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Introduction

This module, EC961 Introductory Mathematics and Statistics is in-
tended to provide a working background knowledge of the

mathematical and statistical techniques necessary for MSc pro-
grammes in the Department of Economics at the University of
Warwick.

What is this?

This is a fairly intensive pre-sessional module, running in the last
two weeks of September, just before the start of the Autumn Term.
The idea is to give everyone a basic working knowledge of a range
of topics in mathematics and statistics that are necessary for fully
engaging with subsequent modules in macroeconomics, microeco-
nomics and econometrics.
The module is in four parts:
Calculus and Dynamics: This covers compound and exponential

growth, differential calculus and its use in finding optimal solu-
tions to problems in economics, elasticity, Taylor–Maclaurin series,
some more detailed theoretical background in calculus (such as
the Intermediate Value Theorem and the Fixed Point Theorem),
solution of first order linear difference equations, and some ba-
sic concepts and facts about concave, convex, quasiconcave and
quasiconvex functions.

Linear Algebra: This is concerned with the algebra of vectors and
matrices, and the solution of problems involving linear functions.
In particular, we will cover eigenvalues and eigenvectors, solution
of simultaneous linear equations, matrix diagonalisation and its
applications, and the classification of quadratic forms.

Multivariate Calculus: This section covers more advanced topics
in calculus, including partial differentiation, finding optimal solu-
tions to functions of more than one variable, using Lagrangian
optimisation and the Karush–Kuhn–Tucker (KKT) conditions,
solving systems of difference equations, and solving some classes
of differential equations.

Statistics and Probability In this section, we will introduce the
fundamental concepts of probability theory such as discrete and
continuous random variables, conditional probability, Bayes’ The-
orem, standard probability distributions, and their use in statisti-
cal inference and hypothesis testing.

This document contains the lecture notes for the first three of these.
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Who are we?

The two module lecturers are:

Subject Office

Dr Nicholas Jackson Calc and Dynamics, Zeeman B0.09,
Linear Algebra, Economics S.084

Multivariate Calc

Dr Nikhil Datta Statistics Economics S1.109

The class tutors are:

Group Tutor Location

1 Hussain Abass FAB 3.33

2 Kyle Boutilier FAB 4.80

3 Andrew Brendon-Penn FAB 6.02

4 Dr Juliana Cunha Carneiro Pinto FAB 3.31

5 Dr Darina Dintcheva FAB 4.79

6 George Ferridge FAB 3.30

7 Dr Farzad Javidanrad FAB 6.01

8 Minh Tung Le FAB 4.73

9 Dr James Massey FAB 3.32

10 (TBC) FAB 4.78

11 Dr Deva Velivela FAB 3.25

12 Dr Nicholas Jackson / Dr Neil Lloyd FAB 2.43

When?

Table 1 shows the provisional timetable.

Week 1 Mon 18 Sep Tue 19 Sep Wed 20 Sep Thu 21 Sep Fri 22 Sep

Morning Lecture 2 Lecture 3 Lecture 4 Lecture 5
(10am–1pm) Calc and Dynamics Linear Algebra Linear Algebra Statistics

Afternoon Lecture 1 Class 1 Class 2 Class 3 Class 4
(2pm–5pm) Calc and Dynamics Calc and Dynamics Calc and Dynamics Linear Algebra Linear Algebra

Week 2 Mon 25 Sep Tue 26 Sep Wed 27 Sep Thu 28 Sep Fri 29 Sep

Morning Test 1 Lecture 6 Lecture 7 Lecture 8 Lecture 9
(10am–1pm) (12pm–1pm) Statistics Statistics Multivariate Calc Multivariate Calc

Afternoon Class 5 Class 6 Class 7 Class 8
(2pm–5pm) Statistics Statistics Multivariate Calc Multivariate Calc

Week 3 Mon 2 Oct Tue 3 Oct Wed 4 Oct Thu 5 Oct Fri 6 Oct

Morning Test 1 (retake) Test 2
(10am–1pm) (12pm–1pm) (9am–12pm)

Afternoon Revision Lecture
(2pm–5pm) (2pm–3pm)

Table 1: Provisional timetable There will be nine lectures (mostly in the mornings), in which we
will cover the course material, and eight classes (in the afternoons) in
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which you will work through practice questions in smaller groups,
under the supervision of a class tutor. The lectures will take place
in lecture theatre MS.01 in the Zeeman Building, and the classes
will take place in smaller rooms in the Faculty of Arts Building.
There will also be two online tests. The first of these will take place
12pm-1pm on Monday 25 September, and will cover the Calculus
and Dynamics material, and the first half of the Linear Algebra
topics. If you’re not happy with your performance on this test, there
will be a second opportunity to take (a similar but different version
of) it on Monday 2 October.
The second test will cover all of the material, and will take place
from 9am–12pm on Wednesday 4 October. There will also be a
revision lecture and Q&A session at 2pm on Monday 2 October.





I

Calculus and Dynamics





1 Logic

In this section we introduce some basic concepts of logic: logical
implication, necessary and sufficient conditions.

In the following, we will use letters such as P and Q as placeholders
for statements that might be true or false. For example “4 is an even
number” is a true statement, while “1

2 is an integer” is false.

Definition 1.1 Given two statements P and Q, each of which may
be true or false, we say that P implies Q if, whenever P is true, Q
is true as well. We write P ⇒ Q.

Note carefully what this definition says, and what it doesn’t say. In
particular, Q might also be true when P isn’t, but it is always true
when P is true.
Examples 1.2
(i) n is an integer ⇒ n is a real number.
(ii) Suppose that x ∈ R. Then x ⩾ 10 ⇒ x > 0.
(iii) Suppose that y ∈ Z. Then y ⩾ 10 ⇒ y > 9.

In the first two examples, although P ⇒ Q, there are also cases (for
example, n = 2.5 and x = 3) where Q is true but P isn’t. In the
third example, P is true exactly when Q is.
Formally, even if P ⇒ Q, it doesn’t necessarily follow that Q ⇒ P.
If P ⇒ Q and Q ⇒ P, that is, P is true exactly when Q is true, we
write P ⇔ Q.
Definition 1.3 If P ⇒ Q, we say that P is a sufficient condition
for Q.
If Q isn’t true, then P couldn’t have been true either, so we say that
Q is a necessary condition for P.

If P ⇔ Q, they are necessary and sufficient conditions for each other.
Equivalently, P is true if and only if Q is true.1 1 The phrase “if and only if” is some-

times abbreviated “iff”.
Definition 1.4 If P ⇒ Q, then the related compound statement
Q ⇒ P is called the converse.

Given some statement P that may be true or false, we sometimes
want to refer to a statement that logically opposite to P.

Definition 1.5 Let P be a formal statement. The negation of P,
denoted ¬P, is a statement that is false exactly when P is true, and
true exactly when P is false.

Now suppose that we have two statements P and Q such that
P ⇒ Q. Then if P is true, Q is true. But if Q is false then P must
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have been false too. So the statement

(P is true) ⇒ (Q is true)

can be rephrased as

(Q is false) ⇒ (P is false).

or, using the notation introduced above,

¬Q ⇒ ¬P.

This is called the contrapositive statement, and is logically equiva-
lent to the original implication P ⇒ Q.
If we want to formally prove some mathematical statement of the
form P ⇒ Q, it is logically equivalent, and sometimes simpler, to
prove the contrapositive ¬Q ⇒ ¬P.

Summary

Suppose that P ⇒ Q. Then
• P is a sufficient condition for Q: If P is true then Q is true.
• Q is a necessary condition for P: if Q isn’t true, then P can’t be

true either.
But: Q might be true even if P is false, and P might be false even if
Q is true.



2 Exponentiation and compounding

Now, we look in detail at exponential growth, compound in-
terest and logarithms.

The exponential function

Consider the sequence

xn =
(
1 + 1

n
)n

for n ∈ N. The first few terms of this sequence are as follows:

x1 =
(
1 + 1

1

)1
= 2

x2 =
(
1 + 1

2

)2
= 9

4 = 2.25

x3 =
(
1 + 1

3

)3
= 64

27 = 2.37037 . . .

It can be shown that this sequence is strictly increasing; that is,
xn+1 > xn for all n ∈ N. It can also be shown that 0 < xn < 3; that
is, xn is bounded.
A standard theorem in real analysis implies that this sequence Theorem 2.1 Let (an) be a sequence. If

an is bounded above (or below) and in-
creasing (or decreasing) then it tends to a
finite limit as n → ∞.

converges to a finite limit. The limit of this particular sequence is
the irrational constant

e = lim
n→∞

(
1 + 1

n
)n

= 2.7182818284 . . .

Now suppose we want to find the limit of the sequence

yn =
(
1 + ax

n
)n

for some a, x ∈ R with ax ̸= 0. To do this, we make use of another
important theorem in real analysis, the Sandwich Rule. Theorem 2.2 (The Sandwich Rule)

Let (an), (bn) and (cn) be sequences of
real numbers, and suppose that there ex-
ists some L ∈ R such that an → L and
cn → L as n → ∞. Suppose also that
there exists some N ∈ N such that

an ⩽ bn ⩽ cn

for all n > N. Then bn → L as n → ∞.

We first note that(
1 + ax

n
)n

=
(
1 + 1

n/ax
)n

=
((

1 + 1
n/ax

)n/ax
)ax

. (2.1)

The function f (y) =
(
1 + 1

y
)y is strictly increasing, so we can form

the following inequality:1
1 Here, ⌊x⌋ is the floor of x; that is, the
largest integer ⩽ x. And ⌈x⌉ is the ceil-
ing of x; that is, the smallest integer ⩾ x.

(
1 + 1

⌊n/ax⌋
)⌊n/ax⌋

⩽
(
1 + 1

n/ax
)n/ax

⩽
(
1 + 1

⌈n/ax⌉
)⌈n/ax⌉ (2.2)

Since an = ⌊n/ax⌋ and cn = ⌈n/ax⌉ are both increasing sequences
of integers, both the left and right sides of (2.2) converge to e as
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n → ∞. And hence by the Sandwich Rule, this means that the term
in the middle must also tend to e. That is,

lim
n→∞

(
1 + 1

n/ax
)
= e.

Substituting this into (2.1) we find that

Figure 2.1: Graph of the function f (x) =
eax for a = ±1,±2,±3 lim

n→∞

(
1 + ax

n
)n

= eax.

We call this function f (x) = eax the exponential function, for any
a, x ∈ R. See Figure 2.1.

Compound interest

We will now apply all this to study compound growth.

Example 2.3 Suppose we invest a sum S0 = £1000 in an account
earning r = 12% compound interest per year. The subsequent
balance of the account depends on the frequency of compounding.
If the interest is paid annually, at the end of the year, then at the
end of that first year we will have

S1 = £1000 ×
(
1 + 0.12

1

)1×1
= £1120.

If, however, the interest is paid in quarterly instalments of 12
4 = 3%,

then at the end of the year we will have

S1 = £1000 ×
(
1 + 0.12

4

)4×1
= £1125.51.

If the interest is paid monthly, in twelve equal instalments of
12
12 = 1%, then the subsequent balance of the account will be

S1 = £1000 ×
(
1 + 0.12

12

)12×1
= £1126.82.

And, more generally, if the interest is paid in m equal instalments
of 12%

m = 0.12
m then the resulting balance will be

S1 = £1000 ×
(
1 + 0.12

m
)m×1

and at the end of year t, the total amount will be

St = £1000 ×
(
1 + 0.12

m
)mn.

Generalising this example, suppose that we invest an initial capital
amount S0 in an account paying a nominal annual interest rate of r,
in m equal instalments. Then at the end of year t, the balance of the
account will be

St = S0
(
1 + r

m
)mt.

The expression in parentheses should look familiar. If we let m → ∞,
then the limit of

(
1 + r

m
)m is er. In the above example, we see that

S1 → £1000 × e0.12 = £1127.50.



exponentiation and compounding 7

More generally, for an annual interest rate of r, this continuous
compounding process will result in a balance of

St = S0ert

at the end of year t.

Example 2.4 Now suppose we invest an initial sum of S0 in an
account paying a net interest rate of r, applied annually. What is
the smallest value of r that enables the balance of the account to
grow by a factor of 10 (that is, to be 10S0) in 23 years?
We have to solve

S0
(
1 + r

1

)23
= 10S0

=⇒ (1 + r)23 = 10

=⇒ r = 101/23 − 1 = 0.10529 . . .

So the interest rate must be at least 10.529%.

Example 2.5 Now suppose that the interest is applied continu-
ously. Suppose we have a nominal interest rate of r = 4%. How
many full years will it take for an account to grow by a factor of
100?
Here, we have to solve

S0e0.04t = 100S0

=⇒ e0.04t = 100
=⇒ 0.04t = ln(100)

=⇒ t = ln(100)
0.04 = 115.129 . . .

We want the number of full years, which is ⌈t⌉ = 116 years.

Here, ln denotes the natural logarithm function, which we will
discuss in more depth later in this chapter.

Functions

First we introduce some details and terminology about functions.

Definition 2.6 Let X, Y ⊆ R be subsets of the set R of real num-
bers.
A function f : X → Y is a rule that assigns exactly one element of
Y to each element of X. That is, for every element x ∈ X there is
some corresponding element y ∈ Y, determined according to some
precise rule. We typically denote this element y as f (x).
We call X the domain and Y the codomain of the function f .

Let’s look at what this definition says, and what it doesn’t say.
• Every element of X must map to something in Y.
• We don’t allow any element of X to map to more than one element

of Y. (That is, we don’t allow “one to many” mappings.)
• Distinct elements of X can map to the same element of Y.
• Not every element of Y has to be mapped to by something in X.
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The first two of these points rule out “one to many” and “one to
nothing” correspondences. The third and fourth points lead us to
consider two important classes of functions.

Definition 2.7 A function f : X → Y is injective or one to one if,
for any a, b ∈ X such that f (a) = f (b), then a = b. That is, f maps
distinct elements to distinct elements of Y. Equivalently, every
element of Y is mapped to by at most one element of X.

Definition 2.8 A function f : X → Y is surjective or onto if, for
every element y ∈ Y, there exists some element x ∈ X such that
f (x) = y. Equivalently, every element of Y is mapped to by at least
one element of X.

It’s also useful to consider which elements of the codomain are
mapped to by some element of the domain:

Definition 2.9 The image or range of a function f : X → Y is the
subset of the codomain consisting of elements that are mapped to
by elements of the domain:

im( f ) = { f (x) : x ∈ X} ⊆ Y.

So a function f : X → Y is surjective exactly when im( f ) = Y.
Is it possible for a function to be both injective and surjective? Yes:
these are the functions where every element of the codomain is
mapped to by exactly one element of the domain.

Definition 2.10 A function f : X → Y is bijective if it is both
injective and surjective.

Given two functions f : A → B and g : C → D, where B ⊆ C, we
can take the output of f and feed it into the input of g, thus chaining
the functions together to make effectively a single function mapping
from A to D.
Definition 2.11 Let f : A → B and g : C → D be functions, and
suppose that B ⊆ C. Then the composite function (g◦ f ) : A → D
is the function defined by

(g◦ f )(a) = g( f (a)

for all a ∈ A.

We won’t look in very much detail at function composition, but note
that the order is important: g◦ f means “apply f then apply g”, not
the other way round.22 The reason for this is that English is

written from left to right, and that by
convention we denote images of ele-
ments by f (x).

Example 2.12 Let f : R → R and g : R → R be defined by

f (x) = 3x + 1 and g(x) = x2 − 4.

Then we can define the composite functions as follows:

(g◦ f )(x) = g( f (x)) = f (x)2 − 4 = (3x + 1)2 − 4 = 9x2 + 6x − 3

( f ◦g)(x) = f (g(x)) = 3g(x) + 1 = 3(x2 − 4) + 1 = 3x2 − 11

Note that, even if both composites g◦ f and f ◦g are defined, it
needn’t be the case that they’re both equal to each other.



exponentiation and compounding 9

But one important use of composition is in the definition of inverse
functions. The idea here is that if we have a function f : X → Y, we
sometimes want to define a new function that takes every element
in im( f ) and maps it back to its original element in X. That is,
we want to find (if possible) a function that reverses or undoes the
action of f .

Definition 2.13 Let f : X → Y be a function. Then an inverse of f
is a function g : Y → X such that

(g◦ f )(x) = g( f (x)) = x

for all x ∈ X, and

( f ◦g)(y) = f (g(y)) = y

for all y ∈ Y.

It turns out that a function f : X → Y has an inverse exactly when
f is bijective. If f isn’t injective, then for some elements in Y there
will be more than one element in X that mapped to it. And if f
isn’t surjective, there will be elements in Y that didn’t come from
anything in X. It also turns out that if f has an inverse at all, it
will be unique, and so we can safely talk about “the” inverse of f .
Usually we will denote this function as f−1.3 3 If we plot the graph of an invertible

function f : X → Y, what will the graph
of its inverse f−1 : Y → X look like?Example 2.14 Suppose f : R → R with f (x) = 1

2 x + 1
3 . This

function is bijective, so it has an inverse, and we can calculate it as
follows:

y = 1
2 x + 1

3

=⇒ 1
2 x = y − 1

3

=⇒ x = 2y − 2
3

So we can define f−1 : R → R by f−1(y) = 2y − 2
3 for all y ∈ R.

Logarithms

John Napier (1550–1617)

Now back to our discussion of compound growth and related
topics. We will now introduce logarithms, whose original discovery
is attributed to the Scottish mathematician John Napier.
Consider the exponential function f : R → R+ where f (x) = ex. Its
domain is the entire set R of real numbers, and its image is the set
of strictly positive real numbers R+ = {x ∈ R : x > 0}. If, as we’ve
done here, we set the codomain of our function to be equal to the
image, then it will be surjective. In fact, this function is injective as
well, and hence bijective. It is therefore invertible.

We define this inverse function f−1 to be the natural logarithm func-
tion, and denote it ln. The natural logarithm ln(x) is the exponent
we have to raise e to in order to get x.
More generally, given any positive real number a > 0 such that
a ̸= 1, the logarithm to base a, denoted loga(x) is the power we
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have to raise a to, in order to get x.

That is, loga(x) is b ∈ R such that ab = x. This is a well-defined
function, as long as a > 0 and a ̸= 1. In particular, we usually
denote log10(x) just as log(x), and loge(x) as ln(x).

Properties of ln(x) and loga(x)

Suppose that a, b, c, y ∈ R+, that a ̸= 1, and that d ∈ R. Then:

(i) y = aloga(y).
(ii) loga(b) + loga(c) = loga(bc).44 This is why slide rules work.

(iii) loga(b
d) = d loga(b).

(iv) loga(b)− loga(c) = loga(b/c).
(v) (loga(b))(logb(c)) = loga(c).
(In particular, all of these properties hold for loge = ln.)



3 Derivatives and Elasticity

Now we want to look at differential calculus, and its applica-
tion to finding local and global maxima and minima of func-

tions of a single real variable.

Figure 3.1: An example of a continuous
functionDefinitions and basic results

Figure 3.2: An example of a discontinu-
ous function

We will start by quickly reviewing the concepts of continuous and
differentiable functions. We won’t go into much detail, because
this isn’t a module on real analysis, but it’s important to have some
familiarity with the basic ideas.
Intuitively, we think of a function as being continuous if its graph
has no breaks in it. For example, the function in Figure 3.1 is
continuous in this sense, while the function in Figure 3.2 has a
discontinuous point: the graph jumps abruptly at x = 1.
We want to formalise this idea and make it mathematically precise.

Definition 3.1 A function f : R → R is continuous at the point
x = a if the limit limx→a f (x) exists, and is equal to the value f (a).

We can extend this idea to continuity over an open interval in a
relatively straightforward way:

Definition 3.2 A function f : R → R is continuous in the open
interval (a, b) if it is continuous at every point x ∈ (a, b).

Continuity over a closed interval is slightly more complicated, be-
cause we have to think about what happens at the endpoints. We
want our definition to say exactly what we mean, no more, and no
less. In particular, we don’t need the limits at the endpoints to exist
from both sides (although often they will).

Definition 3.3 A function f : R → R is continuous in the closed
interval [a, b] if it is continuous in the open interval (a, b), and if
the one-sided limits

lim
x→a+

f (x) and lim
x→b−

f (x)

exist, and are equal to the values of f (x) at the endpoints.

Now let’s look at differentiation. The idea here is that the graph
of the function must have a well-defined gradient at a given point.
Geometrically, we define the gradient of the graph to be the gradient
of the tangent to the graph at our chosen point.
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In Figure 3.3 we want to find the gradient of the blue tangent line.
In general, it’s not obvious how we’d do this, but the gradient of
the red chord is straightforward to calculate: it’s the vertical height
f (x)− f (a) divided by the horizontal distance x − a.

Figure 3.3: Illustration of the definition
of the first derivative f ′(a)

Joseph-Louis Lagrange (1736–1813)

Gottfried Wilhelm Leibniz (1646–1716)

If x is close to a, then the chord will be fairly close to the tangent.
And the closer x gets to a, the better this value will approximate the
gradient of the tangent. So we take the limit as x → a and define
the derivative of f at a to be

f ′(a) = lim
x→a

f (x)− f (a)
x − a

.

This limit must exist: we need it to be the same if x approaches a
from both a negative and a positive direction.

Definition 3.4 A function f : R → R is differentiable at x = a if
the limit

f ′(a) = lim
x→a

f (x)− f (a)
x − a

exists.
Furthermore, f is differentiable in the open interval (a, b) if it is
differentiable at all x ∈ (a, b).
And f is differentiable in the closed interval [a, b] if it is differen-
tiable over (a, b) and if the limits

f ′(a) = lim
x→a+

f (x)− f (a)
x − a

and f ′(b) = lim
x→b−

f (x)− f (b)
x − b

exist.

This enables us to define the first derivative of a function f : R → R,
which we denote f ′(x) or f (1)(x) (this is sometimes called La-
grange’s notation, after the Italian and French mathematician Joseph-
Louis Lagrange), or d f

dx (sometimes called Leibniz’ notation, after
the German philosopher and mathematician Gottfried Wilhelm
Leibniz).
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We can also define higher derivatives:

f ′′(x) = f (2)(x) = ( f ′(x))′ or d2 f
dx2 = d

dx

(
d f
dx

)
and

dn f
dxn = d

dx

(
dn−1 f
dxn−1

)
.

For the nth derivative to exist, we need the first, second, third,. . . ,
(n−1)st derivatives to also exist.

Isaac Newton (1642–1727)

This raises a question: what does it mean for a function to not be
differentiable? Well, formally speaking, the limit in Definition 3.4
would have to fail to exist at least somewhere. In particular, one or
other of the left-hand and right-hand limits

f ′(a) = lim
x→a−

f (x)− f (a)
x − a

and f ′(a) = lim
x→a+

f (x)− f (a)
x − a

might not exist. Or alternatively they might both exist but not be
equal to each other.
Probably the simplest example of a non-differentiable function is
the absolute value function |x|. The graph of this function is shown
in Figure 3.4.

Figure 3.4: The graph of the absolute
value function |x|

This function is not differentiable at x = 0, because

lim
x→0−

|x| − |0|
x − 0

= lim
x→0−

−x
x

= −1

but

lim
x→0+

|x| − |0|
x − 0

= lim
x→0+

x
x
= 1.

It is, however, differentiable at every other x ∈ R.
Geometrically, non-differentiable functions tend to have some sort
of kink in the graph: a point where the direction of the graph
abruptly changes direction, rather than varying smoothly.
Another important detail is that differentiable functions must be
continuous:
Proposition 3.5 Let f : R → R be differentiable at x = a. Then f is
continuous at x = a.

Proof Since f is differentiable at x = a, the limit

f ′(a) = lim
x→a

f (x)− f (a)
x − a

exists. By standard algebra of limits, we have

f ′(a) =
(

lim
x→a

( f (x)− f (a))
)/(

lim
x→a

(x − a)
)

Rearranging this, we get

lim
x→a

( f (x)− f (a)) = f ′(a) lim
x→a

(x − a) = 0.

So
lim
x→a

f (x)− lim
x→a

f (a) = 0
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and hence
lim
x→a

f (x) = f (a),

so f is continuous at x = a.

However, not all continuous functions are differentiable: for exam-
ple the absolute value function |x| is continuous at x = 0, but as
we’ve seen it isn’t differentiable there.

Properties of derivatives

Suppose we have two functions u : R → R and v : R → R. Then:
Linearity

(i) d
dx (u + v) = du

dx + dv
dx .

(ii) d
dx (ku) = k du

dx for any constant k ∈ R.
Product Rule d

dx (uv) = u dv
dx + v du

dx .
Quotient Rule d

dx
(u

v
)
= 1

v2

(
v du

dx − u dv
dx
)
.

Chain Rule d
dx u(v(x)) = du

dv
dv
dx .

The last of these, the Chain Rule, is for differentiating composite
functions.

Standard derivatives

Table 3.1 lists derivatives of some standard functions.

Table 3.1: Table of standard derivatives

f (x) f ′(x) f (x) f ′(x) f (x) f ′(x)

k 0 sin(ax) a cos(ax) sin−1( x
a
) 1√

a2−x2

xn nxn−1 cos(ax) −a sin(ax) cos−1( x
a
)

− 1√
a2−x2

eax aeax tan(ax) a sec2(ax) tan−1( x
a
) a

a2+x2

ln(ax) 1
x

Extreme points

Suppose we have a function f : D → R (for some set D ⊆ R), and
we want to find the maximum or minimum value this function
attains over its domain D.
Definition 3.6 A point x∗ ∈ D is a global maximum if f (x) ⩽
f (x∗) for all x ∈ D. This is the point where f reaches its maximum
value.
Similarly, a point x∗ ∈ D is a global minimum if f (x) ⩾ f (x∗) for
all x ∈ D. This is the point where f reaches its minimum value.
If x∗ is either a maximum or a minimum, we say it is an extreme
point or optimal point.
If f (x) < f (x∗) for all x ∈ D, we call x∗ a strict maximum, and if
f (x) > f (x∗) for all x ∈ D, we call x∗ a strict minimum.



derivatives and elasticity 15

Sometimes there are values of x for which f (x) isn’t a global max-
imum or minimum over the entire domain D, but only in some
smaller region:

Definition 3.7 A function f : D → R has a local maximum (or
a local minimum) at x∗ ∈ D if there exists some open interval
(a, b) ⊆ D containing x∗, such that f (x) ⩽ f (x∗) (or f (x) ⩾ f (x∗))
for all x ∈ (a, b).

Often in economics we will have a function, representing some
relevant economic value, that we want to optimise in some way: we
want to find a suitable value of the input variable that maximises or
minimises the output value of the function. In effect, we want to be
able to find local or global maxima or minima for the function in
question.

Figure 3.5: The graph of the function
f (x) = x2 − 1

Sometimes, finding extreme points is easy: we can just plot the
graph of the function and inspect it. For example, consider the
function f (x) = x2 − 1. Plotting the graph (see Figure 3.5), we can
see that f has a local (in fact, a global) minimum at x = 0, and the
mininum value is f (0) = −1.
The key observation is that the tangent to the graph is horizontal at
x = 0. Equivalently, f ′(x) = 2x = 0 when x = 0.

Definition 3.8 A point x∗ ∈ (a, b) ⊆ D ⊆ R is a stationary point
or turning point of the function f : D → R if f ′(x∗) = 0.

This is called the First Order Condition (FOC).

Proposition 3.9 Suppose a function f : D → R is differentiable over
an interval (a, b) ⊆ D. If x∗ ∈ (a, b) is an extreme point of f , then
f ′(x∗) = 0.

Figure 3.6: The graph of the function
f (x) = x3

The FOC is a necessary but not sufficient condition for x∗ to be a local
maximum or minimum. All local maxima or minima satisfy the
FOC (that is, f ′(x∗) = 0), but not all points satisfying the FOC are
local maxima or minima.
For example, the function f (x) = x3 has a stationary point at x = 0,
since f ′(x) = 3x2 = 0 when x = 0. But looking at the graph (see
Figure 3.6), we can see that this is neither a local minimum, nor a
local maximum. In fact, it’s what’s called a point of inflection: the
curve of the function crosses the tangent at that point.
In order to check whether a stationary point is a local minimum or
maximum, we must check the Second Order Condition (SOC):

Proposition 3.10 Suppose a function f : D → R is twice continuously
differentiable over an interval (a, b) ⊆ D ⊆ R, and that x∗ ∈ (a, b) is a
stationary point (that is, f ′(x∗) = 0).
(i) If f ′′(x∗) < 0 then x∗ is a local maximum.
(ii) If f ′′(x∗) > 0 then x∗ is a local minimum.

This is a sufficient, but not necessary condition to check whether x∗
is a local maximum or minimum.
In general, to find local minima or maxima of functions over a given
domain, we apply both the FOC and the SOC: the first of these
(checking the first derivative) helps us find stationary points, while
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the second (checking the second derivative) helps us decide whether
a given stationary point is actually a local minimum or maximum.
But sometimes this approach is inconclusive: The SOC is sufficient
but not necessary. If the second derivative is zero, then our stationary
point might be a point of inflection (as is the case with the function
f (x) = x3) but it might still be a local maximum or minimum.

This latter scenario occurs with the function f (x) = x4: the FOC
tells us that there is a stationary point at x = 0, since f ′(x) = 4x3 is
zero there. But the SOC is inconclusive, since f ′′(x) = 12x2 is also
zero at that point.
This is another example of where we need to read a mathematical
statement very carefully and think not just about what it is telling
us, but also about what it isn’t telling us.

f ′(x∗−ε) f ′(x∗+ε) type

negative negative inflection
negative positive minimum
positive negative maximum
positive positive inflection

Table 3.2: Classifying stationary points

If we find ourself in this situation, then one thing we can do is look
at the sign of the first derivative a tiny distance either side of the
stationary point. Choose some small positive value ε (for example,
ε = 0.1), evaluate f ′(x∗ − ε) and f ′(x∗ + ε), and consult Table 3.2.
For example, the FOC tells us that f (x) = x4 has a stationary
point at x = 0. But checking the SOC we find that f ′′(0) = 0,
so the test is inconclusive. So now we set ε = 0.1 and calculate
f ′(−0.1) = −0.004 < 0 and f ′(0.1) = 0.004 > 0. Checking Table 3.2
we see that this must be a local minimum.
These are the first and second order conditions for functions of a
single real variable. Things are more complicated with multivariate
functions, as we will see later.

Elasticity

An issue that we run into when using derivatives is that they are
unit dependent, which means they aren’t so useful for measuring
sensitivity of a function to changes in its input variable. The solution
is to look at relative (for example, percentage) changes instead.
Consider a function f : D → R, where D ⊆ R. Suppose that if x
changes by an infinitesimal amount δx, then f (x) changes by an
amount δ f . Then the relative change in f is δ f

f and the relative

change in x is δx
x .

Hence
δ f / f
δx/x

=
δ f
δx

· x
f

. (3.1)

Taking the limit as δx → 0, we have δ f
δx → d f

dx . And the expression
in (3.1) tends to d f

dx · x
f . We give this concept a special name:

Definition 3.11 The elasticity of f with respect to x is:

El f (x) =
d f
dx

f
x

.

Let’s try an example.
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Example 3.12 Let f (x) = 3x2 + 2x − 1. Then d f
dx = 6x + 2, and

El f (x) =
d f
dx

x
f
= (6x + 2)

x
3x2 + 2x − 1

=
6x2 + 2x

3x2 + 2x − 1
.

Economists sometimes use the following terminology:

Definition 3.13 Consider a function f : D → R for some domain
D ⊆ R. Then f is said to be:

elastic at x if |Elx( f )| > 1
unit elastic at x if |Elx( f )| = 1
inelastic at x if |Elx( f )| < 1
completely inelastic at x if |Elx( f )| = 0

Logarithmic derivatives

Consider the derivative d ln( f )
d ln(x) . This is the derivative of ln( f (x)) with

respect to ln(x). Then, by applying the chain rule for derivatives,

d ln( f )
d ln(x)

=
d ln( f )

d f
· d f

d ln(x)

=
d ln( f )

d f
· d f

dx
· dx

d ln(x)

=
d ln( f )

d f
· d f

dx

/
d ln(x)

dx

=
1
f
· d f

dx

/
1
x

=
d f
dx

· x
f

= El f (x)

So d ln( f )
d ln(x) = El f (x) = d f

dx
x
f gives an alternative but equivalent formu-

lation of elasticity that might simplify calculations in some cases.

Example 3.14 Consider an economic model

Gt = Kα
t Lα

t eεt

where Gt, Kt and Lt denote (respectively) GDP, capital and labour
at time t, and εt ∼ NIID(0, 1).
Take natural logarithms of both sides to get

ln(Gt) = α ln(Kt) + β ln(Lt) + εt

Differentiating with respect to ln(Kt) and ln(Lt) we see that

ElKt(Gt) =
d ln(Gt)

d ln(Kt)
= α ElLt(Gt) =

d ln(Gt)

d ln(Lt)
= β

That is, the elasticity of GDP with respect to capital is α and the
elasticity of GDP with respect to labour is β.





4 Taylor Series

Now we will study a technique for approximating functions
by means of polynomials. This is useful because polynomials

are relatively straightforward to deal with: they are easy to evaluate
(since they only involve basic arithmetical operations) and they are
easy to differentiate or integrate. And often we can derive useful
insights or information from studying a quadratic or even a linear
approximation to a given function.

Polynomial approximations

The approach we’re going to use is to construct a polynomial whose
first n derivatives agree with the first n derivatives of the given
function, at some chosen point. The values of this polynomial
should then be pretty close to the values of the actual function, at
least for values of x close to that chosen point.
We’ll illustrate this by working through a simple example.

Example 4.1 Let f (x) = ex, and suppose we want a degree–n
polynomial pn(x) that provides a good approximation to f (x) for
values of x close to 0.

Degree 0 Suppose p0(x) = a0 for some (constant) real number
a0. We want p0(x) to agree with f (x) when x = 0. That is,
p0(0) = a0 = f (0) = e0 = 1. So we set a0 = 1 and get

p0(x) = 1.

Then, close to x = 0, ex ≈ p0(x) = 1. This is the horizontal red
line in Figure 4.1.

Degree 1 Here we want to find a linear polynomial p1(x) = a0 +
a1x such that p1(0) = f (0) and p′1(0) = f ′(0). That is, p1 and its
first derivative agree with f and its first derivative f ′ at x = 0.
Again, if a0 = 1 we have p1(0) = f (0). But we want the first
derivatives to agree as well. Here p′1(x) = a1 and f ′(x) = ex. So
we require a1 = p′1(0) = f ′(0) = e0 = 1. So a1 = 1, and

p1(x) = 1 + x.

Then, close to x = 0 we have ex ≈ p1(x) = 1 + x. We can see
from the orange line in Figure 4.1 that this is a slightly better
approximation, at least if x ≈ 0.
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Figure 4.1: Taylor polynomial approxi-
mations pn(x) to the function f (x) = ex

for n = 0, . . . , 5

Degree 2 Now set p2(x) = a0 + a1x + a2x2. Then

p′′2 (x) = 2a2 f ′′(x) = ex

As before, we have a0 = e0 = 1 and a1 = e0 = 1. For the
coefficient a2 we have 2a2 = e0 = 1, so a2 = 1

2 , and hence

p2(x) = 1 + x + 1
2 x2.

This is the green curve in Figure 4.1 and we can see that it
provides an even better approximation to the actual function.

Degree 3 Setting p3(x) = a0 + a1x + a2x2 + a3x3, we find that

p′′′3 (x) = 6a3 f ′′′(x) = ex

So 6a3 = e0 = 1, and thus a3 = 1
6 . Hence

p3(x) = 1 + x + 1
2 x2 + 1

6 x3.

This is the lighter blue curve in Figure 4.1.

Degree n More generally, we can see that an = 1
n! ,

1 so

pn(x) = 1 + x + 1
2 x2 + 1

6 x3 + · · ·+ 1
n! x

n.
1 Here, n! denotes the factorial of n:

n! =

{
1 if n = 0,
n(n−1)(n−2) . . . 2.1 if n > 0.

This is defined for non-negative integers
only.

The polynomials pn(x) in the above example provide increasingly
good approximations to ex: the higher n is, the closer pn(x) is to
the actual value of ex.
So if we just want to work with ex numerically, up to some number
of decimal places accuracy, we can set n to be sufficiently high and
use pn(x) instead.
A couple of important points:
(i) We can do this with other differentiable functions, not just ex.
(ii) Sometimes it will be more useful to approximate our chosen

function close to some other value of x, instead of x = 0.
The full generalisation of this process is given by the following
important result:
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Theorem 4.2 (Taylor’s Theorem) Suppose a function f : D → R

(where D ⊆ R) is:
(i) differentiable (and thus continuous) in a closed interval [a, b] ⊆ D,

up to order n, for some n ∈ N, and
(ii) differentiable to order (n+1) in the corresponding open interval

(a, b).
Then there exists some c ∈ (a, b) such that:

f (b) = f (a) + (b−a) f ′(a) + (b−a)2

2 f ′′(a) + · · ·+ (b−a)n

n! f (n)(a)

+ (b−a)n+1

(n+1)! f (n+1)(c) (4.1)

Brook Taylor (1685–1731)

Colin Maclaurin (1698–1746)

The first part of (4.1) gives us an approximation to f (b) as a degree–
n polynomial in (b−a):

f (b) = f (a) + (b−a) f ′(a) + (b−a)2

2 f ′′(a) + · · ·+ (b−a)n

n! f (n)(a).

Setting a = 0 and b = x this becomes

f (x) = f (0) + x f ′(0) + x2

2 f ′′(0) + · · ·+ xn

n! f (n)(0),

which is essentially the polynomial pn(x) that we constructed in
Example 4.1.
The other part of (4.1),

(b−a)n+1

(n+1)! f (n+1)(c),

is called the remainder term, and is the discrepancy between the
degree–n polynomial approximation to f (b) and the actual value of
f (b). The idea is that as n increases, this should tend to zero.
The polynomial approximation pn(x) is called a Taylor series or
Taylor polynomial; the special case where a = 0 is often called a
Maclaurin series or Maclaurin polynomial.

Examples

Now we’ll try a few more illustrative examples. First, we’ll calculate
the Maclaurin series for sin(x).

Example 4.3 Let f (x) = sin(x). This is continuous and differen-
tiable to arbitrary order over the entirety of R. We see that:

f (x) = sin(x) f (0) = 0
f ′(x) = cos(x) f ′(0) = 1
f ′′(x) = − sin(x) f ′′(0) = 0
f ′′′(x) = − cos(x) f ′′′(0) = −1

...
...

(At this point, the pattern of derivatives repeats with period 4.)
So, the Maclaurin series (that is, the Taylor series around x = 0) is

f (x) = 0 + x + 0 − 1
3! x

3 + 0 + 1
5! x

5 + · · ·
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Figure 4.2: Taylor–Maclaurin polyno-
mial approximations pn(x) to the func-
tion f (x) = sin(x), for n = 1, 3, 5, 7, 9

or, more generally,

pn(x) =
n

∑
k=0

(−1)kx2k+1

(2k+1)!
.

We can see from the graph in Figure 4.2 that as n increases, pn(x)
becomes an increasingly accurate approximation to sin(x).

As an exercise, try this for f (x) = cos(x).

Example 4.4 Now we will use the Maclaurin series for f (x) = ex

to approximate e = f (1). We already know from Example 4.1 that

ex ≈
n

∑
k=0

xk

k!
.

What is the smallest value of n that ensures the relative error is
less than 1%?
The remainder term is

Rn =
f (n+1)(c)
(n+1)!

(x−a)n+1 =
ecxn+1

(n+1)!
.

The function f (x) = ex is strictly increasing on the interval [0, 1]
(actually, it’s strictly increasing everywhere in R). We know that
a = 0, x = 1 and c ∈ (0, 1), so∣∣∣∣ e0(1−0)n+1

(n+1)!

∣∣∣∣ < ∣∣∣∣ ec(1−0)n+1

(n+1)!

∣∣∣∣ < ∣∣∣∣ e1(1−0)n+1

(n+1)!

∣∣∣∣
and hence ∣∣∣∣ 1

(n+1)!

∣∣∣∣ < ∣∣∣∣ ec

(n+1)!

∣∣∣∣ < ∣∣∣∣ ex

(n+1)!

∣∣∣∣. (4.2)
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We want to find the value of n that ensures the remainder term
Rn = ec

(n+1)! is at most 1% of the actual value of e. That is, ec

(n+1)! ⩽
0.01e.
The upper bound in (4.2) needs to be less than or equal to 0.01e,
because that will ensure that Rn definitely is.

So we want n such that e
(n+1)! ⩽ 0.01e; that is, 1

(n+1)! ⩽ 0.01.

The smallest value of n satisfying this is n = 4, because then

1
(n+1)!

=
1
5!

=
1

120
⩽ 0.01.

Therefore, to approximate e to a relative accuracy of 1%, we need
n = 4, and

p4(x) = 1 + x + x2

2 + x3

6 + x4

24 .

Setting x = 1 this gives

e ≈ p4(1) = 1 + 1 + 1
2 +

1
6 +

1
24 = 65

24 = 2.7083 . . . .

Now let’s try to calculate e with an absolute accuracy of 0.01; that
is, accurate to two decimal places. Here we want to find n such
that the upper bound on the remainder term Rn is at most 0.01
(not 0.01e as in the relative case).
So we want to solve e

(n+1)! ⩽ 0.01. Given that e ≈ 2.7, this means
that (n+1)! ⩾ 100e ⩾ 270. Here, n = 5 will suffice, because then
(n+1)! = 6! = 720 > 270.
To calculate e to an accuracy of two decimal places, then, we need

p5(x) = 1 + x + x2

2 + x3

6 + x4

24 +
x5

120 .

Setting x = 1 this gives

e ≈ p5(1) = 1 + 1 + 1
2 +

1
6 +

1
24 +

120
=

326
120 = 2.716 . . . .

Now let’s try an example where we expand around some other
value of x apart from zero.

Example 4.5 Find the fifth-order (n = 5) Taylor expansion p5(x)
of f (x) = x2 ln(x) around a = 1.

f (x) = x2 ln(x) f (1) = 1
f ′(x) = 2x ln(x) + x f ′(1) = 1
f ′′(x) = 2 ln(x) + 3 f ′′(1) = 3

f ′′′(x) = 2
x = 2x−1 f ′′′(1) = 2

f (4)(x) = −2x−2 f (4)(1) = −2

f (5)(x) = 4x−3 f (5)(1) = 4

So

p5(x) = (x−1) + 3
2(x−1)2 + 1

3(x−1)3 − 1
12(x−1)4 − 1

30(x−1)5
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Figure 4.3: Taylor polynomials pn(x)
for the function f (x) = x2 ln(x) around
x=1, for n = 0, . . . , 5

This should approximate f (x) close to x = 1, and we can see from
Figure 4.3 that it does so pretty well.
If we want, we can multiply out the powers of (x−1) in this
expansion and regroup everything to get

p5(x) = 1
20 −

1
2 x − 1

3 x2 + x3 − 1
4 x4 + 1

30 x5,

but that’s just a matter of style, and the previous expression is fine
for our purposes anyway.

Note that the function f (x) = x2 ln(x) is only defined for x > 0, but
the polynomial p5(x) is defined for all x ∈ R. So we should only
use p5(x) to approximate f (x) for x > 0. We’ll discuss this issue in
more detail later.

New series from old

Suppose that we have a Taylor series for a function f (x). We can
often use this to find the Taylor series for a related function. Let

f (x) =
1

1 + x
=

∞

∑
k=0

(−1)kxk = 1 − x + x2 − x3 + · · · . (4.3)

This is the infinite power series, rather than the degree–n approxi-
mation obtained by stopping after n terms. This series is only valid
for |x| < 1, but we’ll come back to that later.

Example 4.6 We can obtain the Taylor series for f (x2) = 1
1+x2 by

substituting x2 for x in the series (4.3):

1
1 + x2 =

∞

∑
k=0

(−1)kx2k = 1 − x2 + x4 − x6 + · · · .

(This is also only valid for |x| < 1, because the original series was.)
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We can also differentiate Taylor series:

Example 4.7 Substituting −x for x in (4.3) we get

1
1 − x

=
∞

∑
k=0

xk = 1 + x + x2 + x3 + · · ·

for |x| < 1. Differentiating both sides of this, we get

1
(1 − x)2 =

∞

∑
k=0

kxk−1 = 1 + 2x + 3x2 + 4x3 + · · · .

Both of these series are also only valid for |x| < 1.

We can also integrate Taylor series:

Example 4.8 Given

1
1 + x2 =

∞

∑
k=0

(−1)kx2k = 1 − x2 + x4 − x6 + · · ·

for |x| < 1, we can integrate both sides to get

tan−1(x) =
∞

∑
k=0

(−1)kx2k+1

2k + 1
= x − x3

3
+

x5

5
− x7

7
+ · · · .

We can multiply, divide, add and subtract Taylor series, and substi-
tute one into another:
Example 4.9 Recall from Examples 4.1 and 4.3 that

ex =
∞

∑
k=0

xk

k!
= 1 + x +

x2

2
+

x3

6
+

x4

24
+ · · ·

sin(x) =
∞

∑
k=0

(−1)kx2k+1

(2k+1)!
= x − x3

6
+

x5

120
− · · ·

Then ex sin(x) is the product of these:

ex sin(x) =
(

1 + x +
x2

2
+

x3

6
+

x4

24
+ · · ·

)(
x − x3

6
+

x5

120
− · · ·

)
.

We can multiply these out to get the first few terms quite easily:

ex sin(x) ≈ x + x2 + 1
3 x3 − 1

30 x5

See Figure 4.4 for an illustration.

Convergence

So far we have quietly made the following assumptions:

(i) The functions we are interested in have enough derivatives.
(ii) The polynomials converge to the actual function:

(a) as n increases, and
(b) for all x ∈ R.
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Figure 4.4: Degree–5 Taylor polyno-
mial (green) for f (x) = ex sin(x) (black)
around x = 0

Neither of these need be the case. The first is something we’ll need
to check, but for most straightforward, familiar functions everything
will be fine.
Now we’ll address the second assumption. We want the polynomi-
als pn(x) → f (x) as n → ∞, and also for Rn → 0 as n → ∞.

Jean-Baptiste le Rond d’Alembert (1717–
1783)

This is somewhat complicated, but we’ll take a brief look at the
questions involved.
For an infinite series ∑∞

k=0 ak to converge, that is, sum to a finite, well-
defined value, we need the sequence of partial sums Sn = ∑n

k=0 ak
to converge to a finite limit.
We can often use the following test, first formulated by the 18th
century French mathematician Jean-Baptiste d’Alembert:

Theorem 4.10 (The Ratio Test) Given a series ∑∞
k=0 ak, we consider

the ratio of successive terms
∣∣ ak+1

ak

∣∣. If this tends to a finite limit L as
k → ∞, then:
• if L > 1 the series doesn’t converge,
• if L < 1 the series does converge, and
• if L = 1 the test is inconclusive.

We’ll illustrate this with an example:22 As an exercise, try this process to con-
firm that the Maclaurin series for ex de-
rived in Example 4.1 actually is valid for
all x ∈ R.

Example 4.11 Consider the geometric sequence 1, x, x2, x3, . . ..

The Taylor series for 1
1+x = 1 + x + x2 + · · · = ∑∞

k=0 xk.

Applying the Ratio Test:
∣∣ ak+1

ak

∣∣ = ∣∣ xk+1

xk

∣∣ = |x|. This ratio tends to
the limit |x| as k → ∞.
Now, if L = |x| > 1 then by the Ratio Test the series doesn’t
converge. But if L = |x| < 1 then the series does converge. (The
Ratio Test is inconclusive for the case |x| = 1, and we would have
to use other techniques here.)

So the series ∑∞
k=0 xk converges to a finite value (in fact, to 1

1+x ) for
|x| < 1; that is, when −1 < x < 1. This is called the interval of
convergence for the series.
We would also need to check that Rn → 0 as n → ∞, at least for
|x| < 1. If so, then this all works.



5 Analytical Theorems

In this chapter we will state some important analytical concepts,
terminology and theorems.

Open sets in Rn

Suppose we are working in n–dimensional Euclidean space Rn; for
example, R, R2, R3, and so forth.
We want to take the the concept of an open interval (a, b) in R, and
generalise it to Rn. We do it as follows:

Definition 5.1 A ball in Rn, centred on a point x, with radius r,
is denoted

Br(x) = {v ∈ Rn : ∥v − x∥ ⩽ r}.1

Geometrically, this is all the points in Rn that are a distance at
most r from the point x.

1 Here ∥ · ∥ denotes the usual norm in
Rn; see the Linear Algebra section for
more details.Definition 5.2 A set S ⊆ Rn is open if and only if every point

x ∈ S is contained within a ball Br(x) for some r > 0 such that
Br(x) ⊆ S.

Informally, an open set doesn’t contain any of its boundary. So in
R, an open interval (a, b) doesn’t include its endpoints a and b.
The idea is that for a set S to qualify as open, we should be able
to put a ball of nonzero radius, however small, around any point
x ∈ S, that is also entirely within the set S. Think about this, and
convince yourself that the only points you can’t do this for are on
the boundary of the set S.

Definition 5.3 A neighbourhood of a point x ∈ Rn is an open set
S containing x.

Definition 5.4 The complement of a set S ⊆ Rn is the difference

S′ = Rn \ S = {x ∈ Rn : x ̸∈ S}.

That is, all the points in Rn that aren’t in S.

For example, if S = [a, b] ⊂ R, the complement

S′ = {x ∈ R : x ̸∈ [a, b]} = (−∞, a) ∪ (b, ∞).

Definition 5.5 We say that a set B is closed if and only if its
complement is open.
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However, some sets are neither open nor closed. Informally, a
closed set contains all of its boundary. So in R, a closed interval
[a, b] includes its endpoints a and b. As defined above, the ball Br(x)
is closed.
Definition 5.6 A set B ⊆ Rn is bounded if and only if there exists
some r > 0 and x ∈ Rn such that B ⊆ Br(x). That is, B can be
contained within some finite-radius ball.

Definition 5.7 If a set B ⊆ Rn is bounded and closed, we say it is
compact.2

2 The more general framework for defin-
ing open, closed, bounded and compact
sets is complicated, and these defini-
tions will suffice for our purposes. For
more details, see: W. A. Sutherland, In-
troduction to Metric and Topological Spaces,
Clarendon Press, Oxford (1975).

Important theorems

Bernard Bolzano (1781–1848)

In this section, we state a few important theorems from real analysis.
The first of these is the Intermediate Value Theorem, first proved in
1817 by the Bohemian mathematician and priest Bernard Bolzano,
although an earlier form was postulated in the 5th century BCE by
the Greek mathematician Bryson of Heraclea:

Theorem 5.8 (Intermediate Value Theorem) Let f : D → R, where
D ⊆ R. If f is continuous over a closed interval [a, b], and if f (a) ̸=
f (b), then for any y ∈ ( f (a), f (b)) there exists c ∈ (a, b) such that
f (c) = y.

This says that a value c exists for which f (c) matches any level
between f (a) and f (b). See Figure 5.1 for an illustration.

Figure 5.1: Illustration of the Interme-
diate Value Theorem over the interval
(1, 2)

There is a simpler version in which we set the required level y = 0:

Corollary 5.9 Let f : D → R, where D ⊆ R. If f is continuous over
a closed interval [a, b] and if f (a) and f (b) have different signs (that is,
one is positive and the other negative) then there exists c ∈ (a, b) such
that f (c) = 0.

Geometrically, this result makes the (intuitively obvious) statement
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that if we draw the graph of a continuous function (that is, one
with no breaks in it) then if the graph is below the horizontal axis
somewhere, and above it somewhere else, there must be a point
somewhere in between where the graph crosses the horizontal axis.
This theorem helps confirm that our formalised, precise definition
of continuity agrees with our intuitive understanding.
We can use the Intermediate Value Theorem to prove the following
important result, which says that every continuous function from a
closed interval to itself must fix at least one point in place.

Luitzen Egbertus Jan Brouwer (1881–
1966)

Theorem 5.10 (Brouwer’s Fixed Point Theorem) If f : [a, b] →
[a, b] is continuous, then there exists c ∈ [a, b] such that f (c) = c. We
call c a fixed point of f .

Proof Let g(x) = f (x) − x. This is continuous on [a, b] because
both f and x are. Now consider g(a) and g(b). Since a ⩽ f (x) ⩽ b
we have f (a) ⩾ a and f (b) ⩽ b. Hence g(a) = f (a)− a ⩾ 0 and
g(b) = f (b)− b ⩽ 0. There are three cases to consider:
Case 1 If f (a) = a then a is a fixed point of f in [a, b].
Case 2 If f (b) = b then b is a fixed point of f in [a, b].
Case 3 If f (a) > a and f (b) < b then we have g(a) > 0 and
g(b) < 0. By Corollary 5.9, there must exist c ∈ (a, b) such that
g(c) = 0, and hence f (c)− c = 0, so f (c) = c as required.

The fixed point needn’t be unique: there can be more than one.
This theorem is required to prove the existence of Nash equilibria
in game theory. This result also holds if we replace [a, b] with any
compact set in Rn.3 3 The 2–dimensional analogue can be

proved by using the fundamental group
π1(X) in algebraic topology. One conse-
quence of the 2–dimensional version is
that if we take a map of the UK and put
it on the ground anywhere in Britain,
then there is a point on the map that
is exactly over the point on the ground
that it represents.

The next result says that continuous functions are bounded over
closed intervals; that is, they have a finite maximum and minimum
value over that interval. And, importantly, those bounds are at-
tained: there exist specific values of x in the interval that map to
the maximum and minimum values.
Theorem 5.11 (Extreme Value Theorem) Let f : D → R, where
D ⊆ R. If f is continuous over some closed interval [a, b] ⊆ D, then f is
bounded over [a, b], and attains its bounds. That is, there exist m, M ∈ R

such that m ⩽ f (x) ⩽ M for all x ∈ [a, b], and furthermore there exist
c, d ∈ [a, b] such that f (c) = m and f (d) = M.

Michel Rolle (1652–1719)

The following theorem is attributed to the French mathematician
Michel Rolle, who proved it for polynomial functions in 1691. A
more general and analytically rigorous version was proved by the
French mathematician Augustin-Louis Cauchy in 1823. See Fig-
ure 5.2 for an illustration.

Theorem 5.12 (Rolle’s Theorem) Let f : D → R, where D ⊆ R.
If f is continous over some closed interval [a, b], differentiable over the
corresponding open interval (a, b), and if f (a) = f (b), then there exists
c ∈ (a, b) such that f ′(c) = 0.

This theorem says that if a continuous and differentiable function
f has two values a and b for which f (a) = f (b), then there must
exist at least one stationary point between them. Intuitively, this
makes sense: the only way we could avoid a stationary point (that
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Figure 5.2: Illustration of Rolle’s Theo-
rem

is, a maximum, minimum or point of inflection) is if we allowed f
to have a discontinuity, or fail to be differentiable somewhere.

Augustin-Louis Cauchy (1789–1857)

Theorem 5.13 (Mean Value Theorem) Let f : D → R, where D ⊆
R. If f is continuous over some closed interval [a, b], and differentiable
over the corresponding open interval (a, b), then there exists c ∈ (a, b)
such that

f ′(c) =
f (b)− f (a)

b − a
.

Proof Consider the function F : R → R given by

F(x) = (b−a)( f (b)− f (x))− (b−x)( f (b)− f (a)).

Note that F(a) = F(b) = 0. And since f is continuous on [a, b] and
differentiable on (a, b), so is F. Differentiating F, we get

F′(x) = − f ′(x)(b−a) + f (b)− f (a).

Applying Rolle’s Theorem to F over the interval [a, b], there exists
some c ∈ (a, b) such that F′(c) = 0, and hence

f (b)− f (a)− f ′(c)(b−a) = 0.

Rearranging this, we get

f ′(c) =
f (b)− f (a)

b − a

as claimed.

The Mean Value Theorem says that if f is continuous and differ-
entiable over some interval, then there exists at least one point in
that interval where the first derivative is equal to the “average” of
the first derivative. This is illustrated in Figure 5.3, where the blue
gradient at c is parallel to the red chord between the points (a, f (a))
and (b, f (b)).

Corollary 5.14 Let f : D → R, where D ⊆ R. If f is continuous over
some closed interval [a, b] and differentiable over the corresponding open
interval (a, b), then there exists some c ∈ (a, b) such that

f (b) = f (a) + (b−a) f ′(c).
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Figure 5.3: Illustration of the Mean
Value Theorem

This corollary (which can be proved by a simple rearrangement of
the statement of the Mean Value Theorem) is effectively the n = 1
case of Taylor’s Theorem,4 and so we can regard Taylor’s Theorem 4 Theorem 4.2, page 21.

as a generalisation of the Mean Value Theorem.





6 Single Difference Equations

Many quantities of interest in economics change over time:
for example, investment, GDP, unemployment, etc. We often

know how the change of such a quantity relates to its current value.
Sometimes we can write down this relationship as a mathematical
expression, and we’d like to be able to use such a model to predict
the value of a given quantity at some point in the future: for
example, in five years’ time.
In this chapter we will study difference equations (sometimes
called recurrence relations). These are analogous to differential
equations (which we will cover later on).

Difference equations Differential equations

Value depends on: previous values derivatives
Measure: at fixed time intervals over continuous time
Solution: discrete function of t continuous function of t
discrete or continuous: discrete continuous

Table 6.1: Analogies between difference
equations and differential equations

Definitions and examples

A difference equation is linear if the current value depends on a
linear function of its previous value(s). Otherwise, it is nonlinear.

Leonardo of Pisa, often called Fibonacci
(c.1170–c.1250)

Example 6.1 The Fibonacci sequence (named after the Italian
mathematician Leonardo of Pisa, nicknamed Fibonacci) is a linear
difference equation:

xt+1 = xt + xt−1

The logistic equation, which turns up in population dynamics, is
a nonlinear difference equation:

xt+1 = rxt(1 − xt) = rxt − rx2
t

Often, we want to solve a difference equation given some initial
value x0. For example, the usual starting point for the Fibonacci
sequence is to set x0 and x1 both equal to 1, and then use the
formula to find x2 and so on.
The order of a difference equation is the number of previous values
the next value depends on. So the logistic equation is a first order
equation because xt+1 only depends on the previous value xt. The
Fibonacci equation is second order, because xt+1 depends on the
previous two values xt and xt−1.
We say that a difference equation is homogeneous if it has no
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terms that don’t depend on previous values. The Fibonacci and
logistic equations are both homogeneous in this sense. However,
the equation

xt+1 = 2xt + 7xt−1 + 4

is inhomogeneous because it has a term (the constant 4) that doesn’t
depend on xt, xt−1 and so on.

Solving first-order linear difference equations

Now we will work through a full solution for the general first-order
linear difference equation

xt+1 = axt + b (6.1)

where a and b are real constant parameters, and the initial value x0
is a real number.
We need to consider two cases:
Case 1 If a ̸= 1, we have

x1 = ax0 + b

x2 = ax1 + b = a(ax0 + b) + b = a2x0 + ab + b

x3 = ax2 + b = a(a2x0 + ab + b) + b = a3x0 + a2b + ab + b
...

xt = atx0 + (at−1 + at−2 + · · ·+ a + 1)b

= atx0 +
1 − at

1 − a
b

The last step uses the fact that

at−1 + at−2 + · · ·+ a + 1 =
1 − at

1 − a
=

at − 1
a − 1

for all a ̸= 1.11 Check this by expanding

(1 − a)(at−1 + · · ·+ a + 1)

and verifying that almost all the terms
cancel, leaving 1 − at.

Case 2 If a = 1, then we have

x1 = x0 + b
x2 = x1 + b = (x0 + b) + b = x0 + 2b
x3 = x2 + b = (x0 + 2b) + b = x0 + 3b

...
xt = x0 + tb

So we can write the solution to (6.1) as:

xt =

{
x0 + tb if a = 1
atx0 +

1−at

1−a b if a ̸= 1
(6.2)

This is the general solution to the original problem (6.1). Think of
this as a family of all the sequences that satisfy the given difference
equation.
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The particular solution

The following is also a solution to (6.1):

xt =

{
bt if a = 1

b
1−a if a ̸= 1

(6.3)

We can verify this by substituting both expressions into (6.1):
Case 1 If a ̸= 1 then the two sides of (6.1) give:

LHS: xt+1 =
b

1 − a

RHS: axt + b = a
(

b
1 − a

)
+ b =

b
1 − a

These are equal, so this is a valid solution..
Case 2 If a = 1 then the two sides of (6.1) are:

LHS: xt+1 = b(t + 1)
RHS: xt + b = bt + b = b(t + 1)

These are also equal, so this is also a valid solution when a = 1.
The solution in the case a ̸= 1 is constant: it is the same for any
value of t. We call this a steady state solution, and will often denote
it by x∗.

Homogeneous equations

Suppose we have two different solutions to (6.1): a particular solu-
tion xt and another solution xt. Then the sequence of their differ-
ences, yt = xt − xt satisfies the related homogeneous equation

yt+1 = ayt (6.4)

since if

xt+1 = axt + b xt+1 = axt + b

we have

yt+1 = xt+1 − xt+1 = (axt + b)− (axt + b) = a(xt − xt) = ayt.

This works because (6.1) is a linear equation.
Rearranging yt = xt − xt we get

xt = yt + xt.

Here, xt is a particular solution to the original inhomogeneous
equation (6.1), while yt is the general solution to the related homo-
geneous equation (6.4).
So, to solve the original (inhomogeneous) equation (6.1) one method
is to find a particular solution (such as a steady state solution, if
one exists), then adding it to the general solution for the related
homogeneous equation (6.4).
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To solve the homogeneous equation (6.4), we note that this is the
same as (6.1), but with b = 0. The general solution is thus

yt =

{
y0 if a = 1
aty0 if a ̸= 1

. (6.5)

Now let c = y0. Then the full solution of the original (inhomoge-
neous) equation (6.1) is the general solution of the homogeneous
equation (6.4) plus a particular solution of (6.1):

xt =

{
c + bt if a = 1
cat + b

1−a if a ̸= 1
(6.6)

where

c =

{
x0 if a = 1
x0 − b

1−a if a ̸= 1
(6.7)

That is,

xt =

{
x0 + bt if a = 1(
x0 − b

1−a
)
at + b

1−a if a ̸= 1
(6.8)

Examples

To make sense of all this, we’ll look at some examples.

Figure 6.1: The first several values of the
difference equation in Example 6.2

Example 6.2 Consider the equation

xt+1 = 1
2 xt + 1

with x0 = 1. This gives the sequence 1, 3
2 , 7

4 , 15
8 , . . .

First we find the particular solution, using (6.3) with a = 1
2 ̸= 1.

This is
xt =

b
1 − a

=
1

1 − 1/2
= 2.

Now we solve the homogenous equation

yt+1 = 1
2 yt

Using (6.5) we have

yt = aty0 =
(1

2

)ty0

where y0 = x0 − b
1−a = 1− 2 = −1. So yt = −

(1
2

)t and the general
solution for the inhomogeneous equation is therefore

xt = xt + yt = −
(1

2

)t
+ 2.

As t → ∞, we see that
(1

2

)
→ 0 and hence xt → 2. The solution

of this equation is therefore converging to a steady state solution
x∗ = 2, as seen in Figure 6.1.

Now we consider the same equation with a different initial value:
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Example 6.3 Again, consider

xt+1 = 1
2 xt + 1

but this time with x0 = 2. Again, we get the particular solution
xt =

b
1−a = 1

1−1/2 = 2.

The general solution to the homogeneous equation

yt+1 = 1
2 yt

is
yt = cat = c

(1
2

)t

where c = x0 − b
1−a = 2 − 2 = 0. So yt = 0 and hence the solution

to the original inhomogeneous equation is

xt = yt + xt = xt = 2 = x∗,

the steady state solution.

Figure 6.2: The first several values of the
difference equation in Example 6.4

Example 6.4 Now consider the equation

xt+1 = −1
2 xt − 3

with x0 = 0. Since a = −1
2 ̸= 1 we have

xt =
b

1 − a
=

−3
1 + 1/2

= −2.

This is the steady state solution. The homogeneous equation

yt+1 = −1
2 yt

has solution
yt = cat = c

(
−1

2

)t

where c = x0 − b
1−a = 2. Hence

xt = yt + xt = 2
(1

2

)t − 2.

As t → ∞, this tends to the steady state solution x∗ = −2, as
shown in Figure 6.2

Figure 6.3: The first several values of the
difference equation in Example 6.5

Example 6.5 Consider

xt+1 = −2xt − 3

with x0 = −1
2 . Again, a ̸= 1 so we have xt =

b
1−a = −3

1+2 = −1. So
xt = x∗ = −1 is the steady state solution.
Solving yt+1 = −2yt gives yt = cat = c(−2)t, where c = x0 −

b
1−a = −1

2 + 1 = 1
2 . So yt =

1
2(−2)t, and the full solution is

xt = yt + xt =
1
2(−2)t = 1

which diverges as t → ∞. See Figure 6.3
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Stability of solutions

In the examples just discussed, we saw a few different types of
long-term behaviour as t → ∞: in Examples 6.2 and 6.4, the values
of xt converged to a finite limit as t → ∞, while in Example 6.3,
xt was a constant, steady state sequence, and in Example 6.5 the
values of xt diverged.
If xt converges to a finite limit as t → ∞, we say the equation is
stable, otherwise it is unstable.
As we saw earlier, the equation

xt+1 = axt + b

has general solution

xt =

{
c + bt if a = 1
cat + b

1−a if a ̸= 1

where

c =

{
x0 if a = 1
x0 − b

1−a if a ̸= 1

The stability of this equation depends on the various parameters:

• If |a| < 1 we have limt→∞
(
cat + b

1−a
)
= b

1−a , so the equation is
stable.

• If |a| > 1 we have
(
cat + b

1−a
)
→ ±∞ as t → ∞. This equation is

unstable.
• If a = 1 and b = 0, the limit is limt→∞(c + bt) = c, so this

equation is stable.
• If a = 1 and b ̸= 0, then (c + bt) → ±∞, so the equation is

unstable.
• If a = −1 then xt = c(−1)t + b

1−a , which alternates between
b

1−a ± c, depending on whether t is even or odd. This equation is
oscillatory and unstable.

Summary

To summarise, the general method for solving first-order linear
difference equations is as follows:
• Find a particular solution to the original inhomogeneous problem

(for example, a steady state solution, if one exists).
• Find a general solution to the related homogeneous problem.
• Add them together to get the general solution to the original

inhomogeneous problem.



7 Concavity and Convexity

So far we have concentrated on functions of a single input vari-
able. Now we want to start thinking about functions with more

than one input variable: multivariate or multivariable functions.
These are functions of the form f : Rn → R, where Rn denotes n–
dimensional, real, Euclidean space. We’ll study this more in linear
algebra, but for now the following definition will do:

Rn = {(x1, . . . , xn) : x1, . . . , xn ∈ R}

This is the set of ordered n–tuples of real numbers. That is, ordered
lists of n real numbers, which we will often regard as representing
points in n–dimensional space.1 For the moment, think of R1 as 1 This is difficult to geometrically visu-

alise for n > 3, but if you’re interested
in trying, a good place to start is: Rudy
Rucker, The Fourth Dimension: Toward a
Geometry of Higher Reality, Dover (2014).

the real number line, R2 as a flat, infinite plane, and R3 as three-
dimensional space.
So a multivariate function f : Rn → R maps n real input variables to
one real value. For our purposes, we will often consider functions
f : D → R defined on some domain D ⊆ Rn. We will usually
require D to be a convex set.

Convex sets

The idea is that we want to work with regions of Rn such that the
straight line between any two points also lies inside that region.

Definition 7.1 Given two points x, y ∈ Rn, we define the section
between them to be the set

I(x, y) = {z = αx + (1−α)y : α ∈ [0, 1]}

Geometrically, this is the straight line joining the points x and y.2 2 In printed notes and books, we usually
denote vectors or points in Rn by bold
letters. In handwritten notes, we will
usually underline them, for example x,
y, etc.

When α = 0 we have z = 0x + (1−0)y = y, and when α = 1 we
have z = 1x + (1−1)y = x. As α ranges between 0 and 1, the point
z ranges between y and x. The set I(x, y) consists of all points of
this form, that is, the straight line segment joining x and y.

Definition 7.2 A set D ⊆ Rn is convex if, for all x, y ∈ D the
section I(x, y) ⊆ D.

Informally, a set is convex if the straight line between any two points
doesn’t go outside the set.3 3 Note that the empty set ∅ is convex, be-

cause it satisfies the definition trivially.



40 ec961 introductory mathematics and statistics

Concave and convex functions

We’ve just defined what we mean for a set to be convex. Slightly
confusingly, we’re about to use the same word in a different sense,
to describe a particular sort of function.44 Sometimes this happens in mathemat-

ics: the same word will be used to
mean two different (but possibly related)
things. Soon, when we study linear al-
gebra, we’ll use the word orthogonal to
refer to particular sorts of vectors, and
then in a slightly different sense to refer
to matrices with a specific property. This
is a bit awkward, but hopefully we’ll all
cope.

We’ll state the definition and then discuss what it means.
Definition 7.3 Let D ⊆ Rn be a convex set. A function f : D → R

is concave if, for all x, y ∈ D, and α ∈ (0, 1), we have

f (αx + (1−α)y) ⩾ α f (x) + (1−α) f (y)

and strictly concave if for all x, y ∈ D, and α ∈ (0, 1), we have

f (αx + (1−α)y) > α f (x) + (1−α) f (y)

Figure 7.1: Illustration of the condition
for a function to be concave Figure 7.1 shows an illustration of this definition. Informally, for

a function to be concave, we want the graph of the function to be
above, or tangent to, the chord between any two points on the graph.
(For strict concavity, we don’t allow tangency.)
We need the domain D to be a convex set, to ensure that the mid-
points z = αx + (1 − α)y belong to D, for any x, y ∈ D. Otherwise,
f (z) might not be defined.
We can flip this upside down, replacing ⩾ and > with ⩽ and < to
define convex functions. These are similar, but upside down.55 A function f : D → Rn is convex if − f

is concave, and strictly convex if − f is
strictly concave. Definition 7.4 Let D ⊆ Rn be a convex set. A function f : D → R

is convex if, for all x, y ∈ D, and α ∈ (0, 1), we have

f (αx + (1−α)y) ⩽ α f (x) + (1−α) f (y)

and strictly convex if for all x, y ∈ D, and α ∈ (0, 1), we have

f (αx + (1−α)y) < α f (x) + (1−α) f (y)
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Level curves and level sets

Often, given some function f : D → R, we want to know what
points in the domain D map to some fixed value in the codomain
R. For example, if f represents a budget constraint and we want to
find the possible bundles of goods we can buy with exactly some
fixed amount of money. We formalise this as follows:

Definition 7.5 Let f : D → R where D ⊆ Rn, and let c ∈ R. Then
the level curve of f at c is the set

{x ∈ D : f (x) = c}.

We may also want to know which points in D map to less than, or
greater than the chosen value. In the budget constraint example
just mentioned, the points in the domain mapping to less than c
correspond to all the bundles of goods we can afford.

Definition 7.6 Let f : D → R where D ⊆ Rn, and let c ∈ R. Then
the set

L f (c) = {x ∈ D : f (x) ⩽ c}
is the lower level set for the value c, and

U f (c) = {x ∈ D : f (x) ⩾ c}

is the upper level set for the value c.

Let’s look at a concrete example.

Figure 7.2: Illustration of the level curve,
and the upper and lower level sets for
c = 2 in Example 7.7

Example 7.7 Let D = {(x, y) ∈ R2 : x, y > 0} be the open set
consisting of the upper right-hand quadrant of the plane, and
define f : D → R by f (x, y) = x0.2y0.2.
The level curve at a given value c consists of all points (x, y) ∈ R2

such that x0.2y0.2 = c. We can rearrange this to give y = c5

x .
Figure 7.2 shows the level curve (green), upper level set (blue) and
lower level set (red) in the (x, y) plane.
In Figure 7.3, the blue surface is the graph of the function f , the
red plane is the level c = 2, and the green curve is the level curve
of f for c = 2 (it is the shadow cast by the intersection of the blue
surface and the red plane).

Figure 7.3: Illustration of the level curve
for c = 2 in Example 7.7
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The following theorem gives an important connection between
convexity and concavity of a function, and convexity of its level sets.

Theorem 7.8 Let f : D → R, with D ⊆ Rn, and let c ∈ R. Then:
(i) If f is concave, then the upper level set U f (c) is convex.
(ii) If f is convex, then the lower level set L f (c) is convex.

Proof
(i) Suppose that x, y ∈ U f (c). Then f (x) ⩾ c and f (y) ⩾ c, by

the definition of the upper level set. Now choose α ∈ (0, 1)
and set z = αx + (1−α)y.
Then

f (z) = f (αx + (1−α)y)
⩾ α f (x) + (1−α) f (y) because f is concave
⩾ αc + (1−α)c because x, y ∈ U f (c)

= c

So f (z) ⩾ c, and hence z is also in the upper level set U f (c).
Thus U f (c) is convex.

(ii) This can be proved by a very similar method, and is left as an
exercise.

Hence if f is concave, then the upper level sets are convex, and if f
is convex, the lower level sets are convex.

The converse isn’t true, however: There are non-concave functions
with convex upper level sets, and non-convex functions with convex
lower level sets. This leads to the concepts in the next section.

Quasiconcavity and quasiconvexity

Given that the converse of Theorem 7.8 isn’t true in general, nev-
ertheless it’s sometimes useful to study functions whose upper
or lower level sets are convex, and to that end we introduce the
following definition:

Definition 7.9 Let f : D → R, where D ⊆ Rn. We say that f is
quasiconcave if the upper level set U f (c) is convex for all c ∈ R.
And we say that f is quasiconvex if the lower level set L f (c) is
convex for all c ∈ R.

So, by Theorem 7.8, we have the following implications:

f is concave =⇒ U f (c) is convex =⇒ f is quasiconcave
f is convex =⇒ L f (c) is convex =⇒ f is quasiconvex

But the implications don’t go the other way: in general quasicon-
cavity ̸⇒ concavity, and quasiconvexity ̸⇒ convexity. Concavity is
a sufficient but not necessary condition for quasiconcavity, and con-
vexity is a sufficient but not necessary condition for quasiconvexity.
There is a different but equivalent way of defining quasiconcavity
and quasiconvexity:
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Definition 7.10 Let f : D → Rn, where D ⊆ Rn. Then:
(i) f is quasiconcave if, for all x, y ∈ D and α ∈ (0, 1), we have

f (αx + (1−α)y) ⩾ min{ f (x), f (y)}

(ii) f is strictly quasiconcave if, for all x, y ∈ D and α ∈ (0, 1),
we have

f (αx + (1−α)y) > min{ f (x), f (y)}

(iii) f is quasiconvex if − f is quasiconcave. Or, equivalently, for
all x, y ∈ D and α ∈ (0, 1), we have

f (αx + (1−α)y) ⩽ min{ f (x), f (y)}

(iv) f is strictly quasiconvex if − f is strictly quasiconcave. Or,
equivalently, for all x, y ∈ D and α ∈ (0, 1), we have

f (αx + (1−α)y) < min{ f (x), f (y)}

To summarise all this, we present the following theorem:

Theorem 7.11 Let f : D → R, where D ⊆ Rn. Then:
(i) f is strictly concave ⇒ f is concave.
(ii) f is concave ⇒ f is quasiconcave.
(iii) f is strictly concave ⇒ f is strictly quasiconcave.
(iv) f is strictly quasiconcave ⇒ f is quasiconcave.

The proof is relatively straightforward, and is mostly a case of
checking the various definitions.

Proof Let x, y ∈ D and α ∈ (0, 1).
(i) If f is strictly concave then

f (αx + (1−α)y) > α f (x) + (1−α) f (y),

from which it follows that

f (αx + (1−α)y) ⩾ α f (x) + (1−α) f (y),

so f is concave.
(ii) If f is concave, then

f (αx + (1−α)y) ⩾ α f (x) + (1−α) f (y)
⩾ α min{ f (x), f (y)}+ (1−α)min{ f (x), f (y)}
= min{ f (x), f (y)},

so f is quasiconcave.
(iii) If f is strictly concave, then

f (αx + (1−α)y) > α f (x) + (1−α) f (y)
⩾ α min{ f (x), f (y)}+ (1−α)min{ f (x), f (y)}
= min{ f (x), f (y)},

hence f is strictly quasiconcave.
(iv) If f is strictly quasiconcave, then

f (αx + (1−α)y) > min{ f (x), f (y)},
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from which it follows that

f (αx + (1−α)y) ⩾ min{ f (x), f (y)},

hence f is quasiconcave.
This completes the proof.

An analogous result can be proved for (strictly) convex and (strictly)
quasiconvex functions, and is left as an exercise.
We finish this section with some notes. Think about each of them
and convince yourself that they are correct.
• Linear functions are the only ones that are both concave and

convex.
• A sum of concave functions is concave, and a sum of convex

functions if convex.
• But the corresponding statements for (strictly) quasiconcave or

quasiconvex functions don’t hold in general.
• If f : D → R is strictly concave, it can’t be convex or strictly

convex.
• However, a strictly concave function might be strictly quasicon-

cave or quasiconcave.
• A function that has a level curve which includes a section (that is,

if the function is flat on some section) cannot be strictly quasicon-
cave or strictly quasiconvex.



II

Linear Algebra





8 Vectors

To begin with, we introduce the basic definitions and algebra
of vectors.

Definition 8.1 A vector is a quantity that is determined by its
magnitude and direction.
A scalar is a quantity that is determined by its magnitude only.

A vector can be represented geometrically by a directed line seg-
ment, whose length represents the magnitude of the vector, and
the direction is the same as direction of the vector. The direction is
indicated by an arrow. A line segment from A to B is often written−→
AB. This definition specifies only the direction and magnitude of
the vector, but not its position in space.
Vectors are often represented by a single bold lower case letter such
as u or v, but when handwritten we often underline, for example u
or v.
We will usually consider vectors in two- or three-dimensional space,
but it is possible to generalise all of the following to four- or higher-
dimensional space too. And although we will be working exclu-
sively with vectors whose components are real numbers, all of the
following works just as well (and in most cases almost identically)
if we replace the real numbers R with the rational numbers Q or
the complex numbers C.
We can represent vectors in various ways: either geometrically as
directed line segments, or as ordered sequences of real numbers.
With the latter approach, we may write a given vector as a column
vector: [

1
2

]
,

[
−1
7

]
,

1
0
4

 ,

as a row vector:[
1 2

]
,

[
−1 7

]
,

[
1 0 4

]
,

or in coordinate form, as ordered pairs, triples or n–tuples:

(1, 2), (−1, 7), (1, 0, 4).

Definition 8.2 We denote by R2 the real two-dimensional Eu-
clidean vector space consisting of two-component column vectors
(or, equivalently, two-component row vectors, or ordered pairs of
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real numbers).

R2 =
{
[ x

y ] : x, y ∈ R
}

=
{[

x y
]

: x, y ∈ R
}

= {(x, y) : x, y ∈ R}

Geometrically, this is the infinite Euclidean plane.

Definition 8.3 We denote by R3 the real three-dimensional Eu-
clidean vector space consisting of three-component column vectors
(or, equivalently, three-component row vectors, or ordered triples
of real numbers).

R3 =
{[ x

y
z

]
: x, y, z ∈ R

}
=

{[
x y z

]
: x, y, z ∈ R

}
= {(x, y, z) : x, y, z ∈ R}

Geometrically, this is ordinary three-dimensional Euclidean space.

Definition 8.4 The position vector u = (x, y) is the vector in R2

which starts at the origin and ends at the point with coordinates
(x, y).
Similarly, in R3, the position vector u = (x, y, z) is the vector which
starts at the origin and ends at the point with coordinates (x, y, z).

In any vector space, there is a special vector corresponding to the
origin.

Definition 8.5 The zero vector is any vector whose magnitude is
zero, and whose direction is arbitrary. It is denoted 0 (or, when
handwritten, 0). In column and coordinate form this is written

0 =
[

0
0
]
= (0, 0)

in R2 and
0 =

[ 0
0
0

]
= (0, 0, 0)

in R3. The zero vector is the position vector of the origin.

Vector addition

Given two vectors in R2 or R3, we can add them together to obtain
another vector of the same type.
With a bit of thought, it makes sense to add two vectors that are in
the same direction, for example, u + 2u = 3u. But what if the two
vectors are in different directions?
In that case, the sum u + v is obtained as follows.
(i) Starting at the origin, draw u.
(ii) Starting from the tip of the arrow representing u, draw v.
(iii) Then the sum is the vector from the origin to the finishing

point of v.
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This is depicted in Figure 8.1

x

y

u

v
u+v

Figure 8.1: Vector addition

For vectors represented in column, row or coordinate form, we use
componentwise addition. In R2 this is as follows:

[ a
b ] + [ c

d ] =
[ a+c

b+d
][

a b
]
+

[
c d

]
=

[
(a+c) (b+d)

]
(a, b) + (c, d) = (a+b, c+d)

And in R3 it works like this:[ a
b
c

]
+

[
d
e
f

]
=

[
a+d
b+e
c+ f

]
[
a b c

]
+

[
d e f

]
=

[
(a+c) (b+d) (c+ f )

]
(a, b, c) + (d, e, f ) = (a+d, b+e, c+ f )

Vector addition is only defined for two vectors of the same dimen-
sion: it doesn’t make sense, for example, to add a two-dimensional
vector to a three-dimensional vector.

Scalar multiplication

Given a vector v in R2 or R3, and a scalar k in R, we can form
the vector kv. This is the vector whose magnitude is |k| times the
magnitude of v, and which points either in the same direction as v
if k > 0, in the opposite direction if k < 0, or is the zero vector 0 if
k = 0.
For vectors represented in column, row or coordinate form, we
multiply each component by the given scalar:

k [ a
b ] =

[
ka
kb

]
k
[ a

b
c

]
=

[ ka
kb
kc

]
k
[
a b

]
=

[
ka kb

]
k
[
a b c

]
=

[
ka kb kc

]
k(a, b) = (ka, kb) k(a, b, c) = (ka, kb, kc)

The negative of a vector v is the vector of the same magnitude but
the opposite sense to v. It is denoted −v.

Norm and inner product

The length or norm of a vector u is denoted by ∥u∥. In particular,
(i) ∥u∥ ⩾ 0 for any vector v,
(ii) ∥u∥ = 0 if and only if u = 0, and
(iii) ∥ku∥ = |k|∥u∥.
Two vectors a and b are equal if they have the same magnitudes
(∥a∥ = ∥b∥) and they are in the same direction. We write a = b.

Definition 8.6 A unit vector is a vector of norm 1.

Given any non-zero vector u we can create a unit vector, written û,
which is in the same direction as u but is of unit length, by dividing
u by its norm (or, more precisely, multiplying u by 1/∥u∥):

û := u/∥u∥
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This process is called normalising or normalisation. We will meet
it later when we study diagonalisation of quadratic forms.
In R2 and R3 we use Pythagoras’ Theorem to calculate the norm:

∥(x, y)∥ =
√

x2 + y2 ∥(x, y, z)∥ =
√

x2 + y2 + z2

An additional property of the norm is the triangle inequality:

Proposition 8.7 (The triangle inequality) Let u and v be two vectors
in V = R2 or R3. Then

∥u + v∥ ⩽ ∥u∥+ ∥v∥.

Given two vectors u and v in either R2 or R3, we can define their
dot product, scalar product or inner product. This is a well-defined
way of combining two vectors of the same dimension to get a
single scalar, and is denoted either by u · v or ⟨u, v⟩ (or, in the Dirac
notation used in quantum physics, ⟨u|v⟩). It is calculated as follows:

⟨(a, b), (c, d)⟩ = (a, b) · (c, d) = ac + bd,
⟨(a, b, c), (d, e, f )⟩ = (a, b, c) · (d, e, f ) = ad + be + c f

If u, v, w ∈ V, where V is either R2 or R3, and k ∈ R is any real
scalar, then:
(i) ⟨u, v⟩ = ⟨v, u⟩,
(ii) ⟨u+v, w⟩ = ⟨u, w⟩+ ⟨v, w⟩,
(iii) ⟨ku, v⟩ = k⟨u, v⟩ = ⟨u, kv⟩, and
(iv) ⟨u, u⟩ ⩾ 0 with ⟨u, u⟩ = 0 only when u = 0.
There is a strong connection between the norm and the scalar
product: for any vector v in R2 or R3, we have

∥v∥ =
√
⟨v, v⟩.

(Check this using coordinate form.)
There is another, more geometric way of calculating the scalar
product of two vectors in R2 or R3. Given u and v, let u = ∥u∥ and
v = ∥v∥, and let θ be the angle between u and v. Then

⟨u, v⟩ = uv cos θ.

Combining these two, for any two nonzero vectors u and v we have
⟨u, v⟩ = 0 exactly when uv cos θ = 0, which can only happen when
cos θ = 0, which is true only when θ = π

2 or 3π
2 . Geometrically, this

means that the scalar product of two nonzero vectors is only zero
when those vectors are perpendicular (at right angles) to each other.

Definition 8.8 Two vectors u and v are orthogonal if ⟨u, v⟩ = 0.
A set of vectors {v1, . . . , vn} is an orthogonal set if the vectors are
pairwise orthogonal; that is, if ⟨vi, vj⟩ = 0 for 1 ⩽ i ̸= j ⩽ n.
An orthogonal set is orthonormal if, additionally, each vector has
unit norm: ∥vi∥ = 1 for 1 ⩽ i ⩽ n.
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Standard unit vectors

Geometrically, the vector
[

2
3
]

in R2 is the position vector of the point
we get to by starting at the origin, moving 2 units along the x–axis,
and then moving 3 units parallel to the y–axis. (Or, equivalently,
moving 3 units along the y–axis and then moving 2 units parallel to
the x–axis.)
We can make this more precise by introducing the standard unit
vectors or standard coordinate vectors. These are the unit vectors
which point in the positive direction along each of the coordinate
axes in R2 and R3.
In R2 we let

i = (1, 0) =
[

1
0
]

, j = (0, 1) =
[

0
1

]
.

In R3 we let

i = (1, 0, 0) =
[ 1

0
0

]
, j = (0, 1, 0) =

[ 0
1
0

]
, k = (0, 0, 1) =

[ 0
0
1

]
.

So, any vector (x, y) in R2 can be written uniquely in the form
xi + yj, and any vector (x, y, z) in R3 can be written uniquely as
xi + yj + zk.
Each of these standard coordinate vectors is a unit vector, and they
are all orthogonal to each other. The sets {i, j} and {i, j, k} are thus
orthonormal sets.
We will return to these later when we study coordinate systems.

Vector algebra in R2 and R3

To summarise, in R2 we have the facts listed in Table 8.1.

Zero vector 0 = (0, 0)
Addition (u1, u2) + (v1, v2) = (u1+v1, u2+v2)

Negative −(u1, u2) = (−u1,−u2)

Scalar multiplication k(u1, u2) = (ku1, ku2)

Norm ∥(u1, u2)∥ =
√

u2
1 + u2

2
Table 8.1: Vector algebra in R2

And in R3 we have the facts listed in Table 8.2.

Zero vector 0 = (0, 0, 0)
Addition (u1, u2, u3) + (v1, v2, v3) = (u1+v1, u2+v2, u3+v3)

Negative −(u1, u2, u3) = (−u1,−u2,−u3)

Scalar multiplication k(u1, u2, u3) = (ku1, ku2, ku3)

Norm ∥(u1, u2, u3)∥ =
√

u2
1 + u2

2 + u2
3

Table 8.2: Vector algebra in R3

If we denote either R2 or R3 by V, and if u, v, w are vectors in
V, and k and l are real scalars, then all of the properties listed in
Table 8.3 are satisfied. It is very easy to check all these results using
the component form of the vectors and the properties of the real
numbers.
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(i) u + v ∈ V (Closure under addition)
(ii) u + v = v + u (Commutative law of addition)
(iii) u + (v + w) = (u + v) + w (Associative law of addition)
(iv) 0 + u = u + 0 = u (Existence of a zero vector: ‘additive identity’)
(v) u + (−u) = 0 (Existence of a negative vector: ‘additive inverse’)
(vi) ku ∈ V (Closure under scalar multiplication)
(vii) k(u + v) = ku + kv (First distributive law)
(viii) (k + l)u = ku + lu (Second distributive law)
(ix) k(lu) = (kl)u (Associative law for scalar multiplication)
(x) 1u = u (Existence of identity for scalar multiplication)

Table 8.3: General properties of vectors
in R2, R3 and Rn • Properties (i) and (vi) say that R2 and R3 are closed under vec-

tor addition and scalar multiplication: the result of adding two
vectors together is another vector, and the result of multiplying a
vector by a scalar is another vector.

• The commutative law for vector addition (ii) says that it doesn’t
matter what order we add two vectors together, the result is the
same either way.

• The associative law (iii) says, effectively, that we can ignore
brackets when adding together three or more vectors.

• Property (iv) asserts the existence of the zero vector: the unique
vector in R2 or R3 which doesn’t change any other vector we add
it to (algebraists call this an additive identity).

• Property (v) says that for any vector v there is a corresponding
negative vector −v of the same length but pointing in the opposite
direction: if we add v and −v we get the zero vector.

• Properties (vii) and (viii), the distributive laws describe how the
vector addition and scalar multiplication operations interact with
each other.

• Property (ix) says that multiplying a vector v by a scalar l and then
by another scalar k is the same as multiplying k and l together
and multiplying v by the result.

• And property (x) says that multiplying a vector v by the scalar
k = 1 leaves v unchanged (algebraists call this a multiplicative
identity).

Higher dimensional vector spaces Rn

We can generalise all we’ve seen so far with R2 and R3 to higher
dimensional spaces. It’s not obvious how we’d geometrically vi-
sualise such spaces, but the maths works out fine anyway, and
higher-dimensional spaces are often very useful for representing
and understanding solutions to real problems.

Definition 8.9 Let Rn be the set of ordered n–tuples of real num-
bers (or, equivalently, n–component column or row vectors):

Rn = {(x1, . . . , xn) : x1, . . . , xn ∈ R} =

{[ x1
...

xn

]
: x1, . . . , xn ∈ R

}
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Define vector addition and scalar multiplication as follows:[ x1
...

xn

]
+

[ y1
...

yn

]
=

[
x1+y1

...
xn+yn

]
and k

[ x1
...

xn

]
=

[
kx1
...

kxn

]
.

This is the n–dimensional real Euclidean vector space.

The obvious analogues of the ten properties in Table 8.3 also hold
in Rn.





9 Matrices

In this chapter, we introduce the basic definitions and algebra
of matrices.

Definition 9.1 An m×n (real) matrix is a rectangular array of the
form

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn


with m rows and n columns.

Matrix operations

Two m×n matrices may be added together by adding their corre-
sponding entries:

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

+


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
...

bm1 bm2 . . . bmn

 =


a11+b11 a12+b12 . . . a1n+b1n
a21+b21 a22+b22 . . . a2n+b2n

...
...

...
am1+bm1 am2+bm2 . . . amn+bmn


We may also define the difference A − B in the obvious way. Matrix
addition is commutative: A + B = B + A for arbitrary matrices A
and B (as long as the sum is defined).
An m×n matrix A may be multiplied by an element k of R (a scalar)
by multiplying each entry of A by k:

kA = k


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

 =


ka11 ka12 . . . ka1n
ka21 ka22 . . . ka2n

...
...

...
kam1 kam2 . . . kamn


An m×k matrix A may be multiplied by a k×n matrix B to give an
m×n matrix C = AB by setting

cij =
k

∑
t=1

aitbtj

That is, the entry cij is given by multiplying the corresponding
elements of the ith row of A and the jth row of B, and then adding
the results together. Matrix multiplication is not, in general, commu-
tative: it is not always the case that AB = BA for arbitrary matrices
A and B; indeed, one or both of these products may not even be
defined.
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Transposition

Given an m×n matrix A, we form the transpose AT by interchang-
ing rows and columns:

AT =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn


T

=


a11 a21 . . . am1
a12 a22 . . . am2
...

...
...

a1n a2n . . . amn


In general, where the relevant addition and multiplication opera-
tions are defined, (A + B)T = AT + BT and (AB)T = BT AT.
A square n×n matrix is symmetric if it is equal to its transpose; that
is, A = AT.

Triangular and diagonal matrices

The n×n identity matrix

In =


1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1


has the property that for any m×n matrix A, and any n×m matrix
B, AIn = A and InB = B.
An n×n matrix is upper triangular if it is of the form

A =


a11 a21 . . . an1
0 a22 . . . an2
...

... . . . ...
0 0 . . . ann


That is, all the entries below the leading (top-left to bottom-right)
diagonal are zero. Similarly, an n×n matrix is lower triangular if
all of the entries above the leading diagonal are zero:

B =


a11 0 . . . 0
a12 a22 . . . 0
...

... . . . ...
a1n a2n . . . ann


An n×n matrix is diagonal if every off-diagonal entry is zero:

D =


a11 0 . . . 0
0 a22 . . . 0
...

... . . . ...
0 0 . . . ann



Matrices acting on vectors

We may also regard vectors in R2 or R3 as 1×2 or 1×3 matrices over
R. In this case, matrix addition reduces to ordinary coordinate-wise



matrices 57

vector addition. Matrix multiplication, however, has the effect of
transforming a vector into another of the same type. For example: 1 2 0

0 −2 5
−2 −1 0

 1
0
−1

 =

 1
−5
−2


Some standard matrix transformations in R2 can be seen in Table 9.1.

Table 9.1: Some standard matrix trans-
formations in R2

Transformation f (x, y) Matrix

identity map (x, y)
[

1 0
0 1

]
rotation through angle θ (x cos θ − y sin θ, x sin θ + y cos θ)

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
reflection about y axis (−x, y)

[ −1 0
0 1

]
reflection about x axis (x,−y)

[ 1 0
0 −1

]
reflection about y = x (y, x)

[
0 1
1 0

]
reflection in y = (tan α)x (x cos(2α)+y sin(2α), x sin(2α)−y cos(2α))

[
cos(2α) sin(2α)
sin(2α) − cos(2α)

]
scaling, factor k (kx, ky)

[ k 0
0 k

]
scalings, factors k1, k2 (k1x, k2y)

[ k1 0
0 k2

]
Specifically, a 2×2 matrix maps a vector in R2 to another vector in
R2, and a 3×3 matrix maps a vector in R3 to another vector in R3.
In addition, a 2×3 matrix maps a vector in R3 to a vector in R2,
while a 3×2 matrix maps a vector in R3 to a vector in R2, and so
forth. Now [a b

c d

][1
0

]
=

[a
c

]
and

[a b
c d

][0
1

]
=

[b
d

]
so i = (1, 0) is mapped to the first column of A, and j = (0, 1) is
mapped to the second column of the matrix.
Conversely, if f (x) = Ax and we know that

f
[1
0

]
=

[a
c

]
and f

[0
1

]
=

[b
d

]
,

then we can construct the appropriate matrix

A =
[a b

c d

]
.

Notice that for any matrix A =
[

a b
c d

]
and vectors v1 =

[ x1
y1

]
and

v2 =
[ x2

y2

]
we have

A(v1 + v2) =

[
a b
c d

][
x1 + x2
y1 + y2

]
=

[
ax1 + ax2 + by1 + by2
cx1 + cx2 + dy1 + dy2

]
=

[
ax1 + by1
cx1 + dy1

]
+

[
ax2 + by2
cx2 + dy2

]
=

[
a b
c d

][
x1 + x2
y1 + y2

]
+

[
a b
c d

][
x2 + x2
y2 + y2

]
= Av1 + Av2
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and

A(kv1) =

[
a b
c d

][
kx1
ky1

]
=

[
kax1 + kbx1
kcy1 + kdy1

]
= k

[
ax1 + bx1
cy1 + dy1

]
= kAv1.

In other words, matrix multiplication behaves nicely with respect to
sums and scalar multiples of vectors. In the rest of these notes, we
will be particularly concerned with transformations which satisfy
these nice properties.

Definition 9.2 A function f : R2 −→ R2 is said to be a linear
transformation if it satisfies the criteria

f (u + v) = f (x1 + y1, x2 + y2)

= f (x1, x2) + f (y1, y2)

= f (u) + f (v)

and
f (ku) = f (kx1, kx2) = k f (x1, x2) = k f (u)

for any k ∈ R and u = (x1, x2) and v = (y1, y2) ∈ R2.

We can extend this definition to Rn too:
Definition 9.3 A function f : Rn −→ Rn is said to be a linear
transformation if it satisfies the criteria

f (u + v) = f (x1 + y1, . . . , xn + yn)

= f (x1, . . . , xn) + f (y1, . . . , yn)

= f (u) + f (v)

and
f (ku = f (kx1, . . . , kxn) = k f (x1, . . . , xn) = k f (u)

for any k ∈ R and u = (x1, . . . , xn) and v = (y1, . . . , yn) ∈ Rn.

What the observation at the beginning of this section means is
that any function which is representable by a 2×2 (or n×n) ma-
trix acting on vectors in R2 (or Rn) is one of these special “linear
transformations”. This includes reflections, rotations and scaling
transformations, but not translations. A translation by a fixed vector
v =

[ a
b
]

yields a function f (x, y) = (x + a, y + b), but this doesn’t
satisfy either of the linearity criteria:

f (x1 + x2, y1 + y2) = (x1 + x2 + a, y1 + y2 + b)
̸= (x1 + a, y1 + b) + (x2 + a, y2 + b)
= f (x1, y1) + f (x2, y2)

f (kx1, ky1) = (kx1 + a, ky1 + b) ̸= k(x1 + a, y1 + b) = k f (x1, y1)

Actually, it follows almost immediately from the definition that a
linear transformation must leave the origin (0, 0) or (0, 0, 0) fixed.
Rotations, reflections (in lines or planes passing through the origin)
or scaling transformations all do this, but translations don’t.
In general, a given linear transformation f : R2 −→ R2 will be of
the form

f (x, y) = (ax + by, cx + dy)

for any (x, y) ∈ R2 and some fixed a, b, c, d ∈ R.
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So, any matrix yields a linear transformation, and any linear trans-
formation can be represented by a matrix. The connection between
matrices and linear transformations is not, however, a straightfor-
ward bijection: for any linear transformation acting on, say, the
plane R2, there are many matrices (actually, uncountably infinitely
many of them) which represent that transformation. We will study
this conundrum further in the next section, on coordinate systems.

Example 9.4 None of the following transformations are linear.

f (x) = x2 f : R → R

f (x, y) = x2 + y2 f : R2 → R

f (x, y, z) = x2 + y2 + z2 f : R3 → R

f (x1, x2, . . . xn) = x2
1 + x2

2 + · · ·+ x2
n f : Rn → R

Determinants and traces

Definition 9.5 Let A = [aij] be an n×n matrix. The determinant
det A or |A| of A is defined recursively as

|A| =
n

∑
k=1

a1kC1k =
n

∑
k=1

a2kC2k = · · · =
n

∑
k=1

ankCnk

=
n

∑
k=1

ak1Ck1 =
n

∑
k=1

ak2Ck2 = · · · =
n

∑
k=1

aknCkn

where Cij denotes the (i, j) cofactor of A; this is defined to be
(−1)i+j|Mij|, where Mij is the matrix obtained by deleting the ith
row and jth column from A. The determinant of a 1×1 matrix [x]
is simply x.

Applying this definition to a 2×2 matrix
[

a b
c d

]
yields the usual

expression ad − bc; higher-order matrices have more complicated
forms. In general,

f
[

x
y

]
= A

[
x
y

]
=

[
ax + by
cx + dy

]
,

so the point (x, y) is mapped to the point (ax + by, cx + dy).
In particular, (1, 1) is mapped to (a + b, c + d), so that the unit
square is mapped to a parallelogram with vertices at (0, 0), (a, c),
(a + b, c + d), (b, d). This is shown in Figure 9.1

0=(0, 0) x

y

b a

c

d

(a, c)

(b, d)
(a+b, c+d)

Figure 9.1: Image of the unit square un-
der the matrix transformation

[
a b
c d

]
More generally, this means that the whole Cartesian coordinate
system with perpendicular axes 0xy is transformed to a new grid
system with axes which are generally not at right angles, and
each unit square of the grid (of area 1 unit) is transformed into
a parallelogram. We will study this concept further in the next
chapter.
It may be shown, however, that the area of the parallelogram in the
above diagram is equal to the absolute value of the determinant of
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the matrix A =
[

a b
c d

]
. That is,

Area = |ad − bc| = |det A|.

The sign of |A| tells us the orientation of the parallelogram relative
to the original unit square: a negative determinant indicates that the
orientation has been reversed (broadly speaking, the parallelogram
has been “flipped over” in some sense) while a positive determinant
indicates that the orientation is unchanged.

Consider the matrix Rθ =
[ cos θ − sin θ

sin θ cos θ

]
, which represents a rotation

of angle θ around the origin. Then

|Rθ| = cos2 θ + sin2 θ = 1

which indicates that rotations leave area and orientation unchanged,
as expected.
Now consider the matrix Qα =

[
cos 2α sin 2α
sin 2α cos 2α

]
, which represents a

reflection in the line y = x tan α. Then

|Qα| = − cos2 2α − sin2 2α = −1

which confirms that reflections leave area unchanged but reverse
orientation.
The matrix D =

[ k1 0
0 k2

]
represents a scaling by factor of k1 in the

horizontal direction, and a factor k2 in the vertical direction. Then

|D| = k1k2,

which tells us that the area is scaled by a factor of k1k2. The change
of orientation depends on the signs of the factors k1 and k2: if both
are positive or both negative, then the orientation is preserved, but
if one is negative then the orientation is reversed.

Definition 9.6 Let A=[aij] be an n×n matrix. The trace tr A of A
is the sum of the diagonal elements of A:

tr A =
n

∑
i=1

aii = a11 + a22 + · · ·+ ann.

The trace has the following properties:

tr(A + B) = tr(A) + tr(B), tr(kA) = k tr(A),

tr(AB) = tr(BA), tr(A) = tr(AT).

Inverse matrices

Definition 9.7 Let A = [aij] be a square n×n matrix, and let Cij
denote the (i, j) cofactor (as introduced in Definition 9.5). Then the
matrix

adj A =


C11 C21 . . . Cn1
C12 C22 . . . Cn2

...
...

...
C1n C2n . . . Cnn

 ,
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that is, the transpose of the matrix of cofactors of A, is called the
adjoint of A.

If the matrix A has nonzero determinant, we may construct its
inverse to be

A−1 = 1
|A| adj A.

This, as one might expect, has the property that

A−1A = AA−1 = In.

If A has zero determinant, then it doesn’t have an inverse. Such
matrices are said to be singular or noninvertible, while matrices
with nonzero determinants are nonsingular or invertible.
The inverse matrix A−1 effectively reverses the action of A, in the
sense that if v = Au then u = A−1v.

Orthogonal matrices

Definition 9.8 An n×n square matrix A is orthogonal if AT A =
AAT = In or, equivalently, if AT = A−1.





10 Coordinate systems

In this section, we will investigate linear coordinate systems in
R2 and R3, and learn how to transform between them.

Linear combinations

We can add two vectors in R2, R3 or Rn, and multiply a vector by a
(real) scalar. Generalising this, we obtain the following:

Definition 10.1 Given a set of m vectors

{v1, v2, . . . , vm}

where each vector vi ∈ Rn, then a linear combination of them is
any vector of the form

α1v1 + α2v2 + · · ·+ αmvm

where each scalar constant αi ∈ R.

Example 10.2 If v1 and v2 are vectors in Rn, then

2v1 + 3v2, v1 − v2, 1
2 v1, v2, πv1 +

√
2v2

are all linear combinations of the set {v1, v2}.

Note that 1
2 v1 = 1

2 v1 + 0v2 and v2 = 0v1 + 1v2.

Example 10.3
[

0
27
]

is a linear combination of
[

2
1
]

and
[ −1

4

]
since[

0
27
]
= 3

[
2
1
]
+ 6

[ −1
4

]
.

Definition 10.4 Given a set S = {v1, v2, . . . , vm} of vectors, we
define the span of S to be the set of all possible linear combinations
of vectors from S:

span S = {α1v1 + · · ·+ αmvm : α1, . . . , αm ∈ R}

Example 10.5 Let S =
{[

2
1
]
,
[ −1

4

]}
. Then

span S =
{

α1
[

2
1
]
+ α2

[ −1
4

]
: α1, α2 ∈ R

}
= R2.

However,
span

{[
2
1
]}

=
{

α1
[

2
1
]

: α1 ∈ R
}

,

which is the line y = 1
2 x in R2.
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Linear independence

Example 10.3 says that we can form the vector
[

0
27
]

as a specific
(unique, as it happens) linear combination of

[
2
1
]

and
[ −1

4

]
. In other

words, we can get to the point (0, 27) in the plane with just those
two vectors. So, the vector

[
0

27
]

is in some sense redundant.
Equivalently, there exist nonzero constants α1, α2 and α3 such that

α1
[

0
27
]
+ α2

[
2
1
]
+ α3

[ −1
4

]
=

[
0
0
]

;

the triple (α1, α2, α3) = (−1, 3, 6) satisfies this condition as, for that
matter, does (kα1, kα2, kα3) for any nonzero scalar k ∈ R. Also,
trivially, does the triple (0, 0, 0).
Now consider the vectors

v1 =
[ 2

1
0

]
, v2 =

[
1
2
0

]
, v3 =

[ −1
0
3

]
in R3. Apart from the trivial case (α1, α2, α3) = (0, 0, 0), there exists
no triple of real scalar constants satisfying the equation

α1v1 + α2v2 + α3v3 = α1

[ 2
1
0

]
+ α2

[
1
2
0

]
+ α3

[ −1
0
3

]
=

[ 0
0
0

]
= 0.

Equivalently, we can’t get to the point (−1, 0, 3) just by using lin-
ear combinations of the vectors v1 and v2, so the vector v3 isn’t
redundant in the same sense. More generally:

Definition 10.6 A set S = {v1, v2, . . . , vm} of vectors in Rn is
linearly dependent if there exist scalar constants α1, . . . , αm, not all
of which are zero such that

α1v1 + · · ·+ αmvm = 0. (10.1)

If no such nontrivial m–tuple of scalar constants exists then the
vectors in S are said to be linearly independent. That is, if the only
values of α1, . . . , αm which satisfy (10.1) are α1 = · · · = αm = 0.

Example 10.7 The vectors
[

0
27
]
,
[

2
1
]

and
[ −1

4

]
in R3 are linearly

dependent, because (as noted a few paragraphs ago) the triple
(α1, α2, α3) = (−1, 3, 6) satisfies equation (10.1).

Example 10.8 Suppose v1 =
[

1
2
]

and v2 =
[

2
3
]
. Set up equation

(10.1):
av1 + bv2 = a

[
1
2
]
+ b

[
2
3
]
=

[
0
0
]
= 0.

this means that [ a+2b
2a+3b

]
=

[
0
0
]

and hence we obtain two linear simultaneous equations in the
variables a and b:

a + 2b = 0
2a + 3b = 0

}
=⇒ a = b = 0

and hence (since this is the only solution of those simultaneous
equations) the vectors are linearly independent.
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Example 10.9 Consider the set{[ 3
1
2

]
,
[ 1
−1
1

]
,
[ 1

3
0

]}
.

Set up equation (10.1):

α
[ 3

1
2

]
+ β

[ 1
−1
1

]
+ γ

[ 1
3
0

]
=

[ 0
0
0

]
.

Then

3α + β + γ = 0
α − β + 3γ = 0

2α + β = 0

We can solve this system of equations using any of the usual
methods, and find that this is the ‘infinite number of solutions’
case. Parametrically, the solution is α = t, β = −2t, γ = −t.
The system has one parameter (or one degree of freedom). We just
need one nonzero choice of t, so we’ll choose t = 1 (that is, we
only need the ratios α : β : γ), so α = 1, β = −2, and γ = −1. The
point is that we’ve found values for the constants which are not all
zero, so the vectors are linearly dependent.

Note We can often ‘spot’ values for the constants which make
(10.1) true, which saves us from having to solve the linear equations
formally.
We now formally state a remark from earlier:

Proposition 10.10 A set {v1, v2, . . . vm} of vectors in Rn is linearly
dependent if and only if any one of the vectors may be written as a linear
combination of the others.

Basis vectors

In Definition 10.4 we introduced the concept of the span of a set of
vectors in Rn. Note (see Example 10.5) that in some cases the span
is the entirety of Rn, and in other cases we only get a subset of Rn.

Definition 10.11 A set S = {v1, . . . , vm} of vectors in Rn is said
to span or generate Rn if every vector in Rn can be expressed as a
linear combination of the vectors in S.

In other words, for any v ∈ Rn we can find scalars α1, . . . , αm ∈ R

such that
v = α1v1 + · · ·+ αmv2.

Example 10.12 The set {i, j} spans R2, since if v =

[
x
y

]
is any

vector in R2, then we can write v = xi + yj.
Similarly, the set {i, j, k} spans R3, since we can write any vector

v =
[ x

y
z

]
= xi + yj + zk.
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Example 10.13 The set
{ [

3
1

]
,
[

1
2
] }

also spans R2, but this time it
isn’t quite so evident. Suppose[

x
y

]
= α

[
3
1

]
+ β

[
1
2

]
.

We have to find α and β:

x = 3α + β,
y = α + 2β.

Solving these for α and β gives

α = 1
5(2x − y), β = 1

5(3y − x),

so that any vector [ x
y ] can be expressed in terms of the two given

vectors: [
x
y

]
= 1

5(2x − y)
[

3
1

]
+ 1

5(3y − x)
[

1
2

]
,

and, for example,
[

2
3
]
= 1

5

[
3
1

]
+ 7

5

[
1
2
]
.

Example 10.14 The vectors
{ [

0
27
]

,
[

2
1
]

,
[ −1

4

] }
span R2, but not

uniquely. As before, suppose[
x
y

]
= α

[
0

27

]
+ β

[
2
1

]
+ γ

[
−1
4

]
This yields the simultaneous equations

x = 2β − γ

y = 27α + β + 4γ

which solve to give

α = y − 1
3 β + 4

27 x, γ = 2β − x

So this gives us infinitely many solutions[
x
y

]
= ( 1

27 y + 4
27 x − 1

3 β)

[
0

27

]
+ β

[
2
1

]
+ (2β − x)

[
−1
4

]
parametrised by the single variable β. (There are other valid sets
of solutions parametrised by either α or γ.) So, for example,[

2
3

]
= (11

27 −
1
3 β)

[
0

27

]
+ β

[
2
1

]
+ (2β − 2)

[
−1
4

]
.

Setting β = 0 yields α = 11
27 and γ = −2, and hence[

2
3

]
= 11

27

[
0

27

]
− 2

[
−1
4

]
,

which is certainly valid, but setting β = 1 yields[
2
3

]
= 2

27

[
0
27

]
+

[
2
1

]
.
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In this last example, the three vectors are linearly dependent,
whereas in the previous two examples the spaces are spanned by
linearly independent vectors. Crucially, in the linearly independent
case, the solutions we obtained for the simultaneous equations were
unique, so any given vector [ x

y ] admits a unique description as a
linear combination of our chosen vectors. In the linearly dependent
case, though, that description is not unique, but instead depends
on one or more additional parameter.
It would be more useful for our purposes, certainly for defining
coordinate systems, if we could rely on uniqueness in these circum-
stances. So, we give a linearly independent spanning set a special
name:
Definition 10.15 A set {v1, . . . , vm} which spans Rn and is linearly
independent is said to be a basis for Rn.

The basis
{

i =
[

1
0
]

, j =
[

0
1

] }
is the standard basis for R2. Similarly,

the basis {
i =

[ 1
0
0

]
, j =

[ 0
1
0

]
, k =

[ 0
0
1

] }
is the standard basis for R3.
Example 10.16 The set

{ [
3
1

]
,
[

1
2
] }

is a basis for R2.

Example 10.17 Does the set
{ [

1
0
]

,
[

0
1

]
,
[ −2

3

] }
form a basis for

R2?
We need to check that it spans R2 and is linearly independent.
Spanning Solve for a, b and c:[

x
y

]
= a

[
1
0

]
+ b

[
0
1

]
+ c

[
−2
3

]
This is equivalent to solving

a − 2c = x
b + 3c = y

for a and b.
This system has non-unique solutions (this can be seen by the fact
it has more variables than equations). If we use the parameter t,
then if c = t, b = y − 3t, a = x + 2t. We can set t to be anything we
like, for example t = 1, in which case a = x + 2, b = y − 3, c = 1,
and [

x
y

]
= (x + 2)

[
1
0

]
+ (y − 3)

[
0
+

] [
−2
3

]
, (10.2)

so the set does span R2.
Linear independence This time we have to solve[

0
0

]
= a

[
1
0

]
+ b

[
0
1

]
+ c

[
−2
3

]
Thus

a − 2c = 0
b + 3c = 0

}
=⇒ a = 2t, b = −3t, c = t,
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and once again, choosing t = 1 say, we find[
0
0

]
= 2

[
1
0

]
− 3

[
0
1

]
+

[
−2
3

]
.

(To see this, just put x = 0 and y = 0 in (10.2) above.) The vectors
are linearly dependent, so although they span the space R2, they
do not form a basis.

In fact, any basis for R2 consists of two vectors, any basis for R3

consists of three vectors, and any basis for Rn will consist of exactly
n vectors.

Dimension

It so happens that any basis for R2 consists of two vectors, any basis
for R3 consists of three vectors, and more generally any basis for
Rn will always have exactly n vectors. More formally:

Proposition 10.18 Suppose U = {u1, u2, . . . , uk} is one basis for
Rn and that W = {w1, w2, . . . , wm} is another basis for Rn. Then
k = m = n.

Also:
Proposition 10.19
(i) Every subset of Rn with more than n vectors is linearly dependent.
(ii) No subset of Rn with fewer than n vectors will span Rn.

In other words, the number of vectors in a basis for a vector space
such as Rn is independent of any particular choice of basis: it’s a
fundamental property of the space itself, and happens to be equal
to the geometric dimension of the space. In a more general context
(which we won’t really go into here) we can actually define the
dimension of a given vector space in this way:

Definition 10.20 Let V be a finite dimensional vector space. The
number of vectors in any basis for V is called the dimension of V,
written dim V.



11 Linear equations

In this section we study equivalent matrices, matrices which are
related by finite sequences of certain operations, similar matrices,

matrices which are conjugate to each other by some invertible trans-
formation, and their applications to solving systems of simultaneous
linear equations.

Simultaneous equations

Consider the following system of linear equations:

2x + 3y = 1 (11.1)
5x + 7y = 3 (11.2)

One method of solving this system is to multiply (11.1) by 5 to get

10x + 15y = 5 (11.3)
5x + 7y = 3 (11.4)

and multiply (11.2) by 2 to get

10x + 15y = 5 (11.5)
10x + 14y = 6 (11.6)

and then subtract (11.5) from (11.6) to get

10x + 15y = 5 (11.7)
−y = 1 (11.8)

and finally add 15×(11.8) to (11.7) to get

10x = 20 (11.9)
−y = 1 (11.10)

from which we can read off the solutions

x = 2
y = −1

as required. In solving this system, we have used two basic opera-
tions:
(i) Multiply an equation by a nonzero real number: Li 7→ kLi.
(ii) Add a nonzero real multiple of one equation to another:

Li 7→ Li + kLj.
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Neither of these operations fundamentally alter the system of equa-
tions under investigation, in the sense that the solutions of the
resulting system are the same as the solutions of the original system.
A third operation which we didn’t use in the example above, but
which also doesn’t fundamentally change the system, is:
(iii) Swap two equations: Li ↔ Lj.
In practice, we will often combine the first two operations: Li 7→
hLi + kLj.
We can, in fact, write the original system of equations (11.1) and
(11.2) in matrix form: [

2 3
5 7

] [
x
y

]
=

[
1
3

]
(11.11)

The matrix formed from the coefficients is, reasonably, called the
coefficient matrix of the system. For a system of m linear equations
in n variables, this will be an m×n matrix. Instead, however, we can
encode the system using a related object, the augmented matrix of
the system: [

2 3 1
5 7 3

]
(11.12)

By rewriting a system of linear simultaneous equations in aug-
mented matrix form, we have slightly changed the nature of the
problem. Solving the original system required the application of
three basic operations on equations, but having encoded the system
as a matrix, we need to reformulate those three operations in the
context of the rows of the augmented matrix.
Our aim, then, is to somehow reduce the augmented matrix to a
simpler form that represents an equivalent system of equations
which is more easily solved. To see this in action, consider the
evolution of the augmented matrices corresponding to the above
system of linear equations:[

2 3 1
5 7 3

]
7−→

[
10 15 5
5 7 3

]
7−→

[
10 15 5
10 14 6

]
7−→

[
10 15 5
0 −1 1

]
7−→

[
10 0 20
0 −1 1

]
7−→

[
1 0 2
0 1 −1

]
The fourth matrix in this chain (which is equivalent to equations
(11.7) and (11.8)) is in a particularly useful form, because we can
easily read off the solution y = −1 and then substitute it into the
equation corresponding to the first line of the matrix to get the
solution x = 2. The final matrix in the chain explicitly tells us the
solutions of the original system of equations. Matrices which are
in this particularly useful form have a special name, and we study
them in generality next.

Echelon form

A matrix A is said to be in (row) echelon form if the number of
zeros preceding the first nonzero entry of a row increases row-by-
row until only zero rows remain. That is, if there exist nonzero
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entries
a1,j1 , a2,j2 , . . . , ar,jr where j1 < j2 < · · · < jr

with the property that

ai,j = 0 for i ⩽ r, j < ji, and for i > r

We call a1,j1 , . . . , ar,jr the distinguished elements or pivots of the
row echelon matrix A.
Example 11.1 The following matrices are in row echelon form,
and the distinguished elements are in bold.

2 3 2 0 4 5 −6
0 0 7 1 −3 2 0
0 0 0 0 0 6 2
0 0 0 0 0 0 0




1 2 3
0 0 4
0 0 0
0 0 0




0 1 3 0 0 4 0
0 0 0 1 0 −3 0
0 0 0 0 1 2 0
0 0 0 0 0 0 1


In particular, an echelon matrix is called a row reduced echelon
matrix or in reduced echelon form if the distinguished elements
are
(i) the only nonzero entries in their respective columns, and
(ii) each equal to 1.
The third matrix in Example 11.1 is in reduced echelon form. Note
also that the m×n zero matrix is also a row reduced echelon matrix.
Also, the fourth, fifth and sixth augmented matrices in the simulta-
neous equations example in the previous section are in row echelon
form; in fact the last one is in reduced row echelon form. For the
purposes of solving systems of linear simultaneous equations, then,
it will make things much simpler if we can reduce the correspond-
ing augmented matrix to row echelon (or preferably reduced row
echelon) form.
So, we need to formulate a set of operations on the rows of a matrix
with which we can reduce a given matrix to (reduced) row echelon
form in a way that ensures the resulting matrices all correspond to
systems of equations which are equivalent to (that is, have the same
solutions as) the original system.

Elementary operations

A matrix A is said to be row equivalent to a matrix B if B can be
obtained from A by a finite sequence of the following elementary
row operations:
E1 Interchange the ith row and the jth row: Ri ↔ Rj
E2 Multiply the ith row by a nonzero scalar k: Ri 7→ kRi
E3 Replace the ith row by k times the jth row plus the ith row:

Ri 7→ kRj + Ri

In practice, we often apply E2 and then E3 in one step:
E Replace the ith row by h times the jth row plus (nonzero) k times

the ith row: Ri 7→ hRj + kRi

These operations are exactly the ones we want: they correspond to
the allowed operations on systems of simultaneous linear equations.
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Proposition 11.2 Suppose A is the augmented matrix of a system L of
simultaneous linear equations. If B can be obtained from A by a finite
sequence of elementary operations of types E1, E2 and E3, then the system
K of simultaneous linear equations corresponding to B has the same
solutions as L.

Algorithm 11.3 (Reducing a matrix to row echelon form)
Step 1 Suppose the j1 column is the first column with a nonzero

entry. Interchange the rows so that this nonzero entry appears
in the first row, that is, so that a1,j1 ̸= 0.

Step 2 For each i > 1 apply the operation

Ri 7→ −ai,j1 R1 + a1,j1 Ri

Repeat both these steps with the submatrix formed by all the rows
excluding the first, until the matrix is in row echelon form.

Example 11.4 The following matrix A is reduced to echelon form
by applying the operations R2 7→ −2R1 + R2 and R3 7→ −3R1 + R3
and then the operation R3 7→ −5R2 + 4R3:

A =

1 2 −3 0
2 4 −2 2
3 6 −4 3

 7−→

1 2 −3 0
0 0 4 2
3 6 −4 3

 7−→

1 2 −3 0
0 0 4 2
0 0 0 2


Applying the operations R1 7→ R1 +

3
4 R2 and then R2 7→ R2 − R3,

and then the operations R2 7→ 1
4 R2 and R3 7→ 1

2 R3 converts A to
reduced echelon form:1 2 −3 0

0 0 4 2
0 0 0 2

 7−→

1 2 0 0
0 0 4 2
0 0 0 2

 7−→

1 2 0 0
0 0 4 0
0 0 0 2


7−→

1 2 0 0
0 0 1 0
0 0 0 2

 7−→

1 2 0 0
0 0 1 0
0 0 0 1


Proposition 11.2 ensures that elementary row operations don’t affect
the fundamental nature (that is, the solution set) of the system of
linear equations represented by a matrix. The next proposition
explores how these operations affect the determinant of a matrix.

Proposition 11.5 Suppose A and B are square n×n matrices. Then:
(i) If A and B differ by an elementary row operation of type E1 : Ri ↔

Rj, then det B = −det A.
(ii) If A and B differ by an elementary row operation of type E2 : Ri 7→

kRi, then det B = k det A.
(iii) If A and B differ by an elementary row operation of type E3, then

det B = det A.

In addition to the elementary row operations E1, E2 and E3, we can
also define the corresponding elementary column operations:
F1 Interchange the ith column and the jth column: Ci ↔ Cj
F2 Multiply the ith column by a nonzero scalar k: Ci 7→ kCi
F3 Replace the ith column by k times the jth column plus the ith
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column: Ci 7→ kCj + Ci

In practice, we often apply F2 and then F3 in one step:
F Replace the ith column by h times the jth column plus (nonzero)

k times the ith column: Ci 7→ hCj + kCi

Unlike elementary row operations, elementary column operations
are not useful for solving systems of simultaneous linear equations:
if A and B are augmented matrices of systems of simultaneous
linear equations, such that B may be obtained from A by a finite
sequence of elementary column operations, it is not in general the
case that the two systems will have identical solutions.
Elementary column operations do, however, have similar effects on
determinants of square matrices as elementary row operations:

Proposition 11.6 Suppose A and B are square n×n matrices.
If A and B differ by an elementary column operation of type F1 : Ci ↔ Cj,
then det B = −det A.
If A and B differ by an elementary column operation of type F2 : Ci 7→
kCi, then det B = k det A.
If A and B differ by an elementary column operation of type F3, then
det B = det A.

Definition 11.7 Two n×n square matrices A and B are said to be
similar if there exists an invertible n×n square matrix P such that

A = P−1BP.

We will study a particular class of similar matrices in Section 12,
specifically those which are similar to a diagonal matrix. Note that
similar matrices are not the same as row- or column-equivalent
matrices.

Rank

In general, a system of simultaneous linear equations may fall into
one of three categories, depending on the nature of its solutions (if
any):
No solutions In this case, two or more of the individual equations

are mutually inconsistent. For example, the system

x + y + z = 1
2x + y + z = 3
3x + y + z = 2

has no consistent solutions. That is, there are no real values for
the variables x, y and z which satisfy all three equations at the
same time. Geometrically, we can interpret a linear equation in
three variables as representing a plane in R3; in this case the
planes do not all intersect at the same point.

One solution This is the case where there exists a single, unique
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solution to the system. For example, the system

x + y + z = 3
2x + y − z = 2

−x + 3y + 2z = 4

has a single solution given by x = y = z. Geometrically, this cor-
responds to three planes intersecting at the single point (1, 1, 1) ∈
R3.

Infinitely many solutions The third case is that there may be in-
finitely many solutions. For example, solving the system

x + y + z = 1
2x + y + z = 1
3x + y + z = 1

we find that any solution of the form x = 0, y = 1 − z suffices.
Geometrically, this corresponds to the case of three planes inter-
secting in more than a single point; in this specific example the
planes intersect along the line {(x, y, z) : x = 0, y + z = 1}.

We can use the augmented matrix viewpoint to work out which
category a given system of simultaneous linear equations falls into.
The way we do this is by reducing the augmented matrix to reduced
row echelon form and then counting the number of nonzero rows.

Definition 11.8 The rank of a matrix A is the number of nonzero
rows when A is in row echelon form.

If this number is equal to the number of variables, then we have a
single unique solution. If we have a row of the form [0 . . . 0 | k]
(where k ̸= 0) then the system has no consistent solutions. If one or
more nonzero rows have more than one nonzero number to the left
of the vertical divider (such as [0 . . . 0 2 1 | 3]), then the system has
an infinite number of solutions.
Equivalently, if rank A ̸= rank A′ then the system has no consistent
solutions, if rank A = rank A′ is equal to the number of variables,
then the system has a single consistent solution, and if rank A =
rank A′ is less than the number of variables, then the system has
infinitely many solutions.

Example 11.9 The following matrix is in row echelon form and
has rank 2. 

1 2 3
0 0 4
0 0 0
0 0 0


Example 11.10 The following matrix is in (reduced) row echelon
form and has rank 4.

0 1 3 0 0 4 0
0 0 0 1 0 −3 0
0 0 0 0 1 2 0
0 0 0 0 0 0 1





12 Eigenvalues and eigenvectors

When we apply a map f , represented by matrix A, to R2, we expect
points other than the origin to be mapped to new points in the
plane. However, it may be that this is not always the case. Some
straight lines may also remain fixed or invariant.

Scaling factors

Consider the matrix A =
[

2 1
3 4

]
. Observe that[

2 1
3 4

][
1
−1

]
=

[
1
−1

]
.

More generally, [
2 1
3 4

][
x
−x

]
=

[
x
−x

]
.

So A maps any vector of the form [ x
−x ] to itself. All of these points

lie on the line with equation y = −x.
Also, [

2 1
3 4

][
1
3

]
=

[
5

15

]
= 5

[
1
3

]
.

And in general [
2 1
3 4

][
x

3x

]
=

[
5x
15x

]
= 5

[
x

3x

]
.

So A also maps any point on the line y = 3x to another point on
the same line, specifically the one five times as far from the origin
as the original point.
The lines y = −x and y = 3x are invariant (mapped to themselves)
under the action of this matrix. Knowing these invariant lines and
the associated scaling factors tells us pretty much everything about
the geometric behaviour of the matrix transformation in question.
We want to be able to find these invariant lines and scaling factors
for any matrix.

Definition 12.1 Let A be a square n×n matrix. A vector v ∈ Rn

for which Av = λv for some scalar λ ∈ R is called an eigenvector
of A, and λ is the associated eigenvalue.

We’ll develop the theory for 2×2 matrices first, but it extends in an
obvious way to n×n matrices. Consider a matrix

[
a b
c d

]
. We want to

find the eigenvalues and corresponding eigenvectors.
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First we write Av = λv in full:

ax + by = kx
cx + dy = ky

Rearranging this gives

(a − λ)x + by = 0
cx + (d − λ)y = 0

or, in matrix form, [
a − λ b

c d − λ

][
x
y

]
=

[
0
0

]
We now have two homogeneous equations in the two variables x
and y. Recall that these are always consistent; however there are
two possibilities:-
(i) If the matrix on the left hand side has a nonzero determinant,

then the equations have a unique solution v = 0. This is not
the required solution to our problem as we require v ̸= 0

(ii) If the determinant is zero, then the matrix is not invertible (rank
is less than 2) and there are an infinite number of solutions.
This is the case that we are going to investigate.

The determinant is

χA = det(A− kI) = (a−λ)(d−λ)− bc = λ2 − (a+ d)λ+(ad− bc)

which is a quadratic polynomial in λ, called the characteristic
polynomial of A. The equation

λ2 − (a + d)λ + (ad − bc) = 0,

is called the characteristic equation of A. The eigenvalues of A are
the solutions of this equation.
Note that the sum of the eigenvalues is (a + d), which is equal to
the trace of A, and the product of the eigenvalues is (ad − bc) which
is the determinant of the original matrix A. Thus the characteristic
equation for a 2×2 matrix is

λ2 − tr(A)λ + det(A) = 0

(but the characteristic equation for 3×3 and larger matrices is
slightly more complicated).
Having solved the characteristic equation and found the eigenvalues,
we then have to find an eigenvector corresponding to each, by
solving the equation [

a b
c d

][
x
y

]
= λ

[
x
y

]
for x and y. Now if vi is an eigenvector corresponding to eigenvalue
λi, then so is cvi for all nonzero constants c. So it follows that to each
eigenvalue corresponds an infinite number of possible eigenvectors,
all scalar multiples of each other. But this makes sense, because
we’re looking for the invariant lines of the matrix, and these are
exactly the lines formed from all possible scalar multiples of a given
eigenvector.
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Example 12.2 Find the eigenvalues and eigenvectors for the matrix
A =

[
1 2
3 2

]
.

The characteristic polynomial is χA = det(A − kI) = λ2 − 3λ − 4.
This factorises as (λ− 1)(λ+ 4), which means the roots are λ = −1
and λ = −4.
Considering λ = −1 first, we want to find vectors v = [ x

y ] such
that Av = −v. This yields the simultaneous equations

x + 2y = −x
3x + 2y = −y

which we can solve to get x = −y. So any nonzero vector of the
form [ x

−x ] is an eigenvector for A with eigenvalue −1, and we may
choose a convenient representative:

[ 1
−1

]
will do.

Now considering λ = 4, we want to find vectors v = [ x
y ] such that

Av = 4v. As before, we get the equations

x + 2y = 4x
3x + 2y = 4y

which give 2y = 3x or y = 3
2 x. Therefore any vector of the form

[ x
3x/2 ] will suffice, but for convenience we might as well pick one

which avoids any untidy fractions, such as
[

2
3
]
.

Geometrically, we now know that the invariant lines of the matrix
A are y = −x and y = 3x/2. But more than that, we know the
scaling factors associated with these invariant lines. So A maps
any point on the line y = −x to its negative, the point the same
distance from the origin but on the other side. And it maps any
point on the line y = 3x/2 to another point four times further
along in the same direction.

In this example, the characteristic polynomial had two distinct
real roots. But this needn’t always be the case. With a quadratic
polynomial ax2 + bx + c, the roots are given by the formula

x =
−b ±

√
b2 − 4ac

2a
. (12.1)

Depending on the sign of the discriminant ∆ = b2 − 4ac, there are
three possible outcomes:
(i) ∆ > 0: Two distinct real roots.
(ii) ∆ = 0: One real roots (or, equivalently, two identical real

roots).
(iii) ∆ < 0: No real roots. (Actually, two complex roots, each a

conjugate of the other.)
The third of these is beyond the scope of this course, so we’ll only
consider matrices with real eigenvalues (either distinct or repeated).
The other thing to note about this example is that we got one
eigenvector per eigenvalue. More accurately, we got a single one-
dimensional subspace (or eigenspace) of eigenvectors for each eigen-
value. This needn’t always be the case:
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Example 12.3 The matrix A =
[

2 1
0 2

]
has characteristic polynomial

χA = λ2 − 4λ + 4 = (λ − 2)2. This has a single (repeated) eigen-
value λ = 2, and it turns out (check this yourself) we can only find
one eigenvector:

[
1
0
]
.

But sometimes we can find more than one eigenvector correspond-
ing to a repeated eigenvalue.
Some useful facts about eigenvalues and eigenvectors, that will be
stated without proof.
The first one concerns the eigenvalues of the transpose of a matrix.

Proposition 12.4 Let A be an n×n matrix. The transpose AT has the
same eigenvalues as A.

There is a nice connection between the eigenvalues and the trace
and determinant of a square matrix:

Proposition 12.5 Let A be a real n×n matrix with eigenvalues λ1, . . . , λn,
some or all of which might be repeated. Then

λ1 + · · ·+ λn = tr(A),
λ1 · · · λn = det(A).

That is, the sum of the eigenvalues is equal to the trace, and the product
of the eigenvalues is equal to the determinant.

An immediate consequence of this is that if one or more of the
eigenvalues is zero, then the product of all the eigenvalues is zero
too, and since this is equal to the determinant, the matrix must be
singular. The converse holds as well: the only way the determinant
can be zero is if at least one of the eigenvalues is zero.

Corollary 12.6 An n×n matrix A is singular if and only if it has at
least one eigenvalue equal to zero.

Triangular and diagonal matrices

In general, to work out the eigenvalues and eigenvectors of a square
matrix, we have to go through the procedure outlined in the pre-
vious section: calculate and solve the characteristic equation to get
the eigenvalues, then use them to find the eigenvectors. But with
triangular and diagonal matrices we can use a short cut:

Proposition 12.7 If A is an n×n triangular or diagonal matrix, then
its eigenvalues are the diagonal elements.

Proof The characteristic polynomial det(A − kI) factorises neatly
into the form (λ − a11) . . . (λ − ann), so the eigenvalues must be
exactly the diagonal elements a11, . . . , ann.

To illustrate and further justify this, we’ll look at a couple of exam-
ples.
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Example 12.8 The matrix A =
[

2 0
0 3

]
has characteristic polynomial

χA = det
[

2−λ 0
0 3−λ

]
= (2 − λ)(3 − λ), which is already factorised

to show that its roots (and hence the eigenvalues of A) are λ = 2, 3.

Example 12.9 The matrix A =
[

2 1
0 1

]
has characteristic polynomial

χA = det
[

2−λ 1
0 1−λ

]
= (2 − λ)(1 − λ), which has roots λ = 1, 2.

Matrix diagonalisation

Remember that an n×n matrix A represents a linear map f : Rn →
Rn relative to some choice of coordinate system. There are therefore
(uncountably infinitely) many different ways of representing a given
linear map with a matrix: we first have to choose a coordinate
system (or basis) for Rn and then the entries of the matrix are
determined.
Recall that two n×n matrices A and B are similar if there is an
invertible matrix Q such that A = QBQ−1.
Geometrically, similar matrices represent the same linear map rela-
tive to different coordinate systems (or bases). Another connection
between similar matrices is given by the following proposition:
similar matrices have the same eigenvalues.

Proposition 12.10 If A and B are similar n×n matrices, then they
have the same characteristic polynomial and the same eigenvalues.

Now consider the matrix
[

2 0
0 3

]
. Geometrically, this maps the plane

R2 to itself, scaling everything by a factor of 2 parallel to the x–axis,
and by a factor of 3 parallel to the y–axis. More generally,

[
λ1 0
0 λ2

]
scales everything by a factor of λ1 horizontally, and by a factor of
λ2 vertically.
The matrix A =

[
1 2
3 2

]
scales everything by a factor of −1 along (and

parallel to) the vector
[ 1
−1

]
, and by a factor of 4 along (and parallel

to) the vector
[

2
3
]
.

This matrix A represents a particular linear map relative to the
standard basis. Now let’s define a new basis consisting of the
eigenvectors:

{ [ 1
−1

]
,
[

2
3
] }

. Relative to this new basis (check this
yourself), the same linear map can be represented by the matrix[ −1 0

0 4

]
.

The point of all this is that for many linear maps we can often find
a suitable basis in which the corresponding matrix is diagonal. Or,
phrased another way, many n×n matrix transformations are similar
to diagonal matrices.
This is useful from a practical perspective, because diagonal matrices
are often much easier to work with in calculations.
Definition 12.11 To diagonalise an n×n matrix A means to find a
diagonal n×n matrix D and an invertible n×n matrix Q such that
A = QDQ−1.
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From the above discussion, we expect D to have the eigenvalues of
A as its diagonal elements. And from the earlier discussion about
change of basis transformations, we expect Q to be formed from the
new basis vectors. The following example demonstrates the general
method.
Example 12.12 Given the transformation represented by the ma-
trix

A =

[
2 1
3 4

]
,

we now wish to analyse the transformation, by ‘factorising’ the
matrix A.
The eigenvalues are 5 and 1 and the eigenvectors lie along the
lines y = 3x and y = −x respectively, so essentially the matrix A
produces scalings of amounts 5 and 1 along these skew lines – that
is, not at right angles. Our strategy is to change coordinate axes so
that we can apply the scaling matrix appropriately. We choose the
u axis to be the line y = 5x and the v axis to be y = −x. We can
choose any point on the u axis to be a unit point, eg (1, 3) and a
unit point on the v axis to be (1,−1), then the matrix Q is given by

Q =

[
1 1
3 −1

]
.

In order to change from (x, y) coordinates to (u, v) coordinates we
multiply by Q−1.
In the (u, v) plane we can now apply the appropriate scalings by
multiplying by the diagonal matrix

D =

[
5 0
0 1

]
,

and finally we change back to (x, y) coordinates by multiplying by
Q.
The sequence is as follows: multiply by Q−1, then by D, then by
Q. In other words

A = QDQ−1

or, equivalently,
Q−1AQ = D.

We can’t always do this, however. Construction of D is straightfor-
ward: we just need to find the eigenvalues of A, which (at least
in principle) is just a matter of writing down and solving the char-
acteristic equation. An n×n matrix will have n eigenvalues, and
although some of them might be repeated, this won’t be a problem.
One potential problem is the existence of complex eigenvalues, but
in this course we’ll only be working with matrices with real eigen-
values so we can ignore that eventuality. (Complex eigenvalues
don’t actually stop us from diagonalising A, it’s just that we end up
with a complex diagonal matrix instead of a real one.)
But to construct Q we need exactly n eigenvectors (so that Q is an
n×n matrix). We also need Q to be invertible, and it turns out that
this is equivalent to requiring the eigenvectors of A to be linearly
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independent.

Proposition 12.13 Let A be an n×n matrix. Then A is diagonalisable
if and only if A has n linearly independent eigenvectors.

If all the eigenvalues are distinct, this won’t be a problem, since
distinct eigenvalues have linearly independent eigenvectors:

Proposition 12.14 If λ1 and λ2 are two distinct eigenvalues of an n×n
matrix A, then their eigenvectors are linearly independent.

With repeated eigenvalues this isn’t necessarily the case (as we saw
earlier) so if our matrix has repeated eigenvalues then it might not
be diagonalisable.
But in general, to express an n×n matrix A with real eigenvalues in
the form QDQ−1, we use the following approach:
(i) Find the eigenvalues λ1, . . . , λn of A.
(ii) Define the matrix Λ by

Λ =

 λ1 0 ... 0
0 λ2 ... 0
...

... . . . ...
0 0 ... λn

 .

(iii) Find linearly independent eigenvectors v1, . . . , vn.
(iv) Define the matrix V by V =

[
v1 . . . vn

]
; that is, stack together

the column vectors v1, . . . , vn to form an n×n matrix. This
matrix V is invertible.

(v) Then A = VΛV−1, so we can diagonalise A by setting D = Λ
and Q = V.

The choice of matrices D and Q aren’t unique. We have n! choices
for what order to put the eigenvalues in when constructing Λ. And
we have uncountably infinitely many choices of eigenvalues (since
any nonzero scalar multiple of an eigenvalue is also an eigenvalue).
But we have to make sure that whatever order we choose for the
eigenvalues as the diagonal elements of Λ, we follow the same order
when stacking the eigenvectors together to form V. As long as we
do this, everything will work out fine. And if we multiply one or
more of the eigenvectors by a nonzero scalar constant, then this will
affect V, but it will also affect V−1 accordingly.
The main point of all this is that many problems in linear algebra
involve finding higher powers of matrices: A2, A3, . . . , An and so
on. In general, calculating higher powers of square matrices is
cumbersome: there isn’t an obvious short cut, you just have to do
the requisite number of matrix multiplication operations.
But higher powers of diagonal matrices are an exception. In general,
for any diagonal matrix D we have:

D =

 a1 0 ... 0
0 a2 ... 0
...

... . . . ...
0 0 ... an

n

=

 an
1 0 ... 0
0 an

2 ... 0
...

... . . . ...
0 0 ... an

n

 .

That is, to calculate the nth power of a diagonal matrix, we just have
to calculate the nth power of each of the diagonal elements.

And if our matrix A is diagonalisable as A = VΛV−1 then Am =
(VΛV−1)m = VΛmV−1. (This can be proved formally by induction.)
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If we need to calculate A25, say, then this simplifies things a lot:
instead of doing 24 matrix multiplication operations, we just need
to diagonalise A, calculate Λ25, and then multiply V by Λ25 and
V−1.



13 Quadratic forms

Definition 13.1 A general quadratic function in n real variables
is one of the form

a11x2
1 + a22x2

2 + · · ·+ annx2
n

+ 2a12x1x2 + · · ·+ 2an−1,nxn−1xn

+ b1x1 + b2x2 + · · ·+ bnxn + c

If we investigate the general nature of this function we find that
it is not affected by the linear terms b1x1 + b2x2 + · · ·+ bnxn + c.
The remaining function

a11x2
1 + a22x2

2 + · · ·+ annx2
n + 2a12x1x2 + · · ·+ 2an−1,nxn−1xn,

all of whose terms are of degree 2, is called a quadratic form.

So, quadratic forms are functions Q : Rn → R of the form

Q(x) = ax2

Q(x, y) = ax2 + by2 + 2cxy

Q(x, y, z) = ax2 + by2 + cz2 + 2dxy + 2exz + 2 f yz

and so on. We can write these in matrix form using a symmetric
matrix:

Q(x, y)=
[
x y

] [a c
c b

] [
x
y

]
=

[
ax2+by2+2cxy

]
Q(x, y, z)=

[
x y z

] a d e
d b f
e f c

x
y
z


=

[
ax2+by2+cz2+2dxy+2exz+2 f yz

]

Symmetric matrices

We can use nonsymmetric matrices too, but there are some advan-
tages to using symmetric matrices.

Proposition 13.2 The eigenvalues of a real symmetric matrix are all
real.

This means that we don’t have to worry about the possibility of
complex eigenvalues. (We’ve already decided not to worry about



84 ec961 introductory mathematics and statistics

this for the scope of this module, but now we know we really don’t
have to worry about it.)

Proposition 13.3 If A is a symmetric matrix, then any eigenvectors
corresponding to distinct eigenvalues are orthogonal to each other.

We know from earlier that distinct eigenvalues give linearly indepen-
dent eigenvectors, but with a symmetric matrix we get something
even better: orthogonal eigenvectors.

Proposition 13.4 If {v1, . . . , vn} ⊂ Rn is an orthogonal (or orthonor-
mal) set, then the vi are linearly independent.

Corollary 13.5 Any n nonzero orthogonal (or orthonormal) vectors in
Rn form a basis for Rn.

The canonical examples of these are the standard bases {i, j} and
{i, j, k} for R2 and R3. It turns out that a diagonalising matrix
formed from orthonormal eigenvectors is orthogonal:

Proposition 13.6 If A is a real symmetric matrix, then it can be diago-
nalised by an orthogonal matrix. That is, there is a diagonal matrix D
and an orthogonal matrix Q such that A = QDQ−1 = QDQT.

Remember from the last section that not all matrices are diagonal-
isable. In particular, if a matrix doesn’t have a full set of linearly
independent eigenvectors (which might happen if we have a re-
peated eigenvalue) then we can’t form the diagonalising matrix Q.
But if our original matrix A is symmetric, then we don’t have to
worry: this proposition guarantees that, whether or not we have
any repeated eigenvalues, we will still have enough linearly inde-
pendent eigenvectors to form an invertible diagonalising matrix
Q. Even better, we can find an orthogonal diagonalising matrix Q,
which makes calculating the inverse Q−1 = QT much easier.
To summarise, the advantages of using symmetric matrices are:
• their eigenvalues are real (no complex eigenvalues),
• they have orthogonal (not just linearly independent) eigenvectors

corresponding to distinct eigenvalues,
• they can be diagonalised by means of an orthogonal matrix.

Classifying quadratic forms

For any quadratic form Q, clearly Q(0, . . . , 0) = 0, but what happens
when we use nonzero values of the variables x, y, . . .?

Examples 13.7
• If Q(x, y) = 3x2 + 2y2 then Q(x, y) > 0 for all (x, y) ̸= (0, 0).
• If Q(x, y) = −3x2 − 2y2 then Q(x, y) < 0 for all (x, y) ̸= (0, 0).
• If Q(x, y) = 3x2 + 0y2 = 3x2 then Q(x, y) ⩾ 0 for all (x, y) ̸=

(0, 0).
• If Q(x, y) = −3x2 + 0y2 = −3x2 then Q(x, y) ⩽ 0 for all (x, y) ̸=

(0, 0).
• If Q(x, y) = −3x2 + 2y2 then Q(x, y) can be < 0, = 0 or > 0 for

some (x, y) ̸= (0, 0).
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We have five categories of quadratic forms:
Positive definite if Q(x, y, . . .) > 0 for (x, y, . . .) ̸= (0, . . . , 0).
Positive semidefinite if Q(x, y, . . .) ⩾ 0 for (x, y, . . .) ̸= (0, . . . , 0).
Negative definite if Q(x, y, . . .) < 0 for (x, y, . . .) ̸= (0, . . . , 0).
Negative semidefinite if Q(x, y, . . .) ⩽ 0 for (x, y, . . .) ̸= (0, . . . , 0).
Indefinite if Q(x, y, . . .) can be < 0, = 0 and > 0 for values of
(x, y, . . .) ̸= (0, . . . , 0).

Sylvester’s Criteria

We’ll now look at two ways to classify quadratic forms into one of
these five types. The first of these, Sylvester’s Criteria, involves
examining the signs of the form’s minors: the determinants of
certain submatrices of the coefficient matrix. This method is more
convenient for matrices of functions, for example when studying
the Hessian matrix to decide whether a given function is convex,
concave, etc.
Let A be an n×n matrix.
Definition 13.8 A minor is the determinant of a submatrix of
A, obtained by deleting equally many (or possibly no) rows and
columns. The order of the minor is the order of the determinant:
1, . . . , n

Definition 13.9 A principal minor is a minor obtained by deleting
only rows and columns of the same index. So, if row i is deleted,
so is column i. Any number can be deleted (including zero, giving
det A) up to (n−1), so there will be principal minors of all orders.

Definition 13.10 A leading principal minor is a principal minor
obtained by deleting all rows and columns j, . . . , n for j = 2, . . . , n;
also det A is considered to be a leading principal minor.

These definitions are explained using the following 3 × 3 matrix.
Suppose

A =

[
a b c
d e f
g h k

]
The minors of order 1 are

a, b, c, d, e, f , g, h, k;

the minors of order 2 are∣∣ a b
d e

∣∣ ,
∣∣ a c

d f
∣∣ ,

∣∣∣ b c
e f

∣∣∣ ,
∣∣∣ a b

g h

∣∣∣ , . . . ;

and the minor of order 3 is det A itself.
The principal minors of order 1 are

a, e, k;

the principal minors of order 2 are∣∣ a b
d e

∣∣ ,
∣∣ a c

g k
∣∣ ,

∣∣∣ e f
h k

∣∣∣ ;
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and the principal minor of order 3 is det A itself.
The leading principal minors are

a,
∣∣ a b

d e

∣∣ , det A.

We can use minors to determine the definiteness of a square matrix,
such as the Hessian, or the coefficient matrix of a quadratic form:

Positive definite if all leading principal minors are strictly positive,
(> 0). That is,

a11 > 0,
∣∣ a11 a12

a21 a22

∣∣ > 0,
∣∣∣ a11 a12 a13

a21 a22 a23
a31 a32 a33

∣∣∣ > 0, . . . , det A > 0.

Negative definite if the leading principal minors satisfy the alter-
nating pattern:

a11 < 0,
∣∣ a11 a12

a21 a22

∣∣ > 0,
∣∣∣ a11 a12 a13

a21 a22 a23
a31 a32 a33

∣∣∣ < 0, . . .

The last of these, det A, will be positive or negative according to
whether the order of the matrix A is even or odd.

Positive semidefinite if all principal minors are non-negative (⩾ 0).
Negative semidefinite if each principal minor of order k is either

zero or has the same sign as (−1)k.
Indefinite if det(A) ̸= 0 and the matrix is neither positive definite

nor negative definite.

Diagonalisation

The second method we will look at uses matrix diagonalisation.
This is more involved in some ways, and less useful for matrices of
functions, but gives more information about the quadratic form in
the process: it gives us an explicit change of variables in which the
type of the form may be easily seen.
The quadratic form Q(x, y) = 3x2 + 2y2 corresponds to the diagonal
matrix

[
3 0
0 2

]
; it’s easy to see that this is positive definite.

What about Q(x, y) = 3x2 + 4xy + 6y2? This corresponds to the
non-diagonal symmetric matrix

[
3 2
2 6

]
, and it’s not so obvious which

of the five categories Q belongs to.
If we complete the square, we get

Q(x, y) = 3x2 + 4xy + 6y2

= 3
(
x + 2

3 y
)2

+ 14
3 y2

= 7
3 x2 + 6

(1
3 x + y)2 > 0 for (x, y) ̸= (0, 0)

so this form is positive definite.
The form

Q(x, y, z) = x2 + 3y2 + 9z2 + 4xy + 6xz + 10yz

corresponds to the symmetric matrix
[ 1 2 3

2 3 5
3 5 9

]
. By completing the

square, we get

Q(x, y, z) = (x + 2y + 3z)2 − (y + z)2 + z2
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which is indefinite. This method becomes fiddly and tedious with
more variables, so we want a generally-applicable method which is
easier.
Look at the quadratic form Q(x, y) = 3x2 + 4xy + 6y2. This corre-
sponds to the matrix

[
3 2
2 6

]
, which has eigenvalues 2 and 7 (the roots

of its characteristic polynomial k2 − 9k + 14 = (k − 2)(k − 7)). Its
eigenvalues are (nonzero scalar multiples of)

v1 =
[ 2
−1

]
v2 =

[
1
2
]
.

These are orthogonal, since

v1 · v2 = 2 × 1 + (−1)× 2 = 0.

Note Eigenvectors corresponding to distinct eigenvalues of a ma-
trix A will be linearly independent; if A is symmetric, then these
eigenvectors will be orthogonal.
Eigenvectors corresponding to a repeated eigenvalue of a symmetric
matrix A will be linearly independent but not orthogonal. For
orthogonal diagonalisation we need a complete set of orthogonal
(not just linearly independent) eigenvectors, so we must do a bit
more work at this point. We won’t go into the details here, but
the basic idea is that for a repeated eigenvalue we don’t just get
a one-dimensional family of possible eigenvectors, but a two- or
higher-dimensional subspace (or eigenspace) of eigenvectors. We
then choose the required number of orthogonal eigenvectors from
this subspace.

Having got a complete set of orthogonal eigenvectors, we must turn
them into an orthonormal set by normalising them:

∥v1∥ =
√

5 so v̂1 = 1√
5

[ 2
−1

]
∥v2∥ =

√
5 so v̂2 = 1√

5

[
1
2
]

We now use these normalised eigenvectors (rather than the unnor-
malised ones) to make our 2×2 diagonalising matrix:

P̂ =

[ 2√
5

1√
5

− 1√
5

2√
5

]
=

1√
5

[
2 1
−1 2

]
This matrix P̂ is orthogonal (check this by verifying that P̂P̂T =
I = P̂T P̂). In fact, this process (using an orthogonal set of nor-
malised eigenvectors, rather than just a linearly independent set as
previously) will always yield an orthogonal matrix. So,

A =

[
3 2
2 6

]
=

1
5

[
2 1
−1 2

] [
2 0
0 7

] [
2 −1
1 2

]
= P̂DP̂T.

(Check this too.)
Before, when we diagonalised matrices corresponding to linear
maps on vector spaces, what we were doing was changing into
a new basis (coordinate system) where the linear map could be
represented by a diagonal matrix. Similarly, when we diagonalise a
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quadratic form, we’re choosing a new set of variables in which the
quadratic form can be represented by a diagonal matrix.

So, the matrix P̂ and its inverse P̂−1 = P̂T that we constructed in
the above example can be thought of as representing a change of
variables between the original variables x and y, and new variables
X and Y in which Q is represented by the matrix

[
2 0
0 7

]
and hence

has the form 2X2 + 7Y2.
More precisely, P̂T transforms from the original variables x, y to the
new variables X, Y: [

X
Y

]
= P̂T

[
x
y

]
And P̂ goes back the other way, transforming from the new variables
X, Y into the original variables x, y:[

x
y

]
= P̂

[
X
Y

]
For our worked example,[

x
y

]
= P̂

[
X
Y

]
=

1√
5

[
2 1
−1 2

] [
X
Y

]
=

1√
5

[
2X + Y
2Y − X

]
and so

x =
2X + Y√

5
and

2Y − X√
5

.

Similarly,[
X
Y

]
= P̂T

[
x
y

]
=

1√
5

[
2 −1
1 2

] [
x
y

]
=

1√
5

[
2x − y
x + 2y

]
and so

X =
2x − y√

5
and

x + 2y√
5

.

Substituting this into the diagonal form Q(X, Y) = 2X2 + 7Y2 rep-
resented by the diagonal matrix D =

[
2 0
0 7

]
we get

Q(x, y) = 2
5(2x − y)2 + 7

5(x + 2y)2.

(Check this by multiplying out the brackets and verifying that you
get the original expression for Q(x, y).)
This form is obviously positive definite.

The eigenvalue test

Given that we can easily determine the type of a diagonal quadratic
form by looking at the coefficients of the terms X2, Y2, . . ., and since
those coefficients are exactly the eigenvalues of the original matrix,
we can determine the type of the quadratic form just by calculating
the eigenvalues. This is called the eigenvalue test and is as follows:
A quadratic form Q(x, y, . . .) represented by a symmetric n×n ma-
trix A is:
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• Positive definite if all the eigenvalues of A are positive.
• Negative definite if all the eigenvalues of A are negative.
• Positive semidefinite if all the eigenvalues of A are ⩾ 0 with at

least one = 0.
• Negative semidefinite if all the eigenvalues of A are ⩽ 0 with at

least one = 0.
• Indefinite if A has at least one positive eigenvalue and at least

one negative eigenvalue.





III

Multivariate Calculus





14 Calculus and Optimisation

Now we want to extend and generalise the calculus of single-
variable functions, in order to be able to study optimisation

questions of multivariate functions. To start with, we need to
generalise the concept of differentiation.

Partial differentiation

Recall that for a univariate function, the first derivative f ′(x) or d f
dx

measures the rate of change of the value of f (x) with respect to the
change in x. That is, if we vary x by some small amount, how does
that affect the value of f (x)?
Things are, as you might expect, more complicated with functions
of more than one variable.
Suppose that we have a function f : R2 → R, where f (x, y) is deter-
mined by some mathematical expression involving x and y. Then
we might want to know how f (x, y) varies with respect to either x
or y. For example, if we have profit function p(K, L) that depends
on capital K and labour L, we may want to see how this varies
depending on changes in either of those variables independently of
the other.
That is, we keep one variable y fixed and see what happens to f (x, y)
as we vary x, or keep x fixed and see what happens when we vary
y. Essentially, what we’re proposing is to choose one variable and
measure the variation in the value of our function, while treating
all the other variables as constants.
Definition 14.1 Suppose f : Rn → R, where f (x) = f (x1, . . . , xn).

The partial derivative ∂ f
∂xi

or fxi is the first-order derivative of the
function f (x1, . . . , xn) with respect to xi, with all the other variables
xj (for j ̸= i) held constant.

As with ordinary differentiation, there are various forms of notation
for partial differentiation. For a function f : Rn → R, we can denote
the partial derivative of f with respect to the variable xi using
modified versions of either the Leibniz or Lagrange notations.1 1 See page 12.

Common forms are:
∂ f
∂xi

fxi f ′xi
fi f ′i

With the Leibniz-like notation, observe that we use curly ∂ symbols
rather than an ordinary d.
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To illustrate this, we’ll look at a couple of examples:

Charles Wiggins Cobb (1875–1949)

Example 14.2 Suppose that f : R2 → R with

f (x, y) = x2y + y2x2 + y3 + 2x − 4.

Then:

fx =
∂ f
∂x

= 2xy + 2xy2 + 2, fy =
∂ f
∂y

= x2 + 2x2y + 3y2

Example 14.3 Let f (K, L) = KαLβ for α, β ∈ R and K, L > 0.2

Then:

fK =
∂ f
∂K

= αKα−1Lβ, fL =
∂ f
∂L

= βKαLβ−1

2 This is sometimes called a Cobb–
Douglas function in economics.

Paul Howard Douglas (1892–1976)

Definition 14.4 If a function f : D → R, where D ⊆ Rn, has
continuous partial derivatives of first order everywhere in D, then
we say that f is continuously differentiable. In this case, f is said
to be a C1 function.

We can also define higher-order partial derivatives by partially dif-
ferentiating the first-order derivatives, then partially differentiating
again, and so on. But with multivariate functions we have more
choices of variables to differentiate by.
Let’s look at the two-variable case to start with. Suppose we have
a function f : R2 → R denoted f (x, y). Then our first-order partial
derivatives are

fx =
∂ f
∂x

and fy =
∂ f
∂y

.

We can define the second-order partial derivatives

fxx = ( fx)x =
∂2 f
∂x2 =

∂

∂x
∂ f
∂x

and fyy = ( fy)y =
∂2 f
∂y2 =

∂

∂y
∂ f
∂y

.

But we can also differentiate partially with respect to the other
variable, to get two other second-order derivatives

fxy = ( fx)y =
∂2 f

∂x∂y
=

∂

∂y
∂ f
∂x

and fyx = ( fy)x =
∂2 f

∂y∂x
=

∂

∂x
∂ f
∂y

.

This introduces a potential complication, in that we apparently need
to distinguish between the two mixed second-order derivatives

fxy = ∂2 f
∂x∂y and fyx = ∂2 f

∂y∂x . In practice, however, we can safely gloss
over this point, thanks to the following theorem:

William Henry Young (1863–1942)

Theorem 14.5 (Young’s Theorem) If a function f : Rn → R is twice
continuously differentiable, then

∂2 f
∂xi∂xj

= fxixj = fxjxi =
∂2 f

∂xj∂xi

for i ⩽ i, j ⩽ n.

This theorem is usually attributed to the British mathematician
William Henry Young, the German mathematician Hermann Schwartz,
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or the French mathematician Alexis Clairaut, although the question
had been studied by earlier mathematicians as far back as the early
18th century. In economics, we will usually work with relatively
well-behaved functions that are at least twice continuously differ-
entiable, so we can assume that the mixed second-order partial
derivatives are equal.

Alexis Claude Clairaut (1713–1765)

Karl Hermann Amandus Schwarz (1843–
1921)

Example 14.6 The function f : R → R given by

f (x) =

{
x2 sin

( 1
x
)

if x ̸= 0
0 if x = 0

is not twice continuously differentiable. The first derivative f ′(x)
exists everywhere, but it oscillates infinitely many times as x → 0,
so the second derivative doesn’t exist at x = 0.

Gradients

For univariate functions, the first derivative measures the gradient
of the graph of a function, and we would like to extend this idea to
multivariate functions as well.
The partial derivative ∂ f

∂xi
measures the rate of change of the value

of f relative to the variable xi; geometrically we can interpret this
as the gradient of the cross-section through the graph of f , in the
direction of the ith coordinate axis.
So, taken in combination, the first-order partial derivatives of f
encode all the information about the rate of change of f with respect
to its variables, or in a geometric sense, the gradient of the graph in
all possible directions.

Definition 14.7 The gradient of a function f : Rn → R, denoted
∇ f , is the vector of partial derivatives:3

∇ f =

(
∂ f
∂x1

, . . . ,
∂ f
∂xn

)
.

3 The symbol ∇ is often pronounced
‘del’, although some older books refer to
it as ‘nabla’, the latter after an ancient
Greek or Phoenician harp of approxi-
mately triangular shape.

For example:

Example 14.8 Considering the Cobb–Douglas function f (K, L) =
KαLβ, we have

∇ f (K, L) =
(
αKα−1Lβ, βKαLβ−1).

What does this mean geometrically? The gradient vector ∇ f (x) is
perpendicular to the level curve of f passing through the point x. It
is the vector that points in the direction of steepest ascent (that is,
the most rapid change of the value of f (x)) from the point x.
The hyperplane tangent to the level curve at a point a is the set of
all points x satisfying

〈
∇ f (x), x−a

〉
.

Recall that for a univariate function f : R → R, if we consider the
input variable x to be itself a function of some other variable t (so
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x = x(t)) then the chain rule tells us that

d f
dt

=
d f
dx

dx
dt

.

What is the analogous result for multivariate functions?

Definition 14.9 Suppose f : Rn → R, with f (x) = f (x1, . . . , xn),
such that x1, . . . , xn are differentiable functions of some variable t.
Then the total derivative is

d f (x)
dt

=
∂ f
∂x1

dx1

dt
+ · · ·+ ∂ f

∂xn

dxn

dt
.

Example 14.10 Consider the Cobb–Douglas function f (K, L) =
KαLβ. Suppose that capital (K) and labour (L) both change with
respect to time (t). Then

d f
dt

=
∂ f
∂K

dK
dt

+
∂ f
∂L

dL
dt

= αKα−1Lβ dK
dt

+ βKαLβ−1.

Now, suppose that f : R → R is a univariate, continuously differen-
tiable function, and let x∗ ∈ R. Given δx small, we have

δ f (x∗)
δx

≈ f (x∗ + δx)− f (x∗)
δx

=⇒ d f (x∗)
dx

δx ≈ f (x∗ + δx)− f (x∗)︸ ︷︷ ︸
δ f (x∗)

.

This tells us that we can approximate the change in f (x) close to
some value x∗, by taking the first derivative d f

dx at x∗ and multiplying
it by the small distance δx. This is essentially the rewritten form of
the Mean Value Theorem4 given in Corollary 5.14; equivalently it’s4 Theorem 5.13, page 30.

the first degree approximation derived from Taylor’s Theorem.55 Theorem 4.2, page 21.

In the case of a multivariate function f : Rn → R, we use the total
differential of f at x∗, which is the following linear approximation:

δ f (x∗) ≈
〈
∇ f (x∗), δx

〉
=

∂ f (x∗)
∂x1

δx1 + · · ·+ ∂ f (x∗)
∂xn

δxn (14.1)

(Here, δx = (δx1, . . . , δxn).) This gives the total change in f , close to
x∗, due to the changes in x1, . . . , xn.

Example 14.11 Consider the Cobb–Douglas function f (K, L) =
KαLβ. Then the total differential is

δ f (K∗, L∗) ≈ α(K∗)α−1(L∗)βδK + β(K∗)α(L∗)β−1δL.

For α = 2, β = 3, K∗ = 2, L∗ = 3, δK = 0.2 and δL = 0.1 this gives

f (2.2, 3.1)− f (2, 3) ≈ 2 · 22−1 · 33 · (0.2) + 3 · 22 · 33−1 · (0.1) = 32.4.

The exact value is

f (2.2, 3.1)− f (2, 3) = 2.22 · 3.13 − 22 · 33 = 36.18844,

so the approximation given by the total differential isn’t too bad.



calculus and optimisation 97

Homogeneous functions and Euler’s Theorem

Suppose we have a function f : R2 → R defined where f (K, L)
models the output of some process determined by capital (K) and
labour (L). Sometimes, we may want to study what happens to
the output if we increase the capital and labour by some constant
multiple.
In order to study this sort of question, we introduce a special class
of functions:
Definition 14.12 A function f : D → R, where D ⊆ Rn, is said to
be homogeneous of degree k if, for any x ∈ D and t > 0 we have

f (tx) = tk f (x).

For example:

Example 14.13 Let f : R2 → R, such that f (x, y) = 3x2y − y3.
This is homogeneous of degree 3, since:

f (tx, ty) = 3(tx)2(ty)− (ty)3 = 3t2x2ty − t3y3

= t3(x2y − y3) = t3 f (x, y).

Informally, every term in a degree–k homogeneous function has
degree k. We can in some sense regard linear maps as homogeneous
functions of degree 1.

Leonhard Euler (1701–1783)

Theorem 14.14 (Euler’s Theorem) Let f : Rn
+ → R be continuously

differentiable and homogeneous of degree k. Then〈
∇ f (x), x

〉
= k f (x).

Proof Since f is homogeneous of degree k, we have

f (tx) = tk f (x).

Differentiating with respect to t, the left-hand side becomes

∂ f (tx)
∂x1

x1 + · · ·+ ∂ f (tx)
∂xn

xn =
〈
∇ f (tx), x

〉
and the right-hand side becomes

ktk−1 f (x).

Setting t = 1, this becomes〈
∇ f (x), x

〉
= k f (x)

as claimed.

Hicksian demand functions are homogeneous of degree 0.

The Hessian

In some sense, the gradient ∇ f is the multivariate analogue of the
first derivative of a univariate function. We now want to devise a
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multivariate analogue of the second derivative. This is the Hessian
matrix, or often just the Hessian, which was originally developed by
the German mathematician Otto Hesse. It is a matrix formed from
all the second-order partial derivatives of the function in question.

Ludwig Otto Hesse (1811–1874)

Definition 14.15 Suppose that f : Rn → R is twice continuously
differentiable. Then the Hessian (or Hessian matrix) of f is the
matrix

H f =



∂2 f
∂x2

1

∂2 f
∂x1∂x2

· · · ∂2 f
∂x1∂xn

∂2 f
∂x2∂x1

∂2 f
∂x2

2
· · · ∂2 f

∂x2∂xn
...

... . . . ...
∂2 f

∂xn∂x1

∂2 f
∂xn∂x2

· · · ∂2 f
∂x2

n
xn

 =


f11 f12 · · · f1n
f21 f22 · · · f2n
...

... . . . ...
fn1 fn2 · · · fnn


The entries of the Hessian are formulæ, and will typically assume
different values at different points x ∈ Rn.
Thanks to Young’s Theorem,6 if f is twice continuously differen-6 Theorem 14.5, page 94.

tiable, then the Hessian H f will be a symmetric matrix.

Example 14.16 Let f (K, L) = KαLβ. Then

∂2 f
∂K2 = α(α−1)Kα−2Lβ and

∂2 f
∂L2 = β(β−1)KαLβ−2,

and also
∂2 f

∂K∂L
= αβKα−1Lβ−1 =

∂2 f
∂L∂K

.

Thus the Hessian is

H f =

[
α(α−1)Kα−2Lβ αβKα−1Lβ−1

αβKα−1Lβ−1 β(β−1)KαLβ−2

]
.

Example 14.17 Suppose that f (x, y) = x2y + x2y2 + y3 + 2x − 4.
Then

∂2 f
∂x2 = 2y + 2y2,

∂2 f
∂y2 = 2x2 + 6y,

∂2 f
∂x∂y

= 2x + 4xy =
∂2 f

∂y∂x
.

The Hessian is therefore

H f =

[
2y + 2y2 2x + 4xy
2x + 4xy 2x2 + 6y

]
.

Stationary points

Now we want to use all of this to understand how to find and
classify stationary points for multivariate functions, as we did for
univariate functions.
Recall that for a univariate function f : D → R, a point x∗ ∈ D
is a stationary point if the first order condition f ′(x∗) = 0 holds.
We want to extend this to multivariate functions f : D → R where
D ⊆ Rn, and the way to do this is by using the first-order partial
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derivatives.
Definition 14.18 Let f : D → R, where D ⊆ Rn. A point x∗ ∈ D
is a stationary point of f if ∇ f (x∗) = 0.

We’re using the gradient ∇ f as the analogue of f ′ here. This is
equivalent to requiring that all the partial derivatives are simultane-
ously zero at the point x∗ in question, since

∇ f (x) =
(

∂ f
∂x1

, . . . ,
∂ f
∂xn

)
=

(
0, . . . , 0

)
= 0

if and only if
∂ f
∂x1

= 0, . . . ,
∂ f
∂xn

= 0.

Definition 14.19 Let f : D → R, where D ⊆ Rn. A point x∗ is a
local maximum of f if, for all x in a neighbourhood (that is, an
open ball Br(x∗)) of x∗ we have f (x) ⩽ f (x∗).
Similarly, a point x∗ is a local minimum of f if, for all x in a
neighbourhood of x∗ we have f (x) ⩾ f (x∗).
A local extreme point is a point which is either a local minimum
or a local maximum.

Figure 14.1: Graph of the function
f (x, y) = x2

Figure 14.2: Graph of the function
f (x, y) = x2 + y2

Figure 14.3: Graph of the function
f (x, y) = x2 − y2

The following is the multivariate analogue of Proposition 3.9, the
First Order Condition (FOC):

Proposition 14.20 For any function f : D → R, where D ⊆ Rn, if x∗
is a local extreme point, then it is a stationary point; that is, ∇ f (x∗) = 0.

Figure 14.1 shows the graph of the function f : R2 → R given by
f (x, y) = x2. This has a line of local minima along the y–axis.
Figure 14.2 shows the function f (x, y) = x2 + y2, which has a single
local minimum at (0, 0).
And Figure 14.3 shows the function f (x, y) = x2 − y2, which has
a saddle point at (0, 0). This is an example of a point for which
∇ f (x∗) = 0, but which is neither a local maximum nor a local
minimum.
This last example demonstrates that, as in the univariate case, a
stationary point doesn’t have to be a local extreme point: the First
Order Condition ∇ f (x∗) = 0 isn’t enough: it’s a necessary but not
sufficient condition.

Second Order Conditions

We want to find the appropriate multivariate Second Order Condi-
tion. Suppose that f : D → R, for D ⊆ Rn is a multivariate, twice
continuously differentiable function. Let x and x+h lie in some ball
Br(x) ⊂ D̊.7 Here, h is relatively short; that is, ∥h∥ is small. 7 Here, D̊ is the interior of D; that is, D

without its boundary ∂D.
The multivariate counterpart of f ′(x) is the gradient ∇ f . What is
the analogue of the second derivative f ′′(x)? It’s the Hessian H f .
The second-order Taylor expansion around x of f is:

f (x+h) = f (x) + hT∇ f (x) + 1
2 hT H f (x)h + R2(x, h)
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Some remarks:
• The term hT∇ f (x) = ⟨h,∇ f (x)⟩.
• Compare the term 1

2 hT H f (x)h with the discussion on quadratic
forms.

• The term R2(x, h) is the analogue of the remainder term in the
univariate version of Taylor’s Theorem. It behaves like a cubic
(degree–3) polynomial in ∥h∥, with no constant, first- or second-
order terms. That is, approximately equal to b∥h∥3 for some
constant b ∈ R.

• If h is short, then the remainder term becomes neglibly small,
and can in practice be ignored.

• If, in addition, ∇ f (x) = 0, we have

f (x+h) ≈ f (x) + 1
2 hT H f (x)h

and this approximation is fairly precise.
We want to know the appropriate second-order conditions to deter-
mine if a stationary point is a local maximum or minimum. This
will involve the Hessian H f , as the multivariate analogue of the
second derivative f ′′(x).
The univariate Second Order Condition8 depends on the sign of8 Proposition 3.10, page 15.

the second derivative f ′′ at the point in question. For multivariate
functions, we look at the definiteness of the Hessian.
Recall that H f is:

Negative semidefinite at x∗ if hT H f (x∗)h ⩽ 0 for all h ̸= 0, and
Positive semidefinite at x∗ if hT H f (x∗)h ⩾ 0 for all h ̸= 0.
Then we have the following Second Order Condition (SOC):

Proposition 14.21 Let f : D → R be twice continuously differentiable.
(i) If x∗ is a local maximum, then H f (x∗) is negative semidefinite.
(ii) If x∗ is a local minimum, then H f (x∗) is positive semidefinite.
Furthermore, if x∗ ∈ D is a stationary point:
(iii) If H f (x∗) is negative definite, then x∗ is a local maximum.
(iv) If H f (x∗) is positive definite, then x∗ is a local minimum.

The Hessian is also related to questions of convexity and concavity:

Proposition 14.22 Let f : D → R be twice continuously differentiable.
Then:
(i) H f (x) is negative semidefinite for all x ∈ D if and only if f is

concave.
(ii) If H f (x) is negative definite for all x ∈ D, then f is strictly

concave.
(iii) H f (x) is positive semidefinite for all x ∈ D if and only if f is

convex.
(iv) If H f (x) is positive definite for all x ∈ D, then f is strictly convex.

Note that the Hessian of − f is H− f (x) = −H f (x). To verify that f
is concave, we can check whether −H f (x) is positive semidefinite.



15 Constrained Optimisation

In economics, we often want to maximise some quantity (wealth,
happiness, health outcomes, profit, etc) or minimise some other

quantity (suffering, effort, loss, etc) and we want solutions that are
the best possible ones in the circumstances; that is, subject to certain
constraints. In this chapter, we will study an important and versatile
method for doing this.

Lagrangian optimisation

We want to formulate a given problem as an optimisation problem,
where we maximise an objective function subject to constraints that
limit our choices.
One example problem might be as follows:

Example 15.1 Suppose we want to maximise the value of f : R3 →
R such that f (x, y, z) = x2 + y2 + z2, subject to the constraints{

x + 2y + z = 30,
2x − y − 3z = 10.

That is, we want to find the values of x, y, z ∈ R that give the
maximum value of f (x, y, z) such that the given linear equations
are satisfied.

The following is a more general example:

Example 15.2 Suppose we have n goods with prices p1, . . . , pn,
and the quantity we buy of each good is given by variables
x1, . . . , xn. Furthermore, suppose we have some utility function
U(x1, . . . , xn) modelling our preferences of the various bundles of
goods we might purchases. We want to buy the correct quantity of
each good in order to maximise U, but we only have a budget of
£m.
We can state this as a constrained optimisation problem:

max
x1,...,xn

U(x1, . . . , xn) subject to p1x1 + · · ·+ pnxn ⩽ m.

We’re now going to study methods of solving this kind of problem.
First of all, we need to know that a given problem actually has a
solution. Fortunately, the multivariate version of the Extreme Value
Theorem1 helps set our minds at rest here: 1 Theorem 5.11, page 29.
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Theorem 15.3 (Extreme Value Theorem) Let f : D → R be a
continuous function defined on a compact domain D ⊂ Rn. Then f has
both a global maximum and a global minimum in D.

So, on a compact domain,2 a maximisation problem always has a2 Recall that, for our purposes, D ⊂ Rn

is compact if it is closed (includes its
boundary) and bounded (can be con-
tained within a finite-radius ball).

solution.
The following is a consequence of Propositions 14.21 and 14.22:

Proposition 15.4 Let f : D → R have a stationary point x∗.
(i) If f is concave, then x∗ is a global maximum.
(ii) If f is convex, then x∗ is a global minimum.

So, for a concave function, a solution to the First Order Conditions
∇ f (x∗) = 0 is always a maximum.

The standard maximisation problem

Let D ⊂ Rn be convex, and consider a function f : D → R. We
study the following problem:

max
x

f (x) subject to


g1(x) ⩾ 0,

...
gm(x) ⩾ 0,

(15.1)

where f , g1, . . . , gm : D → R are all continuously differentiable
inside D, and quasiconcave on D.

We call f the objective function and g1, . . . , gm the constraint func-
tions.
Definition 15.5 The Lagrangian of the problem (15.1) is the func-
tion

L(x, λλλ) = f (x) +
m

∑
j=1

λjgj(x).

The variables λ1, . . . , λm are called Lagrange multipliers.

• In the standard maximisation problem (15.1) we have m different
resources.

• The function gj accounts for the stock of resource j, which is being
depleted in the maximisation process.

• We denote the optimal point by x∗.
• If we use the entire stock of resource j to reach x∗, then gj(x∗) = 0

and we say the constraint is binding.
• If gj(x∗) > 0 then at the optimum x∗ there is still some of re-

source j left, and we say the constraint is slack or not binding.
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The Karush–Kuhn–Tucker Conditions

William Karush (1917–1997)

Harold William Kuhn (1925–2014)

Albert William Tucker (1905–1995)

The Karush–Kuhn–Tucker (or KKT) Conditions for the maximisa-
tion problem (15.1) are:

∂L(x, λλλ)

∂xi
=

∂ f (x)
∂xi

+
m

∑
j=1

λj
∂gj(x)

∂xi
= 0 for i = 1, . . . , n (15.2)

∂L(x, λλλ)

∂λj
= gj(x) ⩾ 0 for j = 1, . . . , m (15.3)

λjgj(x) = 0 for j = 1, . . . , m (15.4)

λj ⩾ 0 for j = 1, . . . , m (15.5)

The idea is that we use these conditions to derive a system of
(possibly nonlinear) simultaneous equations, which we solve to find
the optimal solution(s) for the problem. To illustrate this, let’s look
at an example:

Example 15.6 Suppose we want to maximise the function

f (K, L) = K1/3L1/3

subject to the constraint

3K + 4L ⩽ 100.

This problem has two real variables K, L > 0 and a single con-
straint.
First of all, we have to turn our constraint into a function g(K, L)
such that g(K, L) ⩾ 0. We can do this by setting

g(K, L) = 100 − 3K − 4L ⩾ 0.

The Lagrangian of the problem is then

L(K, L; λ) = K1/3L2/3 + λ(100 − 3K − 4L).

We use this to write down the KKT conditions:

∂L(K, L; λ)

∂K
= 1

3 K−2/3L2/3 − 3λ = 0

∂L(K, L; λ)

∂L
= 2

3 K1/3L−1/3 − 4λ = 0

∂L(K, L; λ)

∂λ
= 100 − 3K − 4L ⩾ 0

λ(100 − 3K − 4L) = 0
λ ⩾ 0

In principle, we now solve this system of simultaneous equations
and inequalities to find the optimal values K∗ and L∗.

However, we haven’t checked all the assumptions here: f and g
must be continuously differentiable and quasiconcave for the KKT
conditions to work. So there is no guarantee that the conditions in
this example actually make sense.
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Rationale for the KKT Conditions

Why do the KKT conditions work? Why do they ensure maximi-
sation of the objective function subject to the various constraints?
We’ll look at each of them in turn:

(i) First let’s look at condition (15.5); that is, λj ⩾ 0 for j =
1, . . . , m. It can be shown that the response of the objective
function f (evaluated at the optimum x∗) to a small increase
dyj in the stock of resource j is d

d f (x∗)yj = λj. So, increasing
the stock of resource j by a small amount dyj causes f to
increase by λjdyj.
A rational agent would be indifferent between staying at the
optimum x∗ or purchasing dyj units of resource j for the price
pj = λj. So λj is called the shadow price of resource j.

(ii) Condition (15.4) says that λjgj(x∗) = 0. We know that if we
use the entire supply of resource j to reach the optimum x∗,
then gj(x∗) = 0; that is, the constraint is binding.
We also know that the marginal prices of all the resources are
non-negative (that is, λj ⩾ 0). If, in addition, λjgj(x∗) = 0,
then every resource that isn’t entirely used up (so λjgj(x∗) > 0
and the condition is slack) will have a marginal price equal to
zero: λj = 0.
These are called complementary slackness conditions. They
imply that, at the optimum x∗,

m

∑
j=1

λjgj(x∗) = 0

and therefore L(x∗, λλλ∗) = f (x∗).
(iii) Condition (15.3) says that

∂L(x, λλλ)

∂λj
= gj(x) ⩾ 0

for j = 1, . . . , m. These are inventory constraints. They
imply that you can’t use more than a given resource than you
actually have. They also ensure that the initial constraints
hold.

(iv) Finally, the first condition, (15.2) says that

∂L(x, λλλ)

∂xi
= 0

for i = 1, . . . , n. These are the first order conditions for the
Lagrangian. However, we have already established that if
the complementary slackness conditions hold, then the La-
grangian L is equal to the objective function f . So these
conditions guarantee maximisation of f .

Technically, the solution to the maximisation problem (15.1) is
(x∗, λλλ∗), a vector of both the xs and λs.
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Importance of concavity

Why do we need the objective function to be concave? Well, if it is,
the following result holds.

Proposition 15.7 Let f : D → R be concave. If there exists (x∗, λλλ∗)
satisfying the KKT conditions for the maximisation problem (15.1), then
x∗ maximises (15.1).

If f is not concave, but it is at least quasiconcave, then we need to
check another condition:
Proposition 15.8 Let f : D → R be quasiconcave. Then there exists
(x∗, λλλ∗) such that:
(i) (x∗, λλλ∗) satisfies the KKT conditions for (15.1), and
(ii) ∇ f (x∗) ̸= 0,
then x∗ maximises (15.1).

Rewriting the problem

It may be necessary to rewrite the problem into the form of (15.1).
(i) If you need to minimise a quasiconvex objective function f ,

then maximising a quasiconcave function − f yields the same
outcome.

(ii) If gj is quasiconvex and we have a constraint gj(x) ⩽ 0, then
we can replace it with a (quasiconcave) constraint hj(x) =
−gj(x) ⩾ 0.

(iii) If you have a constraint of the form gj(x) ⩾ b, where b ̸= 0,
then replace it with hj(x) = gj(x)− b ⩾ 0. Since vertical shifts
don’t affect gradients, we still have ∇gj(x) = ∇hj(x).

(iv) A constraint gj(x) = 0 can often be replaced with an inequal-
ity.
For example, suppose we have a budget constraint ⟨p, x⟩ = y
(that is, you must spend all your income). This can be replaced
by a constraint of the form ⟨p, x⟩ ⩽ y (that is, you can’t spend
more than your income).
Alternatively, you can replace a constraint gj(x) = 0 with two
constraints

gj(x) ⩾ 0 and − gj(x) ⩾ 0.

If the initial constraint is linear, then so is −gj(x), and thus
both concave and quasiconcave. Both constraints must bind,
and the problem simplifies.

(v) If you have a constraint where xi ⩾ 0, then you can introduce
another constraint gm+1(x) = xi.
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KKT conditions for non-negative variables

If we know that our variables x1, . . . , xn are all non-negative, then
we can use the following modified versions of the KKT condi-
tions:

∂L(x, λλλ)

∂xi
=

∂ f (x)
∂xi

+
m

∑
j=1

λj
∂gj(x)

∂xi
⩽0 for i = 1, . . . , n (15.6)

∂L(x, λλλ)

∂λj
= gj(x) ⩾ 0 for j = 1, . . . , m (15.7)

λjgj(x) = 0 for j = 1, . . . , m (15.8)

xi
∂L(x, λλλ)

∂xi
= 0 for i = 1, . . . , n (15.9)

λj ⩾ 0 for j = 1, . . . , m (15.10)

xi⩾ 0 for i = 1, . . . , n (15.11)

(Alterations are highlighted in red.)

KKT conditions cookbook

To summarise all the above, this is the procedure for using the KKT
conditions to solve an optimisation problem:

(i) Check that the domain D ⊆ Rn is convex.
(ii) Check that f (or − f , for a minimisation problem) is:

(a) concave, or
(b) quasiconcave (and in this case we also need ∇ f (x∗) ̸= 0).

(iii) Check that after you rewrite the initial conditions and define
the constraints g1, . . . , gm, they are all quasiconcave.

(iv) Check that f (or − f ) and g1, . . . , gm are all continuously dif-
ferentiable inside D.

(v) Write down the KKT conditions – either the original form,
or the modified ones, or some mixture of the two if some
variables are non-negative.

Example 15.9 Suppose that α ∈ (0, 1). Consider the maximisation
problem

max
x,y

xαy1−α subject to


x + y ⩽ 1

x ⩽ b
x ⩾ 0
y ⩾ 0

To start with, we need to define the constraints. The first two can
be rewritten as

g1(x, y) = 1 − x − y ⩾ 0
g2(x, y) = b − x ⩾ 0

Now we need to check the assumptions:
(i) The set D = R2 is convex. (The same is true for R2

+ as well.)
(ii) The objective function is a Cobb–Douglas function with
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exponents α + (1−α) = 1, and hence it is concave (and thus
concave). To see this, check the definiteness of H f .

(iii) The functions g1 and g2 are linear, and hence concave and
quasiconcave.

(iv) The functions f , g1 and g2 are continuously differentiable
inside D.

The Lagrangian is

L(x, y; λ1, λ2) = xαy1−α + λ1(1 − x − y) + λ2(b − x)

Now we write down the KKT conditions. Since x, y ⩾ 0 we can
use the modified versions:

∂L
∂x

= α
( y

x
)1−α − λ1 − λ2 ⩽ 0

∂L
∂y

= (1−α)
( x

y
)α − λ1 ⩽ 0

∂L
∂λ1

= 1 − x − y ⩾ 0
∂L
∂λ2

= b − x ⩾ 0

λ1(1 − x − y) = 0 λ2(b − x) = 0

x
∂L
∂x

= 0 y
∂L
∂y

= 0

λ1 ⩾ 0 λ2 ⩾ 0
x ⩾ 0 y ⩾ 0

We now solve these to find the optimal values for x and y.

Exogenous parameters

In economics, we often want to solve optimisation problems that
include certain parameters that we have no direct control over, such
as prices, inflation, interest rates, exchange rates, tax rates, etc.
These are called exogenous parameters.
We have a couple of questions to consider:
(i) How does the solution to the optimisation problem change in

relation to changes in the underlying parameters?
(ii) How does the optimal value change when the parameters

vary?
Both of these are related to stability.

Let p ∈ Rl be a vector of parameters. Then our maximisation
problem (15.1) becomes

max
x

f (x; p) subject to


g1(x; p) ⩾ 0

...
gm(x; p) ⩾ 0

(15.12)

Suppose we find a solution. It will typically depend on p. Let:
• λ∗(p) = λ∗(x(p); p) denote the Lagrange multiplier associated

with the maximum,
• x∗(p) and λ∗(x∗(p); p) stand for the full solution of the problem,
• V(p) = f (x∗(p); p) represent the value of f at its solution deter-

mined by p – This is known as the value function.
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Theorem 15.10 (The Envelope Theorem) For any k = 1, . . . , l,

∂V(p)
∂pk

=

(
∂L(x, λλλ)

∂pk

)∣∣∣∣ x=x∗(p),
λλλ=λλλ(x∗(p),p).

If n = m = l = 1, this simplifies to

∂V(p)
∂p

=

(
∂ f (x; p)

∂p
+ λ

∂g(x; p)
∂p

)∣∣∣∣ x=x∗(p),
λ=λ∗(x∗(p),p).

We will just prove the simpler case (n = m = l = 1) here:

Proof The KKT conditions require the solution to satisfy

∂ f (x∗(p); p)
∂x

+ λ∗ ∂g(x∗(p); p)
∂x

= 0

and hence
∂ f (x∗(p); p)

∂x
= −λ∗ ∂g(x∗(p); p)

∂x
. (15.13)

Now differentiate V(p) with respect to p:

∂V(p)
∂p

=
∂ f (x∗(p); p)

∂x
∂x∗(p)

∂p
+

∂ f (x∗(p); p)
∂p

Substituting (15.13) for ∂ f
∂x we get

∂V(p)
∂p

= −λ∗ ∂g(x∗(p); p)
∂x

∂x∗(p)
∂p

+
∂ f (x∗(p); p)

∂p
. (15.14)

If λ∗ = 0 then we have finished. If λ∗ > 0 then g(x∗(p), p) = 0 (the
constraint holds). Differentiate it with respect to p to get:

0 =
∂g(x∗(p); p)

∂x
∂x∗(p)

∂p
+

∂g(x∗(p); p)
∂p

and hence

∂g(x∗(p); p)
∂x

∂x∗(p)
∂p

= −∂g(x∗(p); p)
∂p

.

Substitute this into (15.14) and the result follows.

Alfred Marshall (1842–1924)

Example 15.11 We want to maximise a utility function u(x) where
z is a vector of prices, and y is income:

max
x

u(x) subject to y − ⟨z, x⟩ ⩾ 0.

The vector of parameters is p = [ z
y ].

Let x∗(z, y) be the solution (Marshallian demand) and V(z, y) =
u(x∗(z, y)) be the value function for this problem (indirect utility).
How does the utility change when prices or income change?
To solve this problem, first we set up the Lagrangian:

L(x, λ; z, y) = u(x) + λ(y − ⟨z, x⟩).
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Then we apply the Envelope Theorem to obtain:

∂V(z, y)
∂zi

=

(
∂ f (x; z, y)

∂zi
+ λ

∂g(x; z, y)
∂zi

)∣∣∣∣
x=x∗,λ=λ∗

= −λ∗x∗i

and

∂V(z, y)
∂y

=

(
∂ f (x; z, y)

∂y
+ λ

∂g(x; z, y)
∂y

)∣∣∣∣
x=x∗,λ=λ∗

We combine these two to get Roy’s Identity. René François Joseph Roy (1894–1977)

Summary

• To obtain the derivative of a value function with respect to a given
parameter, calculate the partial derivative of the Lagrangian L
with respect to this parameter. Next evaluate it at the optimal x∗
and λλλ∗.

• If the complementary slackness conditions hold:

λ∗
j gj(x; p) = 0 for j = 1, . . . , m

then the Lagrangian L at the optimum x∗ will not depend on
λλλ∗. However, its partial derivatives might depend on λλλ∗. These
derivatives are equal to the partial derivatives of V.

• Interpretation: The Envelope Theorem is a direct impact theorem.
At the maximum only, the direct impact of a change in parameter
p matters. The indirect effect through x∗(p) cancels out. It
matters how changes in price affects your budget, but its impact
on optimal consumption is negligible.





16 Systems of Difference Equations

Earlier, we learned how to solve a single first-order difference
equation. Now we’ll develop a technique for solving systems

of simultaneous first-order difference equations.

Matrix notation

Suppose we have a system

xt+1 = axt + byt + r
yt+1 = cxt + dyt + s

of coupled difference equations. That is, two sequences of real num-
bers (xt) and (yt) where each element in either sequence depends
linearly on the previous element in both sequences, and also on
some fixed constant. We can rewrite this in matrix form:[

xt+1
yt+1

]
=

[
a b
c d

] [
xt
yt

]
+

[
r
s

]
.

This is a system of first order, linear, inhomogeneous difference
equations.
It is first order because each variable depends only on the values
of the variables in the previous time period. It is linear, because
each variable is a linear combination of previous values. And it
is inhomogeneous because at least some of the equations have an
additional constant term.
We can write this in more compact form as

vt+1 = Avt + b

where A is the coefficient matrix of the system. If b = 0 the system
is homogeneous; if not, it’s inhomogeneous.
We want to solve this by means of a (linear) change of variables.

Homogeneous difference equations

We will start by looking at the homogeneous case (b = 0) and then
progress to the inhomogeneous case later.
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Diagonal coefficient matrix

Suppose we have a diagonal coefficient matrix

A =

[
a 0
0 d

]
.

Then the system we get is

xt+1 = axt

yt+1 = dxt

Here, the two sequences (xt) and (yt) are completely unrelated,
so essentially we just have two separate homogeneous, first-order
equations to solve. We know how to do this already.
More generally, if

vt =

x1,t
...

xn,t

 and A =

a1 0 0

0 . . . 0
0 0 an


then we have the following system:

x1,t+1 = a1x1,t
...

xn,t+1 = anxn,t

Diagonalisable coefficient matrix

Now suppose we have a coefficient matrix A that is diagonalisable.
That is, there exists some diagonal matrix D and invertible matrix
Q such that A = QDQ−1.
Then our system vt+1 = Avt can be rewritten as vt+1 = QDQ−1vt.
Why is this helpful?
We want a closed form expression for vt, and by substitution we
find that

vt = Avt−1 = A(Avt−2) = · · · = A(A(· · · (Av0) · · · )) = Atv0.

If A = QDQ−1, then At = QDtQ−1, and so

vt = QDtQ−1v0

which in principle is relatively straightforward to calculate.

Example 16.1 Consider the system

xt+1 = 4xt + 2yt

yt+1 = −xt + yt

with x0 = 1 and y0 = 0.
The coefficient matrix of this system is A =

[ 4 2
−1 1

]
, which has

characteristic polynomial χA = k2 − 5k + 6 = (k − 2)(k − 3).
Its eigenvalues are thus k = 2 and k = 3. The corresponding
eigenvectors are

[ 1
−1

]
and

[ 2
−1

]
, which are linearly independent,
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and hence A is diagonalisable. So we can set

D =

[
2 0
0 3

]
, Q =

[
1 2
−1 −1

]
, Q−1 =

[
−1 −2
1 1

]
.

Then vt = Atv0, and so[
xt
yt

]
=

[
4 2
−1 1

]t [x0
y0

]
=

[
1 2
−1 −1

] [
2t 0
0 3t

] [
−1 −2
1 1

] [
x0
y0

]
=

[
−2t + 2(3t) −2(2t) + 2(3t)

2t − 3t 2(2t)− 3t

] [
x0
y0

]
=

[
(−2t + 2(3t))x0 + (−2(2t) + 2(3t))y0

(2t − 3t)x0 + (2(2t)− 3t)y0

]
The general solution is therefore:

xt = (−2t + 2(3t))x0 + (−2(2t) + 2(3t))y0

yt = (2t − 3t)x0 + (2(2t)− 3t)y0

The specific solution when x0 = 1 and y0 = 0 is:

xt = −2t + 2(3t)

yt = 2t − 3t

More generally, suppose we have n difference equations, and an
n×n diagonalisable coefficient matrix A = QDQ−1 for some n×n
invertible matrix Q and n×n diagonal matrix D.
Suppose that A has eigenvalues k1, . . . , kn (which might not all be
distinct), so that

D =

k1 0 0

0 . . . 0
0 0 kn

 .

Let wt = Q−1vt. This is our linear change of variables. Then the
system wt+1 = Dwt has solutions

wt =

c1kt
1

...
cnkt

n


where the constants c1, . . . , cn are the initial values of wt; that is,

w0 =

c1
...

cn

 .

Now we can solve the original system vt+1 = Avt by observing that
vt = Qwt. Hence

vt = Qwt = Q

c1kt
1

...
cnkt

n

 = c1kt
1u1 + · · ·+ cnkt

nun,
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where ui is the eigenvector of A corresponding to the eigenvalue ki
for i = 1, . . . , n.
Furthermore, v0 = Qw0, so w0 = Q−1v0 gives the values of the
constants c1, . . . , cn.
Applying this approach to Example 16.1 above, we have

wt = Q−1vt =

[
−1 −2
1 1

] [
xt
yt

]
=

[
−xt − 2yt

xt + yt

]
.

Hence if v0 =
[

1
0
]

we have[
c1
c2

]
= w0 =

[
−1 − 2(0)

1 + 0

]
=

[
−1
1

]
.

Then the solution is[
xt
yt

]
= (−1)(2t)

[
1
−1

]
+ (1)(3t)

[
2
−1

]
=

[
−2t + 2(3t)

2t − 3t

]
which is the solution we found above.

Inhomogeneous difference equations

Now we want to solve a system of the form

vt+1 = Avt + b (16.1)

where A is diagonalisable and b ̸= 0.
As in the single equation case, we want a particular solution vt.
First we’ll look for a steady state solution – one for which vt = v∗

for all t; that is, a constant solution that doesn’t change as t varies.
So let v∗ = vt = vt+1 and substitute into (16.1):

v∗ = Av∗ + b =⇒ (I−A)v∗ = b =⇒ v∗ = (I−A)−1b.

For this to work, we need the matrix (I−A) to be invertible; that
is, det(I−A) ̸= 0.1 If det(I−A) = 0 then the system doesn’t have a1 This is the analogue of the case a ̸= 1

when we solved the single difference
equation.

steady-state solution. In this case, there are other things we can try:
we can simplify the problem in some way, or we can try low-degree
polynomials.22 Recall the solution xt = bt in the single-

equation case.
When we’ve found a particular solution vt we can use the fact
that the general solution to an inhomogeneous system of linear
difference equations is the sum of:
(i) any particular solution to the system (such as a steady-state

solution if one exists), and
(ii) the general solution to the corresponding homogeneous sys-

tem vt+1 = Avt.
We now know how to solve both of these.

Proof Suppose that
vt+1 = Avt + b.

Let vt be a particular solution of this, so

vt+1 = Avt + b.
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Let
ut+1 = Aut

be the corresponding homogeneous system. Set vt = vt + ut. Then

Avt + b = A(vt + ut) + b
= (Avt + b) + Aut

= vt+1 + ut+1

= vt+1

as claimed.

The general solution to the system

vt+1 = Avt + b

is
vt = c1kt

1u1 + · · ·+ cnkt
nun + (I−A)−1b

where k1, . . . , kn are the eigenvalues of the coefficient matrix A, and
u1, . . . , un are the corresponding eigenvectors. If (I−A) is singular
(that is, it has zero determinant and is thus not invertible) then the
steady state solution doesn’t exist, so the last term above will need
to be replaced by some other particular solution.
To summarise, the general method is as follows:
(i) Find any particular solution vt of the inhomogeneous system.

(First try the steady state solution, if one exists.)
(ii) Calculate the eigenvalues k1, . . . , kn and eigenvectors u1, . . . , un

of the coefficient matrix A, and substitute them into

vt = c1kt
1u1 + · · ·+ cnkt

nun + (I−A)−1b.

(iii) If we have initial conditions, we can calculate the coefficients
c1, . . . , cn from

v0 = c1u1 + · · ·+ cnun + v0.

Stability

The linear system
vt+1 = Avt + b

is globally asymptotically stable if, for all initial values of u0, the
corresponding homogeneous system

ut+1 = Aut

converges to 0 as t → ∞.

Proposition 16.2 Consider the linear system

vt+1 = Avt + b.

If every eigenvalue of A has an absolute value strictly less than 1, then
the system is globally asymptotically stable, and for every v0 we have
vt → (I−A)−1b as t → ∞ if (I−A) is invertible.
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Lemma 16.3 Let A be an n×n matrix with ∑n
j=1 |aij| < 1 for all

i = 1, . . . , n.3 Then every eigenvalue of A has absolute value strictly less
than 1.

3 Here, aij is the (i, j)th element of A.

Example 16.4 Consider the system

xt+1 = ayt

yt+1 = 1
2 xt

with x0 = y0 = 1. The coefficient matrix is A =
[ 0 a

1/2 0
]

with
characteristic polynomial χA = k2 − 1

2 a = (k +
√

a/2)(k −
√

a/2).
This system is stable if 0 ⩽ a < 2.

Higher order difference equations

How do we solve a higher order difference equation? One method
is to rewrite them as a system of first-order difference equations,
and then use the approach we’ve just developed.

Example 16.5 The Fibonacci Sequence is the second-order homo-
geneous linear difference equation

xt+1 = xt + xt−1

with x0 = x1 = 1. We can rewrite this as a system of two first-order
linear difference equations by introducing a new sequence yt that
is the original sequence shifted along by one.
Set yt = xt+1. So now we have a system

xt+1 = yt

yt+1 = xt+2 = xt+1 + xt = yt + xt

This has coefficient matrix A =
[

0 1
1 1

]
.

Example 16.6 Consider the third-order inhomogeneous linear
difference equation

xt+3 = 2xt+2 + 3xt+1 − xt + 1.

Define yt = xt+1 and zt = yt+1 = xt+2. Then we get

xt+1 = yt

yt+1 = zt

zt+1 = xt+3 = 2xt+2 + 3xt+1 − xt + 1
= −xt + 3yt + 2zt + 1

which can be written in matrix form asx
y
z


t+1

=

 0 1 0
0 0 1
−1 3 2

x
y
z


t

+

0
0
1


and solved using the method discussed earlier.



17 Differential Equations

Differential equations often turn up in economics, and can be
regarded as a continuous analogue of difference equations, for

when we want to model some process as time varies continuously
rather than discretely.

Definitions

A differential equation is an equation involving first or higher
derivatives. The order of a differential equation is the highest order
of derivative included in the equation.

Example 17.1 The equation

dx
dt

+ 7x2 = e2t

is a first-order differential equation, while

d2y
dx2 + 3

dy
dx

− 4y = sin(3x)

is a second-order differential equation.

These are ordinary differential equations (sometimes abbreviated
as ODEs) because they only involve ordinary differentiation; partial
differential equations (PDEs) include partial derivatives, and are
beyond the scope of this module.

Pierre-Simon, Marquis de Laplace (1749–
1827)

Example 17.2 Examples of partial differential equations include
Laplace’s Equation

∇2u =
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 = 0

and the 1–dimensional wave equation

∂2u
∂x2 =

1
c2

∂2u
∂t2 ,

both of which are relevant in physics.

A differential equation is linear if it has only linear terms in the
main variable and its derivatives.
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Example 17.3 The equations

3
dy
dx

+ 2y = ex

3t
dx
dt

+ 2 sin(t)x = et

d2y
dx2 − 3

dy
dx

− 4y = sin(3x)

are linear, while (
dy
dx

)2

+ cos(y) = ex

is nonlinear.

We will learn how to solve three common types of differential
equation: first order separable equations, first order linear equations,
and second order linear equations with constant coefficients.

First-order separable equations

Definition 17.4 An ordinary differential equation of the form

dx
dt

= f (x)g(t),

where f is a function of x and g is a function of t, is said to be
separable.

Given a separable equation

dx
dt

= f (x)g(t),

we can rearrange it to give

1
f (x)

dx
dt

= g(t).

Integrating both sides with respect to t, we get∫ 1
f (x)

dx
dt

dt =
∫

g(t) dt.

The left hand side of this can be rewritten using the chain rule:∫ 1
f (x)

dx =
∫

f (x)g(t) dt.

If possible, we solve both of these integrals, being careful not to
forget the constant of integration, and attempt to rearrange the
resulting equation to give an expression for x in terms of t. This is
the general solution to the equation.
If we then have initial conditions x = x0 when t = t0, we can
then substitute these in to eliminate arbitrary constants and find
the specific solution corresponding to those initial conditions or
boundary conditions.
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However, if f (x0) = 0 then the specific solution will be a constant
function x(t) = c for some particular c ∈ R.
We’ll illustrate this with a worked example.

Example 17.5 Consider the equation

dx
dt

+ 2x2t = 0

We can rearrange this to

dx
dt

= −2x2t

and then to
− 1

2x2
dx
dt

= t.

Now we can integrate both sides with respect to t:

−1
2

∫
x−2 dx

dt
dt =

∫
t dt

=⇒ −1
2

∫
x−2 dx =

∫
t dt

which gives
1
2 x−1 = 1

2 t2 + c

which we can simplify and rearrange to give

x =
1

t2 + b
.

Here, b is an arbitrary constant. Any solution of this form will
satisfy the original equation (check this), so we now have a family
of solutions, each determined by some constant b. This is the
general solution of the equation. Some example solutions are
shown in Figure 17.1.

Now suppose that we have the initial conditions x = −1
2 when

t = 0. We substitute these values into the general solution and
solve for b, to get b = −2, and the specific solution

x = 1
t2−2 .

This is the function whose graph passes through the point (t, x) =(
0,−1

2

)
; it is the orange curve in Figure 17.1.

We must also consider something else. Given dx
dt = −2x2t, what

happens when x = 0? In that case, the equation becomes dx
dt = 0,

which means that x is a constant (x = 0) for all t ∈ R.

Figure 17.1: Graphs of some solutions
for the differential equation in Exam-
ple 17.5
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First order linear differential equations

We’ll start with an example.

Example 17.6 Consider the equation

x2 dy
dx

+ 2xy = b(x)

for some function b(x). How do we solve this? We want an
expression for y as a function of x, but it’s not immediately obvious
how we’d find one. But notice that

d
dx

(x2y) = 2xy + x2 dy
dx

,

which happens to be the left hand side of the original equation,
which we can then rewrite as

d
dx

(x2y) = b(x).

Then integrate both sides with respect to x, to get

x2y =
∫

b(x) dx + c

and hence
y =

1
x2

∫
b(x) dx +

c
x2 .

This is the general solution of the equation.
Now let’s try solving the equation

x2 dy
dx

+ 2xy = cos(x)

where y = 1 when x = π.
Using the method above, we get the general solution

y =
c

x2 +
sin(x)

x2 .

Some examples are shown in Figure 17.2. Substituting in y = 1
and x = π and solving for c we get c = π2, so the specific solution
to this problem is

y =
π2 + sin(x)

x2 .

This is the solution that passes through the point (x, y) = (π, 1),
and is the purple graph in Figure 17.2.

Figure 17.2: Graphs of some solutions
for the differential equation in Exam-
ple 17.6

In this case we were fortunate that the left hand side of the equation
happened to be the derivative of x2y via the product rule for differ-
entiation. This won’t always be the case, so we want a more general
and widely-applicable method for solving equations of this type.
The idea is that given a first order linear differential equation

dy
dx

+ a(x)y = b(x) (17.1)
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we want to rewrite the left hand side as d
dx (c(x)y) for some function

c(x). In general, the equation (17.1) won’t be in this form already,
so we want an integrating factor: a function c(x) such that

c(x)
dy
dx

+ a(x)c(x)y =
d

dx
(c(x)y). (17.2)

By the product rule for differentiation:

d
dx

(c(x)y) =
dc
dx

y + c
dy
dx

Setting this equal to the left hand side of (17.2) we get

c
dy
dx

+ acy =
dc
dx

y + c
dy
dx

.

So we need a function c(x) such that dc
dx = ca. If we set c(x) =

e
∫

a(x) dx then
dc
dx

= a(x)e
∫

a(x) dx = a(x)c(x)

as required. This function

c(x) = e
∫

a(x) dx (17.3)

is the integrating factor.

Example 17.7 We want to solve the equation

dy
dx

+ xy = x

with y = 3 when x = 0.

The integrating factor is c(x) = e
∫

x dx = ex2/2. So our original
equation becomes

ex2/2 dy
dx

+ xex2/2y = xex2/2

=⇒ d
dx

(
ex2/2y

)
= xex2/2

=⇒ ex2/2y =
∫

xex2/2 dx = ex2/2 + k

=⇒ y = 1 + ke−x2/2

This is the general solution, and some examples are shown in
Figure 17.3. To find the specific solution, we substitute y = 3 and
x = 0, then solve for k:

3 = 1 + k

Hence k = 2 and the specific solution is

y = 1 + 2ex2/2.

This is the pink graph in Figure 17.3

Figure 17.3: Graphs of some solutions to
the differential equation in Example 17.7

So, to summarise:

(i) Rearrange the equation into the form dy
dx + a(x)y = b(x)

shown in (17.1).
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(ii) Calculate the integrating factor c(x) = e
∫

a(x) dx as in (17.3).
You can ignore the constant of integration at this stage. (If
you don’t, it will just end up combining with the constant of
integration in step (iv).)

(iii) Multiply both sides of the equation by this factor. The left
hand side can then be rewritten in the form d

dx (c(x)y).
(iv) Integrate both sides with respect to x, taking care not to forget

the constant of integration.
(v) Solve for y. This is the general solution.
(vi) Substitute in any initial or boundary conditions to get the

specific solution.

Second order linear differential equations

First, we will look at the homogeneous case:

a
d2y
dx2 + b

dy
dx

+ cy = 0 (17.4)

In particular, we will assume that a, b, c ∈ R are constants.

Directly integrable equations

If c = 0 then we have the equation

a
d2y
dx2 + b

dy
dx

= 0.

Integrating this equation with respect to x gives the first order linear
equation

a
dy
dx

+ by = k

which we can solve using the integrating factor method.

Linearity

Let

L = a
d2

dx2 + b
d

dx
+ c

be a linear differential operator. Then the equation (17.4) can be
wriutten as

Ly = 0.

Suppose we have two functions u1 and u2. Then

L(u1 + u2) = a
d2

dx2 (u1 + u2) + b
d

dx
(u1 + u2) + c(u1 + u2)

=

(
a

d2u1

dx2 + b
du1

dx
+ cu1

)
+

(
a

d2u2

dx2 + b
du2

dx
+ cu2

)
= Lu1 + Lu2
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Also, for any function u and constant k ∈ R we have

L(ku) = a
d2

dx2 (ku) + b
d

dx
(ku) + c(ku)

= ka
d2u
dx2 + kb

du
dx

+ kcu

= k
(

a
d2u
dx2 + b

du
dx

+ cu
)

= kLu

These are linearity properties. Compare with the explanation and
definition of linear differential equations given earlier, and the
discussion of linear maps in the material on linear algebra.
What this means is that if u1 and u2 are solutions of (17.4), that is,
Lu1 = 0 and Lu2 = 0, then so is any function of the form Au1 + Bu2,
where A, B ∈ R.

The complementary solution

The general solution of (17.4) is of the form Au1 + Bu2. Unless
u1 = ku2 for some k ∈ R, in which case we say that u1 and u2 are
linearly dependent and we need to do a bit more work.
The approach we will use is to try a solution of the form y = emx
for some m ∈ R. Then

dy
dx

= memx and
d2y
dx2 = m2emx.

So

Ly = am2emx + bmemx + cemx

= emx(am2 + bm + c)

For a homogeneous equation we have Ly = 0, so

emx(am2 + bm + c) = 0.

We know that emx ̸= 0 for any x ∈ R, so this means that

am2 + bm + c = 0. (17.5)

This is the characteristic equation of the problem (17.4) and we
can solve it by one of the usual methods. There are three cases to
consider:
Case 1 (two distinct real roots): Suppose the characteristic equa-

tion (17.5) has two distinct real roots m1 and m2. Then y = em1x

and y = em2x are both solutions to (17.4) and they are both lin-
early independent, since em1x ̸= em2x if m1 ̸= m2. So the general
solution is

y = Aem1x + Bem2x. (17.6)
Case 2 (one repeated real root): Suppose we have one (repeated)

real root m. Then y = emx is a solution to (17.4) but we need
another independent solution. Try y = xemx (check this works).
Then the general solution is

y = Aemx + Bxemx = (A + Bx)emx (17.7)
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Case 3 (no real roots / two distinct complex roots): Suppose we have
two complex roots m = p±qi (where i2 = −1).1 This gives solu-1 If you’re not familiar with complex

numbers, then don’t worry, just accept
this on faith. tions y = e(p+qi)x and y = e(p−qi)x. But2

2 This requires x to be in radians.
eix = cos(x) + i sin(x)

so the general solution is

y = epx(A cos(qx) + B sin(qx)) (17.8)

Example 17.8 Solve

d2y
dx2 − 3

dy
dx

+ 2y = 0.

The characteristic equation is

m2 − 3m + 2 = (m − 1)(m − 2) = 0

This is case 1, so the general solution is

y = Aex + Be2x

since m = 1 and m = 2 are the distinct real roots. See Figure 17.4.

Figure 17.4: Some solutions to the equa-
tion in Example 17.8

Example 17.9 Solve

d2x
dt2 + 4

dx
dt

+ 4x = 0.

The characteristic equation is

m2 + 4m + 4 = (m + 2)2 = 0.

This is case 2, so the general solution is

x = (A + Bt)e−2t,

since we have a single root m = −2. See Figure 17.5.

Figure 17.5: Some solutions to the equa-
tion in Example 17.9

Example 17.10 Solve

d2y
dt2 − 6

dy
dt

+ 13y = 0.

The characteristic equation is

m2 − 6m + 13 = 0.

Using the quadratic formula,

m =
6 ±

√
36 − 52
2

= 3 ± 2
√
−1 = 3 ± 2i.

This is case 3, so the general solution is

y = e3t(A cos(2t) + B sin(2t)),

since we have two complex roots. See Figure 17.6.

Figure 17.6: Some solutions to the equa-
tion in Example 17.10
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The particular solution

We now know how to solve homogeneous second order linear
differential equations of the form (17.4). Now we want to solve
inhomogeneous second order linear differential equations of the form

a
d2y
dx2 + b

dy
dx

+ cy = f (x) (17.9)

where a, b, c ∈ R are constants, and f is some function of x.
As with difference equations, we want to find a particular solution
that accounts for the nonzero term on the right hand side of (17.9).
If

L = a
d2

dx2 + b
d

dx
+ c

is the appropriate linear differential operator, and u1 and u2 are
linearly independent solutions to the homogeneous equation (17.4),
then suppose that v is a function satisfying the inhomogeneous
equation (17.9). Then

L(Au1 + Bu2 + v) = ALu1 + BLu2 + Lv = 0 + 0 + f (x)

so the general solution of (17.9) is the sum of the complementary
solution (the general solution of the associated homogeneous equa-
tion) and the particular solution (the solution of the inhomogeneous
equation).
So how do we find the particular solution? We’ll adopt a trial-and-
error approach.

Example 17.11 We want to solve the equation

d2y
dx2 − 3

dy
dx

+ 2y = 4x.

We found the complementary solution y = Aex + Be2x in Exam-
ple 17.8. For the particular solution, we will try a solution of the
form v = Cx + D. Then

dv
dx

= C and
d2v
dx2 = 0.

Substituting this into the original equation we have

0 − 3C + 2(Cx + D) = 4x
=⇒ 2Cx + (2D − 3C) = 4x

Now we compare the coefficients of x and the constant terms on
either side of this equation to see that

2C = 4, 2D − 3C = 0.

Solving for C and D we get C = 2 and D = 3, so the particular
solution is

v(x) = 2x + 3.

The general solution of the inhomogeneous equation is thus

y(x) = Aex + Be2x + 2x + 3.
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Now suppose we have initial conditions y = 3 and dy
dx = 1 when

x = 0. The first derivative of the general solution is

dy
dx

= Aex + 2Be2x + 2

and substituting the initial conditions we find that

y = 3 = A + B + 3 = Aex + Be2x + 2x + 3 =⇒ A + B = 0
dy
dx

= 1 = A + 2B + 2 = Aex + 2Be2x + 2 =⇒ A + 2B = −1

We solve these to get A = 1 and B = −1. Then the specific solution
satisfying the given initial conditions is

y = ex − e2x + 2x + 3.

See Figure 17.7 for a graph of this function.

Figure 17.7: Graph of the specific solu-
tion in Example 17.11

Broadly speaking, to find the particular solution, we should try the
most general function of the same type as f (x). See Table 17.1 for a
list of suggested trial solutions.

Table 17.1: Suggested trial solutions

f (x) trial solution

constant C
x Cx + D
x2 Cx2 + Dx + E
degree–n polynomial in x Anxn + · · ·+ A1x + A0

(general degree–n polynomial in x)
ekx Cekx

sin(kx) or cos(kx) C cos(kx) + D sin(kx)

In the last two cases, where f (x) = ekx, sin(kx) or cos(kx), we must
be a little careful. We need the particular solution to be linearly
independent from the complementary solution, so be prepared to
try Cxekx or Cx2ekx if ekx is part of the complementary solution,
and something like Cx cos(kx) + Dx sin(kx) if cos(kx) or sin(kx)
are part of the complementary solution.

Example 17.12 Solve

d2y
dx2 − 3

dy
dx

+ 2x = 3ex.

The complementary solution is y = Aex + Be2x as before. To find
the particular solution, normally we’d use v = Cex as the trial
solution, but this time we have to use v = Cxex instead. (And
if that doesn’t work, try Cx2ex, Cx3ex and so on, until we find
something that works.)
Here, then,

dv
dx

= C(1 + x)ex and
d2v
dx2 = C(2 + x)ex.
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Substituting these into the differential equation we get

C(2 + x − 3 − 3x + 2x)ex = 3ex

−Cex = 3ex

So C = −3 and hence v = −3ex. Therefore, the general solution to
the inhomogeneous equation is

y = Aex + Be2x − 3xex = (A − 3x)ex + Be2x.

Summary

To solve a linear second order differential equation

a
d2y
dx2 + b

dy
dx

+ cy = f (x)

subject to given initial conditions:
(i) Solve the characteristic equation am2 + bm + c = 0.
(ii) Write down the complementary solution

u(x) = Aem1x + Bem2x,
u(x) = (A + Bx)emx,

or epx(A cos(qx) + B sin(qx))

(iii) Find the particular solution v(x) and write down the general
solution y = u + v.

(iv) Now find the specific solution by substituting the boundary
conditions into this general solution and solving the resulting
simultaneous equations.
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