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The Problem

We study the transmission of knowledge across players when all
variables are jointly normally distributed.

So far, most work on Common Knowledge ( (CK) has been restricted
to discrete and finite state spaces ([1], [4]) that facilitate analytics.

But, it makes for difficulties in the application of the theory to market
situations, where sources of information, as well as outcomes (such as
prices) are neither discrete nor bounded.

So, we follow [2] in setting up a model where all variables are jointly
normally distributed.

We have done this before in [3].
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The Model

There are two individuals, A and B, who both want to predict a
variable y .

They observe variables

X = (x1, x2, · · · xKA
) and Z = (z1, z2, · · · zKB

).

Their objective is to predict another random variable, y , that is
one-dimensional.
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Gaussian: (y ,X ,Z ) is jointly normally distributed, each centered,
with expectation 0, and variances and covariances

V (y) = σ2y ; V (X ) = Σxx ; V (Z ) = Σzz ;

cov(y ,X ) = σyx ; cov(y ,Z ) = σyz , cov(X ,Z ) = Σxz .

The variance-covariance matrix of (y ,X ,Z ) is of dimension
1 + KA + KB .

The matrices V (X ),V (Z ) are nonsingular.

The realizations of the random variables X and of Z are private
information.

However both individuals are aware of the parameters of Σy ,X ,Z .
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Predictions and Learning

Individuals begin by making their own predictions; they use
expectations of y conditional on their own information sets

IA0 = X ; IB0 = Z .

So, the first step yields

ŷA0 = Ey |IA0 = Xβ; ŷB0 = Ey |IB0 = Zδ;

here,

β = Σ−1xx σ
′
yx ; δ = Σ−1zz σ

′
yz .
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In the next step, individuals update their information as

IA1 = IA0|ŷB0; IB1 = IB0|ŷA0,

and announce

ŷA1 = Ey |IA1, ŷB1 = Ey |IB1.

.......

And this goes on until

CK(n) : ŷAn = ŷBn

In step n, the predictions coincide and we have Common
Knowledge.
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Common Knowledge typically occurs in finitely many steps: in fact, in
min{KA,KB}+ 1 steps if the first deduction is made by the individual
with higher of KA and KB , followed by the other individual.

In this paper/presentation, we want to consider shorter paths to CK,
and so concentrate on models and examples displaying CK(1).

We distinguish between two types of phenomena:

(P) for parametric ..... where CK(1) occurs for all sample paths X ,Z
because it is a property of the parameters;

(S) for sample-dependent ... where CK(1) occurs only for designated
samples (X ∗,Z ∗) and may disappear for ε-perturbations.

H. Polemarchakis ( Warwick) Gaussian common knowledge META March 18, 2016 7 / 24



Parametric CK(1)

We first look at parametric properties that restrict Σxx ,Σzz ,Σxz .... to
ensure that common knowledge occurs in one step: that is, the model
displays CK(1) for all sample paths X .Z .
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Few Variables Suppose KA = 1. Then

ŷA0 = xβ ŷB0 = Z ′δ.

We have, in consequence, that B can figure out the value of x from
A’s prediction because she is assumed to know the value of the
parameter β =

σxy
σxx
, and so ...

ŷB1 = Ey |(x ,Z ),

and A simply waits until round 2 after which

ŷA2 = ŷB1 = E]y |(x ,Z ).

Common Knowledge is achieved in two steps – at most.
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This is a bit easy so to rule it out we assume that

k = min{KA,KB} ≥ 2.

NB All examples assume KA = KB = 2

Theorem 1.

CK(1) occurs parametrically if and only if

Ey |(X ,Z ) = αAEy |X + αBEy |Z , CK(1)

for some parameters αA, αB .
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Necessity is obvious — if not true then CK cannot occur in one step
because the predictions of both individuals will differ from the desired one,
Ey |(X ,Z ), and usually from one another’s. It is sufficient as long as the
parameters αA, αB are known.
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Linear Dependence First suppose that X and Z are fully correlated.
eg z1 = x1 + x2 and z2 = x1 − x2. Then their predictions will be the
same:

Ey |X = Ey |Z = ŷ ,

and, in consequence,
Ey |X ,Z = Ey |X

or C (1) holds with αA = 1;αB = 0 (or indeed the other way round).
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Conditional Independence Suppose A is better informed than B: in
particular, has access to better quality of observation X .
A is Goldman Sachs and B is a poor investor JD who tries to
estimate A’s information:

zi = xi + εi i = 1, · · · k.

In this case, conditionally on X , y and Z are independent:

Ey |(X ,Z ) = Ey |X = ŷ0A

A ignores B’s announcement and B simply adopts A’s prediction.
CK(1) holds with αA = 1, αB = 0
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Uncorrelated observations [2] Suppose

ΣXX = I ,ΣZZ = IΣXZ = 0 :

all the x and z variables are independent and identically distributed;
further

σxy = [1, · · · , 1];σzy = [1, · · · , 1].

Then

Ey |X = x1 + x2 + · · ·+ xkA ; Ey |Z = z1 + z2 + · · ·+ zkB ;

and further

Ey |(X ,Z ) =
∑
i

xi +
∑
j

zj = Ey |X + Ey |Z .

The fact that this leads to CK(1) is evident.
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Independence In the Bacharach example it is only the independence
conditions that matter rather than the identical distribution: it holds
for ΣXX = DIAG [· · · , σ2xi , · · · ], ΣZZ = DIAG [· · · , σ2zj , · · · ] and
ΣXZ = 0. This leads to

Ey |(X ,Z ) = Xβ + Zδ

where β = Σ−1XXσxy δ = Σ−1ZZσzy . It follows that

Ey |(X ,Z ) = Ey |X + Ey |Z .

This implies CK(1).
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The Generalized Bacharach Condition In fact we do not need the
X variables to be independent of one another but only of the Z
variables ... similarly the Z variables. So let us assume that
cov(X ,Z ) = ΣXZ = 0. This leads to

Ey |X ,Z = Xβ + Zδ = Ey |X + Ey |Z :

condition (C1) holds with αA = αB = 1
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We have seen that complete dependence, conditional independence,
and complete independence lead to condition (C1) holding and then
to αA = 1;αB = 0 or to αA = αB = 1. Is the property αi ∈ {0, 1}
universal?

(Unfortunately perhaps) The answer is NO, as our next example
demonstrates!
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An Example of Parametric CK(1)

Let us suppose that
y = y1 + y2,

where cov(y1, y2) = 0, Eyi = 0; and suppose individuals A & B make
observations of y1 and y2 with error. Thus

x1 = y1 + u1; x2 = y2 + u2,

and
z1 = y1 + ε1; z2 = y2 + ε2.

To keep things simple, assume that (u1, u2, ε1, ε2) are uncorrelated with
each other; and that V (x1) = V (x2) = V (z1) = V (z2) = 1, while
cov(x1, z1) = V (y1) = ρ and cov(x2, z2) = V (y2) = ρ. It is possible to
show that

Ey |(X ,Z ) =
1

1 + ρ
(Ey |X + Ey |Z ) :

we have a failure of the block-independence condition, but CK(1)!
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Note that as ρ approaches zero, the condition above approaches the
CK(1) condition. As it approaches one, and the two predictions come
close to coinciding, the weights approach 1

2
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Sample Paths with CKs(1)
We start with the simplest possible example.

Suppose kA = kB = 2 so individual A uses her observation on x1, x2
and individual B uses his observation of z1, z2. Suppose now they
observe

X ∗ = [x∗1 = 0x∗2 = 0], and Z ∗ = [z∗1 = 0z∗2 = 0].

Then their first round of announcements are

ŷA0 = 0; ŷB0 = 0.

It follows that
ŷA1 = ŷB1 = 0

H. Polemarchakis ( Warwick) Gaussian common knowledge META March 18, 2016 20 / 24



Hence, we have CKs(1).

As it happens, for the sample (0, 0)(0, 0) we have common knowledge
in the first period and this is the optimal outcome because we have
Ey |(X ∗,Z ∗) = 0.

It is worth noting that the result holds irrespective of the parametric
conditions.

But it is truly sample dependent ..... in the sense that for any
perturbation of X ∗,Z ∗

We saw that CKS(1) can yield efficient outcomes. But this is not
necessarily true!
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Now suppose β1 = β2 = 1 and δ1 = δ2 = 1 for simplicity and

X ∗ = [10,−10]; Z ∗ = [−5, 5].

Once again, we have

ŷA0 = 0; ŷB0 = 0.

And exactly as in the previous example, we obtain

ŷA1 = ŷB1 = 0.

So we have CKS(1).......

But, this is inefficient because

Ey |X ,Z 6= 0,

unless the parametric condition for CKP(1) holds.

This example demonstrates that players may agree on something
other than the truth!
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Characterizing CKs(n)

Suppose
ŷA0 = X ∗β; ŷB0 = Z ∗δ .

We have CKs(1) whenever ŷA0 = ŷB0 because predictions agree: in other
words whenever X ∗β = Z ∗δ .
Suppose x∗2 = z∗1 = 0. Then this amounts to saying that

x∗1
z∗2

= s1 ≡
δ2
β1

CKs(1).

It is possible to characterize the “timing” of CK by a sequence {sn} such
that

x∗1
z∗2

= sn ⇔ CKs(n).
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Conclusions
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