign ($).  
 
. global varlist gdp60 openk kc kg ki  
 
.  
. capture program drop reg1  
 
. program define reg1  
  1. local varlist gdp60 openk kc kg ki   
  2. reg grgdpch `varlist'  
  3. reg grgdpch $varlist  
  4. end  
 
. capture program drop reg2  
 
. program define reg2  
  1. reg grgdpch $varlist  
  2. reg grgdpch `varlist'  
  3. end  
 
 
.  
. reg1  
      Source |       SS       df       MS              Number of obs =    5067 
-------------+------------------------------           F(  5,  5061) =   41.21 
       Model |  8692.09731     5  1738.41946           Prob > F      =  0.0000 
    Residual |  213498.605  5061  42.1850632           R-squared     =  0.0391 
-------------+------------------------------           Adj R-squared =  0.0382 
       Total |  222190.702  5066   43.859199           Root MSE      =   6.495 
 
------------------------------------------------------------------------------ 
     grgdpch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       gdp60 |  -.5393328   .1268537    -4.25   0.000    -.7880209   -.2906447 
       openk |  -.0003768   .0020639    -0.18   0.855    -.0044229    .0036693 
          kc |  -.0249966   .0055462    -4.51   0.000    -.0358694   -.0141237 
          kg |  -.0454862   .0089808    -5.06   0.000    -.0630924     -.02788 
          ki |   .1182029    .011505    10.27   0.000     .0956481    .1407578 
       _cons |   6.344897   1.045222     6.07   0.000     4.295809    8.393985 
 
      Source |       SS       df       MS              Number of obs =    5067 
-------------+------------------------------           F(  5,  5061) =   41.21 
       Model |  8692.09731     5  1738.41946           Prob > F      =  0.0000 
    Residual |  213498.605  5061  42.1850632           R-squared     =  0.0391 
-------------+------------------------------           Adj R-squared =  0.0382 



       Total |  222190.702  5066   43.859199           Root MSE      =   6.495 
 
------------------------------------------------------------------------------ 
     grgdpch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       gdp60 |  -.5393328   .1268537    -4.25   0.000    -.7880209   -.2906447 
       openk |  -.0003768   .0020639    -0.18   0.855    -.0044229    .0036693 
          kc |  -.0249966   .0055462    -4.51   0.000    -.0358694   -.0141237 
          kg |  -.0454862   .0089808    -5.06   0.000    -.0630924     -.02788 
          ki |   .1182029    .011505    10.27   0.000     .0956481    .1407578 
       _cons |   6.344897   1.045222     6.07   0.000     4.295809    8.393985 
 
 
. reg2  
 
      Source |       SS       df       MS              Number of obs =    5067 
-------------+------------------------------           F(  5,  5061) =   41.21 
       Model |  8692.09731     5  1738.41946           Prob > F      =  0.0000 
    Residual |  213498.605  5061  42.1850632           R-squared     =  0.0391 
-------------+------------------------------           Adj R-squared =  0.0382 
       Total |  222190.702  5066   43.859199           Root MSE      =   6.495 
 
------------------------------------------------------------------------------ 
     grgdpch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       gdp60 |  -.5393328   .1268537    -4.25   0.000    -.7880209   -.2906447 
       openk |  -.0003768   .0020639    -0.18   0.855    -.0044229    .0036693 
          kc |  -.0249966   .0055462    -4.51   0.000    -.0358694   -.0141237 
          kg |  -.0454862   .0089808    -5.06   0.000    -.0630924     -.02788 
          ki |   .1182029    .011505    10.27   0.000     .0956481    .1407578 
       _cons |   6.344897   1.045222     6.07   0.000     4.295809    8.393985 
 
      Source |       SS       df       MS              Number of obs =    5621 
-------------+------------------------------           F(  0,  5620) =    0.00 
       Model |           0     0           .           Prob > F      =       . 
    Residual |  250604.237  5620  44.5915012           R-squared     =  0.0000 
-------------+------------------------------           Adj R-squared =  0.0000 
       Total |  250604.237  5620  44.5915012           Root MSE      =  6.6777 
 
------------------------------------------------------------------------------ 
     grgdpch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |   2.069907   .0890675    23.24   0.000       1.8953    2.244513 
 
As you will see, Stata runs two fully specified regressions in the first case but only one in the last case since again, 
the program reg2 does not recognize `varlist’. 
 
Macro contents  
We introduced macros by showing how they can be used as shorthand for a list of variables. In fact, macros can contain 
practically anything you want – variable names, specific values, strings of text, command names, if statements, and so on. Note, 
we were actually using macros implicitly earlier in the class. When we created the programs mean and show, the arguments 
(e.g. pop ARG 1980) were passed to the programs via local macros (`1’, `2’, `3’). These local macros contained variables 
(kg) and specific values (ARG and 1980). Some other examples of what macros can contain:  

Text  
Text is usually contained in double quotes (“”) though this is not necessary for macro definitions:  
. local ctyname “United States”  

gives the same result as 
. local ctyname United States  

A problem arises whenever your macro name follows a backslash (\). Whenever this happens, Stata ignores the first single quote 
(`) of the macro name and so fails to properly load the macro:  
. local filename PWT.dta  
. use “F:\Stata classes\`filename’“ 

invalid ’`’  
r(198);  



To get around this problem, use double backslashes (\\) instead of a single one:  
 
. use “F:\Stata classes\\`filename’“ 
 
Statements  
Using macros to contain statements is essentially an extension of using macros to contain text. For example, if we define the local 
macro:  
. local year90 “if year==1990”  
then,  
. reg grgdpch $varlist `year90’  
is the same as:  
. reg grgdpch gdp60 openk kc kg ki if year==1990 

Note that when using if statements, double quotes become important again. For simplicity, consider running a regression for all 
countries whose codes start with “B”. First, I define a local macro and then use it in the reg command: 

. local ctyname B 

. reg grgdpch gdp60 openk kc kg ki if substr(country,1,1)=="`ctyname'" 

Although it does not matter whether I define ctyname using double quotes or not, it is important to include them in 
the if-statement since the variable country is string. The best way to think about this is to do what Stata does: 
replace `ctyname’ by its content. Thus, substr(country,1,1)=="`ctyname'" becomes 
substr(country,1,1)=="B". Omitting the double quotes would yield substr(country,1,1)==B which as 
usual results in an error message (since the results of the substr-operation is a string). 

Numbers and expressions  
. local i=1  
. local result=2+2  
Note, when the macro contains explicitly defined numbers or equations, an equality sign must be used. Furthermore, there must be 
no double-quotes, otherwise Stata will interpret the macro contents as text:  
. local problem=“2+2”  

Thus, the problem macro contains the text 2+2 and the result macro contains the number 4. Note that as before we could 
also have assigned “2+2” to problem while omitting the equality sign. The difference between the two assignments is that 
assignments using “=” are evaluations, those without “=” are copy operations. That is, in the latter case, Stata simply copies “2+2” 
into the macro problem while in the former case it evaluates the expression behind the “=” and then assigns it to the 
corresponding macro. In the case of strings these two ways turn out to be equivalent. There is one subtle difference though: 
evaluations are limited to string lengths of 244 characters (80 in Intercooled Stata) while copy operations are only limited by  
available memory. Thus, it is usually safer to omit the equality sign to avoid parts of the macro being secretly cut off (which can 
lead to very high levels of confusion …) 

While a macro can contain numbers, it is essentially holding a string of text that can be converted back and forth into numbers 
whenever calculations are necessary. For this reason, macros containing numbers are only accurate up to 13 digits. When precise 
accuracy is crucial, scalars should be used instead:  

. scalar root2=sqrt(2)  

. display root2  
1.4142136  

Note, when you call upon a macro, it must be contained in special quotes (e.g. display `result’), but this is not so when 
you call upon a scalar (e.g. display root2 and not display `root2’).  
 
Manipulation of macros 
Contents of macros can be changed by simply redefining a macro. For example, if the global macro result contains the value 
“2+2” typing: 

. global result “2+3” 

overwrites its contents. If you want to drop a specific macro, use the macro drop command: 

.  macro drop year90 

To drop all macros in memory, use _all instead of specific macro names. If you want to list all macros Stata has saved in 



memory instead (including a number of pre-defined macros), type: 

. macro list 

or 

. macro dir 

Macro names starting with an underscore (“_”) are local macros, the others are global macros. Similarly, to drop or list scalars, 
use the commands scalar drop and scalar list (or scalar dir) respectively. 

 

Temporary objects 
Besides in macros and variables, Stata can also store information in so-called temporary variables which are often used in longer 
programmes: 

 tempvar assigns names to the specified local macro names that may be used as temporary variable names in a dataset (we 
have already seen this type earlier on). When the program or do-file concludes, any variables with these assigned names are 
dropped: 

. program define temporary 
  1. tempvar logpop 
  2. gen `logpop'=log(pop) 
  3. sum pop if `logpop'>=8 
  4. end 
 
.  
. temporary 
(2721 missing values generated) 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
         pop |      4162    43433.71    126246.4       2989    1258821 
 
Since the tempvar logcgdp is dropped at the end of the program, trying to access it later on yields an error message: 

. sum pop if `logpop'>=8 
>8 invalid name 

 tempname assigns names to the specified local macro names that may be used as temporary scalar or matrix names.  When 
the program or do-file concludes, any scalars or matrices with these assigned names are dropped. This command is used 
more rarely then tempvar but can be useful if you want to do matrix-algebra in Stata subroutines (see the Stata User Guide 
[U], p. 220 for an example). 

 tempfile assigns names to the specified local macro names that may be used as names for temporary files. When the 
program or do-file concludes, any datasets created with these assigned names are erased. For example, try the following 
programme: 

. program define temporary2 
  1.   tempfile cgdp 
  2.   keep country year cgdp 
  3.   save "`cgdp'" 
  4.   clear 
  5.   use "`cgdp'" 
  6.   sum year 
  7. end 
 
. temporary2 
file C:\DOCUME~1\Michael\LOCALS~1\Temp\ST_0c000012.tmp saved 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
        year |      8568        1975    14.72046       1950       2000 
.  

This saves the variables country year cgdp in a temporary file that is automatically erased as soon as the programme 
terminates (check this by trying to reload “`cgdp’” after termination of the programme “temporary”). 
 



Looping  
There are a number of techniques for looping or repeating commands within your do-file, thus saving you laborious retyping or 
cutting and pasting. These techniques are not always mutually exclusive – you can often use one or more different techniques to 
achieve the same goal. However, it is usually the case that one technique is more suitable or more efficient in a given instance 
than the others. Therefore, it is best to learn about each one and then choose whichever is most suitable when you come across a 
looping situation.  
 
for  
for-processing allows you to easily repeat Stata commands. As an example, we can use the PWT dataset and create the mean of 
several variables all at once:  
 
. for varlist kc ki kg: egen mean_X=mean(X)  
 
->  egen mean_kc=mean(kc) 
->  egen mean_ki=mean(ki) 
->  egen mean_kg=mean(kg) 

The egen command is repeated for every variable in the specified varlist, with the X standing in for the relevant variable 
each time (note, instead of typing out a long varlist, you could e.g. use varlist kc-ki to signify every variable listed 
between kc and kg, inclusive). You can see in the variables window that our three desired variables have been created.  

 
for varlist kc ki kg: display "Mean of X = " mean_X 
 
->  display `"Mean of kc = "' mean_kc 
Mean of kc = 72.536438 
 
->  display `"Mean of ki = "' mean_ki 
Mean of ki = 15.740885 
 
->  display `"Mean of kg = "' mean_kg 
Mean of kg = 20.606308 
 

The onscreen display includes both the individual commands and their results. To suppress the display of the individual 
commands, use the noheader option:  

for varlist kc ki kg, noheader: display "Mean of X = " mean_X  
 
Mean of kc = 72.536438 
Mean of ki = 15.740885 
Mean of kg = 20.606308 

To suppress both the individual commands and their results, you need to specify quietly before for. The example we have 
used above repeats commands for a list of existing variables (varlist). You can also repeat for a list of new variables you want 
to create (newlist):  

. for newlist ARG FRA USA : gen Xpop=pop if countryisocode=="X" & year==1995 

It is also possible to repeat for a list of numbers (numlist) or any text you like (anylist). For example, suppose we wanted to 
append several similarly named data files to our existing dataset:  

. for numlist 1995/1998: append using “F:\Stata classes\dataX.dta”  

Note, the full file name F:\Stata classes\dataX.dta must be enclosed in double quotes, otherwise Stata will get 
confused and think the backslash \ is a separator belonging to the for command:  

. for numlist 1995/1998: append using F:\Stata classes\dataX.dta  
-> append using F:  
file F: not found  
r(601);  

It is possible to nest several loops within each other. In this case, you need to specify the name of the macro Stata uses for the list 
specified after for (in above examples, Stata automatically used “X”): 
 



. for X in varlist kg cgdp: for Y in numlist 1990/1995: sum X if year==Y 
 
It is also possible to combine two or more commands into a single for-process by separating each command with a backslash \:  

. for varlist kg cgdp, noheader: egen mean_X=mean(X) \ display “Mean of X = ” mean_X  

 
If the list of commands you want to repeat is very long and/or complicated, it may be worthwhile using for in conjunction with 
a custom-made program containing your list of commands:  
 
capture program drop mean  
program define mean  
quietly egen mean_`1'=mean(`1')  
display mean_`1'  
end 

for varlist kg cgdp: mean X 
 
foreach  

We know that it is possible to combine several commands into a single for-process. This can get quite complicated if the list of 
commands is quite long, but we saw how you can overcome this by combining for with a custom-made program containing 
your list of commands. The foreach command does the same thing without the need for creating a separate program:  

foreach var in kg cgdp {  
egen mean_`var’=mean(`var’)  
display “Mean of `var’ = ” mean_`var’  
}  
 
Mean of kg = 20.606308 
Mean of cgdp = 7.4677978 

With the foreach...in command, foreach is followed by a macro name that you assign (e.g. var) and in is followed by 
the list of arguments that you want to loop (e.g. kg cgdp). This command can be easily used with variable names, numbers, or 
any string of text – just as for (in fact, foreach officially replaces for from version 8 onwards though for continues to 
work).  
While this command is quite versatile, it still needs to be redefined each time you want to execute the same list of commands for a 
different set of arguments. For example, the program above will display the mean of kg and cgdp, but suppose that later on in 
your do-file you want to display the means of some other variables – you will have to create a new foreach loop. One way to 
get around this is to write the foreach loop into a custom-made program that you can then call on at different points in your 
do-file:  

capture program drop mean  
program define mean  
foreach var of local 1 {  
egen mean_`var’=mean(`var’)  
display “Mean of `var’ = ” mean_`var’  
}  
end  
 
. mean "kg cgdp"  
Mean of kg = 20.606308 
Mean of cgdp = 7.4677978  

. mean "ki pop"  
Mean of ki = 15.740885 
Mean of pop = 31252.467 

This method works, but can be quite confusing. Firstly, of local is used in place of in. Secondly, reference to the local 
macro `1’ in the first line does not actually use the single quotes we are used to. And thirdly, the list of arguments after the 
executing command must be in double quotes (so that everything is passed to the macro `1’ in a single go). For these reasons, it 
can be a good idea to use foreach only when looping a once-off list. A technique called macro shift can be used when you 
want to loop a number of different lists (see later).  
 
Incremental shift (number of loops is fixed)  



You can loop or repeat a list of commands within your do-file using the while command – as long as the while condition is 
true, the loop will keep on looping. There are two broad instances of its use – the list of commands are to be repeated a fixed 
number of times (e.g. 5 loops, one for each year 1980-84) or the number of repetitions may vary (e.g. maybe 5 loops for a list of 5 
years, or maybe 10 loops for a list of 10 years). We will look first at the incremental shift technique for a fixed number of loops. 
We can see how it works using the following very simple example:  

. local i=1  

. while `i’<=5 {  
2. display “loop number ” `i’  
3. local i=`i’+1  
4. }  
loop number 1  
loop number 2  
loop number 3  
loop number 4  
loop number 5  

The first command defines a local macro that is going to be the loop increment – it can be seen as a counter and is set to start at 1. 
It doesn’t have to start at 1, e.g. if you are looping over years, it may start at 1980.  
The second command is the while condition that must be satisfied if the loop is to be executed. This effectively sets the upper 
limit of the loop counter. At the end of the while command is an open bracket { that signifies the start of the looped or repeated 
set of commands. Everything between the two brackets { } will be executed each time you go through the while loop.  
The final command before the close bracket } increases or increments the counter, readying it to go through the loop again (as 
long as the while condition is still satisfied). In actuality, it is redefining the local macro `i’ – which is why there are no 
single quotes on the left of the equality but there are on the right. The increase in the counter does not have to be unitary, e.g. if 
you are using bi-annual data you may want to fix your increment to 2. All the looped commands within the brackets are defined in 
terms of the local macro `i’, so in the first loop everywhere there is an `i’ there will now be a 1, in the second loop a 2, and so 
on.  
 

To see a more concrete example, we will create a program to display the largest per capita GDP each year for every year 1980-84:  
 
capture program drop maxcgdp  
program define maxcgdp  
 local i=1980  
 while `i'<=1984 {  
 tempvar mcgdp  
 quietly egen `mcgdp'=max(cgdp) if year==`i'  
 so `mcgdp'  
 display `i' " " `mcgdp'  
 local i=`i'+1  
 }  
end 
 
maxcgdp  
1980 9.4067564 
1981 9.5102491 
1982 9.5399132 
1983 9.6121063 
1984 9.7101154 
 
Macro shift (number of loops is variable)  
The incremental shift technique used a fully defined counter with a fixed start (1980), end (1984) and increment (1 year). You 
type a single command (maxrgdpl) to execute the program that loops over this fully defined counter. However, this technique 
cannot be used if the required replications are not so neatly definable, e.g. you want to repeat a set of commands for 1980, 1984, 
1986 and 1995, or you want to repeat the commands for 1980-84 and 1990-94. Instead, you write a program that is executed by 
the command and a list of arguments that represent the required replications (e.g. maxrgdpl 1980 1984 1986 1995). 
Stata will allocate the first argument to local macro `1’, the second to local macro `2’, and so on. Thus, you need to shift 
through each of these arguments or local macros in order to shift through the required replications. A simple example of how this 
works:  

. capture program drop displayno  

. program define displayno  
1. while “`1’”~=“” {  
2. display `1’  
3. macro shift  
4. }  
5. end  



. displayno 1 2 4 8 10  
1  
2  
4  
8  
10  
. displayno 77 90876 8  
77  
90876  
8  

The command macro shift is used here instead of the counter increment device – it shifts the contents of local macros one 
place to the left; `1’ disappears and `2’ becomes `1’, `3’ becomes `2’, and so on. So, in the example above, `1’ 
initially contained the number 77, `2’ contained 90876 and `3’ contained 8. The looped commands are in terms of `1’ only 
so the first replication uses the number 77. The mac shift command then shifts `2’ into the `1’ slot, so the second 
replication uses the number 90876. Similarly, the third replication uses the number 8.  
The while command at the start of the loop ensures that it will keep on looping until the local macro `1’ is empty, i.e. it will 
work as long as “`1’” is not an empty string “”. This is similar to the while command in the incremental shift technique, but 
here the loop is defined in terms of `1’instead of `i’ and it is contained in double quotes. The use of double quotes is a 
convenient way to ensure the loop continues until the argument or macro `1’ contains nothing – it has nothing to do with 
whether the arguments are strings of text or numbers.  
 

For a more realistic application of this technique, we can revisit our maxcgdp program:  
 
capture program drop maxcgdp 
program define maxcgdp 
 while "`1'"~="" {  
 tempvar mcgdp  
 quietly egen `mcgdp'=max(cgdp) if year==`1'  
 so `mcgdp'  
 display `1' " " `mcgdp'  
 macro shift  
 }  
end 
 
. maxcgdp 1983 1991 1995 1999 
1983 9.6121063 
1991 10.137326 
1995 10.426952 
1999 10.699246 

Note that, essentially, the only things that have changed are the format of the while command, the format of the shifting 
mechanism and the way in which the local macro in the loop is defined (`1’instead of `i’).  
The macro shift technique is commonly used to shift through variables rather than actual values. For example:  
capture program drop mean  
 
program define mean  
 while "`1'"~="" {  
 tempvar mean  
 quietly egen `mean'=mean(`1')  
 display "Mean of `1' = " `mean'  
 macro shift  
 }  
end  

Now, we can display the mean of a single variable:  

. mean kg 
Mean of kg = 20.606308 
 
or of a list of variables:  
 
. mean kg pop cgdp 
Mean of kg = 20.606308 
Mean of pop = 31252.467 
Mean of cgdp = 7.4677978 

 



Branching  
Branching allows you to do one thing if a certain condition is true, and something else when that condition is false. For example, 
suppose you are doing some sort of analysis year-by-year but you want to perform different types of analyses for the earlier and 
later years. For simplicity, suppose you want to display the minimum per capita GDP for the years to 1982 and the maximum 
value thereafter:  
 
capture program drop minmaxcgdp 
program define minmaxcgdp  
 local i=1980  
 while `i'<=1984 {  
 if `i'<=1982 { 
  local function min 
  }  
 else { 
  local function max 
  }  
 tempvar mcgdp  
 quietly egen `mcgdp'=`function'(cgdp) if year==`i'  
 so `mcgdp'  
 display `i' " " `mcgdp'  
 local i=`i'+1  
 }  
end 
. minmaxcgdp 
1980 5.518826 
1981 5.9500399 
1982 6.0682001 
1983 9.6121063 
1984 9.7101154 

The structure of this program is almost identical to that of the maxcgdp program created earlier. The only difference is that 
egen in line 6 is now a min or max function depending on the if/else conditions in lines 3 and 4.  
It is very important to get the brackets {} correct in your programs. Firstly, every if statement, every else statement, and 
every while statement must have their conditions fully enclosed in their own set of brackets – thus, if there are three condition 
with three open brackets {, there must also be three close brackets }. Secondly, nothing except comments in /* */ should be 
typed after a close bracket, as Stata automatically moves on to the next line when it encounters a close bracket. Thus, Stata would 
ignore the else condition if you typed:  

. if `i’<=1982 {local function min} else {local function max}  

Thirdly, it is necessary to place the brackets and their contents on different lines, irrespective of whether the brackets contain one 
or more lines of commands. Finally, it is possible to embed if/else statements within other if/else statements for extra levels of 
complexity, so it is crucial to get each set of brackets right. Suppose you want to display the minimum per capita GDP for 1980 
and 1981, the maximum for 1982 and 1983, and the minimum for 1984:  

. capture program drop minmaxrgdpl  

. program define minmaxrgdpl  
  1.  local i=1980  
  2.  while `i'<=1984 {  
  3.    if `i'<=1981 {  
  4.         local function min  
  5.         }  
  6.    else {  
  7.         if `i'<=1983 {  
  8.          local function max  
  9.         }  
 10.         else {  
 11.          local function min  
 12.         }  
 13.    }  
 14.  tempvar mrgdpl  
 15.  quietly egen `mrgdpl'=`function'(rgdpl) if year==`i'  
 16.  so `mrgdpl'  
 17.  display `i' " " `mrgdpl'  
 18.  local i=`i'+1  
 19.  }  
 20. end 

 



. minmaxcgdp 
1980 5.518826 
1981 5.9500399 
1982 9.5399132 
1983 9.6121063 
1984 6.1164122 

One final thing to note is that it is important to distinguish between the conditional if:  

. sum cgdp if cgdp>8  

and the programming if:  

if cgdp >8 { 
  sum cgdp 
} 

The conditional if summarizes all the observations on cgdp that are greater than 8. The programming if looks at the first 
observation on cgdp to see if it is greater than 8, and if so, it executes the sum cgdp command, i.e. it summarizes all 
observations on cgdp  (try out the two commands and watch the number of observations). 



ADO programming 
 
ADO programming involves setting up user-defined programmes which will be stored in the memory of Stata and 
then can be retrieved as a command whenever you use Stata. For example, regress is used as an ado file. While I 
think it is pretty advanced to start programming your own complex ado files, some very simple files might be of use. 
The following simple examples come from http://www.ats.ucla.edu/stat/stata/stat130/median.htm. They are 3 
programs of increasing complexity (and therefore flexibility) to take the median of a series or set of series.  
 
Median Program -- Version #1 
 
Basic program to deal with one variable. 
 
program define median1 
  version 6 
  sort `1' 
  quietly count if `1' ~= . 
  local n = r(N) 
  local mid = int(`n'/2) 
  local odd = mod(`n',2) 
   
  if `odd' { 
    local median = `1'[`mid'+1] 
  } 
  else { 
    local median = (`1'[`mid'] + `1'[`mid'+1])/2 
  } 
   
  display "Median of `1' = `median'" 
end 
 
Median Program -- Version #2 
 
Multiple variables and saves results in return list. 
 
program define median2, rclass 
  display 
  display in green " Variable        N    Median" 
  display in green "----------------------------" 
   
  while "`1'" ~= "" { 
    quietly count if `1' ~= . 
    local n = r(N) 
    local i = int(`n'/2) 
    local odd = mod(`n',2) 
    sort `1' 
    if `odd' { 
      local median = `1'[`i'+1] 
    } 
    else { 
      local median = (`1'[`i'] + `1'[`i'+1])/2 
    } 
    display in yellow %9s "`1'" %9.0f `n' %10.2f `median' 
    macro shift 
  } 
  return local Mdn = `median' 
  return local N = `n' 
end 

http://www.ats.ucla.edu/stat/stata/stat130/median.htm


 
Median Program -- Version #3 
 
Allows for multiple series and for “if” and “in” statements.  
 
program define median3, rclass 
  syntax varlist [if] [in] 
  tokenize `varlist' 
  preserve 
  marksample touse 
  display 
  display in green " Variable        N    Median" 
  display in green "----------------------------" 
   
  while "`1'" ~= "" { 
    quietly keep if `touse' 
    quietly count 
    local n = r(N) 
    local i = int(`n'/2) 
    local odd = mod(`n',2) 
    sort `1' 
    if `odd' { 
      local median = `1'[`i'+1] 
    } 
    else { 
      local median = (`1'[`i'] + `1'[`i'+1])/2 
    } 
    display in yellow %9s "`1'" %9.0f `n' %10.2f `median' 
    macro shift 
  } 
  return local Mdn = `median' 
  return local N = `n' 
end 
 
These programmes can be written (separately) in the do file editor and then saved as .ado files. You should save 
them in the Stata directory which contains ado file updates, under the “m” folder. Then whenever you type: 
 
median1 variablename 
 
it will calculate the median for you. 
 


	Introduction to Stata
	Michael McMahon 
	 Getting to Know Stata and Getting Started 
	Why Stata?
	What Stata looks like
	Getting help
	 Directories and folders
	Reading data into Stata
	Variable and data types 
	 Examining the data 
	Saving the dataset 
	 Keeping track of things 
	Some shortcuts for working with Stata 

	 Database Manipulation 
	Organising datasets 
	 Creating new variables 
	 Cleaning the data 
	 Panel Data Manipulation: Long versus Wide data sets
	 Optional Exercises: 

	 Estimation
	Plan future tutorial sections
	 Linear regression 
	 Post-estimation
	 Extra commands on the net 

	 More Estimation
	Constrained linear regression 
	Dichotomous dependent variable 
	 Panel Data 
	 Time series data

	 Programming 
	Program Basics
	Macros 
	Looping 
	Branching 
	 ADO programming


