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I. 	Introduction 

_,- 	-, 

The putty-clay vintage model of production as pioneered 

by Salter {14} and Johanson {8} is increasingly well established as the 

basis from which to approach both theoretical growth models of the real 

sector of an economy and empirical problems of investment, productivity 

and technical change. 	In both contexts the model is attractive on two 

counts. 	First, it avoids arbitrary assumptions about an instantaneous 

elasticity of substitution between labour and capital by restricting 

the choice of factor proportions to the current choice of technique 

and the rate of retirement through either obsolescence of decay of 

previously selected technologies. 	Secondly, the putty-clay vintage 

model obviates the need to measure capital as a stock, which is a 

blessing for empirical work if not de rigour for theory. 

This last point was demonstrated in my paper {11} and 

subsequently used by Solow {15} as the basis of a simulation study of 

labour's share of value added and by Solow, Tobin, von Weizsacker and 

Yaari in their exploration of'growth theory assuming a clay-clay 

technology {161. 	It has featured in my own empirical work both 

in an attempt to measure capital's contribution to output growth {2} 

and in exercises which called for a surrogate for the capital stock {3} 

and:{4} 	All this work, so far as it relates to the point under 

discussion, depends on demonstrating that under appropriate conditions 

within a putty-clay vintage model, the rates of growth of aggregate 

output,_ y, and employment k are related as 

y = a Q + r i 	 (1) 
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where a is labour's share of value added, i is the proportion of 

value added currently invested, and r is the immediate rate of 

profit on new investment. 	It follows that if r can be determined, 

then the vintage model gives a neat and concise statement of the 

contribution of inputs to output growth. 

Since the reciprocal of r is the pay-off period in the 

absence of growth in wages and discounting, it is tempting to assume 

r is foiAed by competitive pressures to a lower bound set by investors 

for behavoural reasons. 	This approach was adopted in {31  and {41 

while a variant of it is used in the well-known Kaldor-Mirrlees model 191. 

More general explanations of the determination of the 

immediate rate of profit, r, have to involve both the spectrum of 

alternative techniques from which a choice is made at any moment, and 

the criterion on which that choice is made. For the most part discussion 

has been restricted to the latter question of the choice criterion, and 

the present paper is no expection. 	However, an earlier paper {121 is 

concerned with the interrelationship between the two. 

It is apparent from the above that the choice of technique, 

and with it the determination of r, plays an important part in vintage 

production models. 	Some early results, subsequently developed in {131 

are contained in {41 . 	These exercises ignore problems of taxation 

which are taken up by Harcourt {61  and which are central to a recent 

empirical study by King {101. 	The earlier exercises were also limited 

in the range of investment criteria considered which has been approached 

somewhat differently and extended by Harcourt in a second paper {71 . 



The major weakness, however, of these exercises has been their lack 

of rigour as evinced by Bliss f 1 in his development of the one 

sector putty clay vintage growth model. 

The analysis by Bliss serves to emphasise the importance 

of choice of technique in vitage models and exposes problems of 

multiple maxima that had not previously been suspected. One purpose 

of the present paper is to elaborate these problems. In so far as Bliss's 

paper considers only present value maximation given perfect foresight and 

constant returns to scale, a second objective is to extend the analysis. 

Commenting on the formulations of Bliss and Kaldor/Mirrlees, Hahn {51 

writes: 'The "pay-off" notion (of Kaldor/Mirrlees) is certainly attractive 

since many investigators have reported this kind of behaviour. 	But there 

are difficulties. 	One must remind oneself that one is dealing with steady 

state. 	Should an economy be in steady state (so that it has been in 

approximate steady state for "most of its history"), one would imagine 

uncertainty considerations to be rather unimportant - after all, everything 

is essentially being repeated over and over again. 	.... it is not clear 
that if profits are to be made by being a little less cautious, no one 

will be found to make them. 	On the other hand, it would be hard to 

maintain that the pay-off criterion is less "realistic" than the thorough- 

going maximisation assumption of Bliss". 	While these comments are well 

taken in the steady-state context, and are perhaps strengthened here by 

a demonstration that the Kaldor/Mirrlees criterion does not necessarily 

have all the properties they assume, they can be read, and perhaps should 

be, as an invitation to explore something other than 'thorough-going 

(profit) maximisation' in the quest for realism outside the steady state. 

In any event, the present paper does look at other criteria, specifically 



- 4 - 

the internal rate of return and the pay-off period, without assuming 

either a steady state or constant returns to scale. Indeed, the first 

part of the analysis covers a vide class of choice criteria and is 

directed towards establishing a vintage model analogue of the Law of 

Diminishing Returns. 	This is the subject of the next section following 

this introduction. 

The third section of the present paper is concerned with choice 

under certainty given specific choice criteria. 	This is followed by a 

section exploring the effects of various modifications on the choice of 

technique, these modifications relating to taxation, the investment lag, 

uncertainty and risk aversion. 	The final section, section V. is 

concerned with sufficient conditions for a positive investment decision 

at a moment in time and is restricted to choice based on net present 

value. 	Discussion of the restraints on growth of both the necessary and 

sufficient conditions concludes the paper. 
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II. 	Vintage Law of Diminishing Returns 

II.1 	Notation and definitions 

Throughout this paper we assume a putty-clay vintage technology 

and are concerned unless otherwise stated only with the choice of 

technique at a particular moment in time, which is to be designated time 

zero. 	The technology is characterised by 

X : an index of physical output 

N : an index of labour input 

I : an index of cost of the technique chosen 

F : the ex ante production function given by 

X = F (N, I) 	 (2) 

Once a technology is chosen, X and N remain constant throughout its 

working life. 	Thus no allowance is made for physical deterioration 

of plant reducing output over time in this part of the analysis, although 

this assumption is dropped when we come to consider uncertainty. Meanwhile, 

the need for increasing labour input over time for maintenance work, or for 

a decreasing input through learning by doing can be accommodated to the 

extent that N is interpreted as an input of labour services rather than of 

man-hours. 

The units in which X, N and I are measured are deflated expenditures. 

X is the revenue generated at time zero divided by unit product price at time 

zero; N is the wage bill at time zero divided by the same deflator; and I 

is the cost of the technology, again deflated by unit product price at time 

zero. In consequence, we have 

x = X/N : average product of labour = reciprocal of labour's 

share of value added by the new technology at time 

zero. 



r = X - N 	the immediate rate of profit = initial profit flow 
I 

the cost of the technology. 

The properties of the production function (2) need to be carefully 

defined. 	We specify that 

(i) 	X > 	0 	for all N, I > 0 

F is twice differentiable with respect to both N and I 

and that in particular 

fN  = 	8X > 0 	for all N, I > 0 
8N 

f 
NN = 

a  2 X < 0 	for all I > 0, N > No 
 > 0 

8N2  

so that the marginal product of labour is always positive 

and diminishes for values of N such that N > No 
 where No 

 

is non-negative. 

There exists a value of N, denoted N, such that 

(a) N Z No 
 

(b) For each I > 0, 	8x > 0 depending on N < N 
8N 

(Q) 	x 	(=x atN=N ) > 	1 

Hence for fixed I the average product of labour , x, increases 

with N over the range (0,N0
), continues increases over the 

range (No
, N), and subsequently declines. 	At N the 

average product is a maximum and greater than 1. 	This 

ensures that for at least some technique the initial profit 

flow is positive. (1) 

Within these restrictions on the production function F it 

is important to distinguish two main classes: 
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Classes of F 	If there exists a finite value of N, denoted N. 

such that 

f  < 1 	for all N 3 N 

then F is of Class I. 	Otherwise 

F is of Class II 

Note that if N exists, then N >N. 	For at N, x is a maximum so that 

X = fN. 	But also x > 1, so f  > 1. 	For N > 9 we have fNN < 0. 

Hence, if f  = 1 < fN, then N > N 

The general shape of F and the distinction between Classes I and II 

of F are illustrated in Figures 1 and 2. 	Figure 1 shows three alternative 

schedules of X versus N for fixed I which satisfy the above restrictions. 

At point A on all schedules the average product, x, is a maximum and greater 

than one. 	Again, on all schedules the marginal product f  diminishes 

subsequently, but only on Class I schedules does it diminish sufficiently 

to become less than one at some point B. 	It can be noted that B is the 

point at which r is a maximum. 	This can be seen graphically from 

the fact that rI is the vertical intercept of the line with slope one 

which passes through any given point. 	More formally, we have by definition 

r =  X - N 
I 

so that 	dr =  dX - dN 

since I is fixed. Now X and N must lie on F, so from (2) 

dX = f  dN 

Consequently 	dr = (fN  - 1) dN 

I 

and 	 d 
2 
 r = fNN 

 (dN)2  + (fN  - 1) d 
2 
 N 



The conditions for r = maxr are therefore 

fN =1 ; fNN< 0 

and these conditions are satisfied only at B. Moreover, it is apparent 

that if f  > 1, then r increases with N. 	Consequently for Class II 

functions, r increases without bound as N increases. 

In Figure 2 the points A and B correspond to the same points 

A and B in Figure 1. In interpreting the diagram two details should 

be noted. 	First, the Class II schedule terminates at the point C, 

while the Class I schedules continue unless they reach the 450  line. 

Secondly, the curvature of the schedules is not necessarily as regular 

as shown. 

Since 	 dfN  = NfNN  

dx 	fN x 

the restrictions on F are sufficient to ensure that f  is an 

increasing function of x for all N 3 N. 	The curvature of the 

function, however, is not determined and will depend on fNNN  which 

we have not assumed to exist. 

To conclude this section we specify some further useful 

notation and a definition. 

W(t) : the real wage at time t. 	Note that by definition of 

units, W(o) = 1. 

7(t) : profits at time t deflated by unit product price at 

time zero. 	Hence 

7T(t)  = X - NW(t) = N (x - W(t) ) 	 (3) 

and 	 r 	= 	7f (o) 
I 

T 	the date at which a technique is scrapped. 	If a 

technique is scrapped when it ceases to earn profits, 
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then 

Tr (T) = 0 	and 

x = W(T) 

With I fixed, a technique can be characterised by the two variables 

N and T. 	However, not all techniques are equally of interest. In 

particular some techniques are inferior to others under quite 

general conditions as defined by the following concept of dominance. 

Definition of Dominance: 

T 

(1) 	 Tr (t)dt 

0 

A technique (N',T') is dominated by 

some other, technique (N,T) if both 

T' 

,r I  (t)dt 	 (4) 

0 

and 

T 

(2) Tr (t)  dt 	3 

0 

T 

Tr' (t) dt 	for all T ; 	0 < T < min (T)T') 

0 

(5) 

and one or other of (4) and (5) is a strict inequality for some T. 

Rule (1) states that technique (N,T) earns more profits over its life 

than technique (N',T'). 	Rule (2) states that technique (N,T) must 

have earned more profits than technique (N',T') at any moment at which 

both are in operation. 	Thus given two techniques of which neither 

dominates, the one which earns less profit in total must have earned 

more profit up to some particular moment in time. 	Given this definition 

we can define: 
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the set of potentially optimal techniques, defined 

as the set of techniques which is not dominated. 

An obvious restriction on the set is obtained by noting that 

for given N rule (1) for dominance requires that T should be such as to 
T 

maximise Tr(t) dt. 	Thus we require 	T to be such that 

0 

Tr (T) = 0 and 	it (T) < 0 

From (3) it is apparent that these conditions are met if 

x 	= 	W (T) and - NW (T) < 0 	 (6 ) 

i.e. 	if plants are scrapped when they cease to earn profits (quasi-

rents) given that real wages are increasing monotonically with time. 

Since the conditions (6) determine T for each N in the set 

1{ it is sufficient from now on to consider N as a complete description 

of a technique without explicit reference to the associated value of T, 

which will be assumed to be determined according to (6). 

II.2 	Weak law of diminishing returns 

The weak law of diminishing returns for vintage models constitutes 

a restriction on the set r  of techniques which are not dominated. It is 

developed here first in the context of assuming a choice of technique, 

given I fixed, and requires the following Lemma. 

Lemma 1 	for any two techniques 

M 	Tr(t) and Tr' (t) can cross at most once as t 

varies. 



{ 2 } If 	Tr > Tr' then N' ~ x 

{3} If Tr 	and Tr ' cross once as t varies either 

r'> r 	and T' < T or 

r'< r 	and T' > T 

To establish this Lemma, note that if 7(t) and Tr ' (t) cross at t = T 

then 7(T) 	= 	Tr' (t) 	X - X'  = 	W(T) 
N-N' 

For t < T , we have 	X - X' > W(t) given W > 0 for all t. 
N=NT 

Therefore 	x - NW(t) 	= 	Tr(t) > X' - N'W(t) = 	Tr' (t) 

depending on 	 N 	> N' 

Similarly, for 	 t 	> 	T 

Tr(t) < 	if ' (t) 

depending on 	 N 	> 	N' 

Hence 3t and 	ft' do not cross a second time, which establishes {1}. 

If 	Tr 	> 	Tr' for all t, then it follows that T > V. 

Consequently 

T Tt T' 

Tr dt > Tr dt > Tr' dt 

0  0  0 
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T 	 T 

and 	 Tr dt 	> 	7 dt for T , T' 

0 	 0  

Hence by definition N' is dominated, i.e. N' ~~, as stated in 

{ 2 } of Lemma 1. 

If Tr and 	n' 	cross at least once, then they can only cross 

once from {11. 	Either ff has the greater intercept (= rI) and 

shorter life, or 	7r'  has. 	This is what 
{3} states. 

The weak law of diminishing returns which follows from the 

Lemma can be stated as follows: 

The weak law of diminishing returns 	If N ¢ ~, 	then for all 

production functions F, 	N 	N ; and for F of Class I, 

N S N . 

In terms of Figures 1 and 2, this states that the set of 

techniques which is not dominated lies to the right of point A in 

Figure 1 and is to the left of B if B exists. 	Accordingly there is 

an important restriction on the choice of technique given a criterion 

of choice consistent with our definition of dominance. 

A proof of the law is as follows 

If N e 	then 7T and n cross once from (2) of Lemma 1. 
	By 

definition x is a maximum at N , so x < it 	From (6) this 

implies T z T, therefore r 3 r by {3} of Lemma 1 	But 



- 13 - 

r 	5 	r 	implies X - N , X - N which can be written 

N(x - 1) , N (x - 1) 

Since we have 	x , x , the inequality r , r implies 

N , N which establishes the first part of the Law. 

To establish the second part the argument follows similar lines. 

If N exists, then at N, r is a maximum = r. 	Hence from 

the Lemma, if both N and N are elements of ~{ , then 

T , T. 	This implies x , x which can be shown to be equivalent 

to Nr , Nr. 	Thus both N and N can be elements of X only 

if N , N. 

This completes the proof of the Law. It can be noted that 

at no point does the argument depend on the proposition that real 

wages are growing at a constant rate: it is sufficient for the 

theorem that real wages be a monotonic increasing function of time. 

The Law as established applies to the case in Which I 

is fixed and diminishing returns are with respect to N for N > N . 

This is the case with which we shall be concerned throughout this 

paper. 	However it is apparent that there must be an analogue for 

the Law in the case where N is fixed and X increases with respect 

to I. 	This analogue can be sketched with the aid of Figures 3 and 

rIP 

In Figure 3 it is assumed that there exists a range of 

techniques for which the initial rate of profit, r, is positive 

as in Figure 1. 	Obviously without such a range no technique will 
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be chosen since no technique could be profitable. The initial rate 

of profit is shown as being a maximum at a point B, while the 

marginal product fI  = 	8X/ 8I is assumed to vanish at a 

point A. 	The points A and B in Figure 3 have a correspondence 

with the points similarly labelled in Figure 1 as will be explained 

later. 	Meanwhile their existence in Figure 3 constitutes an 

assumption about the shape of the ex ante production function F 

analogous to the earlier assumptions for the case where I is fixed. 

For fixed N the weak law of diminishing returns takes 

the form that the optimal technique must lie in the interval AB in 

Figure 3. 	An outline proof is as follows. 

Consider any two techniques (Xl,II) and (X2,I2) such that 

rl  = r2, e.g. points C1  and C2  in Figure 3. 	Then technique C1  

will yield a flow of profits per unit of investment over time which 

can be represented as in Figure 4 assuming that real wages are a 

monotonic increasing function of time. Technique C2  will earn a 

similar flow of profits per unit investment which cannot be less than 

the flow from C1  at any moment and accordingly involves a positive 

flow over a longer period. 	Purchase of the technique C2  can be 

regarded as purchase of the profit flow from C1  for a sum I1  plus 

purchase of the difference in profit flow between C2  and C1  for a simi 

12  - I1. 	This incremental flow per unit of investment has the form 

shown in Figure 3. 	Accordingly, if it is attractive to buy the technique 

Cl, it is yet more attractive to buy the increment C2  - Cl. 	Thus C2  

is preferable to Cl, and more generally the optimal technique will lie 

to the right of point B in Figure 3. 	Given that it is trivial to show 
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that the optimal technique will lie to the left of point A in Figure 3, 

it emerges that the interval (B,A) defines a range within which I must 

lie. 

If the production function F is homogeneous of degree one it 

is easily shown that points A and B in Figures 1, 2 and 3 correspond 

exactly. 	Thus we have as restrictions on the optimal choice of 

technique in this special case: 

w.r.t. B . 	x > f 	+-* 	f  3 0 

and 
(7) 

w.r.t. A . 	fN  , 1 	+-* 	f 	, r I 

In both his analyses of choice of technique, W and {7} 

Harcourt chooses to regard the level of output , X, rather than of 

either of the inputs, N and I as fixed, and thus considers choice 

of a point along an isoguant. 	Our weak law of diminishing returns 

has an analogue in this case also, and again the demonstration of this 

is only sketched out below, this time with the aid of Figure 5. 

In Figure 5 the techniques C1  and C2  have the same value of 

r and their properties generally correspond to the properties of C1  

and C2  in Figure 4. 	Accordingly the same arguments suffice to show that 

C2  is preferable to C1  and more generally that the optimal technique must 

lie to the right of B along the isoquant. 	Since it must also lie to the 

left of A our weak law is established for fixed X and, as before, it can 

be easily shown that under constant returns to scale points A and B 

correspond in each of the Figures 1, 2, 3 and 5. 
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Any of the Figures 1, 3 and 5 suffice to show that the vintage 

model formulation has a more restricted range of potentially optimal 

techniques than is the case for the conventional neo-classical model. 

Thus as Figure 5 makes clear, the putty-clay formulation restricts the 

aggregate factor ratio not only to the extent that this ratio is 

determined for the most part by investment decisions at earlier dates but 

also to the extent that it is restricted for new investments by our weak 

law. 

Figure 6 illustrates the restrictions of the weak law on choice 

of technique for the case where I is taken as fixed in the particular 

instance where the ex ante production function is of the constant elasticity 

form 

X = A N  I 	for 0 < b < 1 	 (8)  

0 < c 

Given the restrictions on b and c specified in (8), the restrictions 

of the law, as given by (7) amount to the requirement bx 3 1 as shown 

in the Figure. 
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11.3 	Strong Law of diminishing returns 

The weak law of diminishing returns can be strengthened by 

noting that there may exist a technique N, denoted N, such that the 

total profit it earns over its lifetime exceeds that of all other 

techniques. 	Thus 

T 

	

Tr (t) dt 	subject to x = W(T ) 

0 

is a maximum with respect to N for N = N. 

In general if N exists its location will depend on the time- 

path of real wages W(t). 	However, as was noted by Bliss, (who 

attributes the point to Mirrlees), in the special case where real wages 

grow at a constant rate, say w, then N is independent of w. Accordingly, 

the significance of N is developed here only in relation to this special 

case which will be assumed throughout the remainder of this paper. Given 

this we have 

W(t) = ewt 

so that 

	

ff(t) = 	X - Ne
wt  

and 
x = eWT 

whence 
T = 1 log x 

w 

it being assumed that w 3 0 . 
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Total profits over the lifetime of a plant can now be expressed 

as 

T 

7r(t) dt 	= 

0 

so that 

1 log x 
w 

J
X - Newt  dt 

0 

(9) 

T 

d 	7r (t) dt 
	 dX log x - dN (x - 1) 
	

(10) 

w 	 w 
0 

Since X, N and I are restrained by the function F, and since we are 

considering alternative techniques with I fixed, then dX and dN are 

simply related as 

dX=fN dN 

Substituting (11) into (10) gives as a necessary condition for (9) to be a 

maximum the condition 

f 
	=  x - 1 	 (12) 

log x 

This condition must clearly be satisfied by N if it exists. However (12) 

may be satisfied by other values of N as we shall see. 

The properties of the function (x - 1)/ log x are most easily 

approached by noting that if y is a random variable with density function 

g(y) given by 

g(y) - y 1  for min (l,x) < y < max (l,x) 

then 

E(y) =  x - 1 	 (13) 
log x 
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where E(y) denotes the expected value of Y. 	From this several 
properties of the function follow. 	First the function maps x into 

itself at x = 0 and x =1. 	Secondly, it is a monotonic increasing 

function of x. Thirdly we must have 

min (l,x) S log I 
	max (1,x) 

Indeed, this property can be strengthened by noting that since the 

density function of y is monotonic decreasing it must have 

a mean less than that of a rectangularly distributed variate over the 

same interval, i.e. less than 	(x + 1). 	Hence 

x - 1 
log x 	(x  + 1) 	 (14) 

Finally, it can be shown that the function is concave from below. 

Differentiating twice gives 

d2 	x - 1 	= 
x - 1
to x 	-  i (x + 1) 

dx2 	log x 	2 x2  (log x) 2  

From (14) the numerator of (15) is positive. 	Since the denominator 

is also positive, the function (13) must be concave. 	It is graphed 

in Figure 7. 

From equation (12) we require f  =  x - 1 
log x 

for N = N, if N is to be the technique which maximises undiscounted 

profits. 	A graph of fN, taken from Figure 2, is also shown on Figure 

7. 	
Comparing the graphs of the two sides of (12) it is clear that this 
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equation may have multiple solutions. More specifically, if F is of 

Class I, then (12) must have at-least one solution: if F is of Class 

II then equation (12) may or may not have at least one solution, and 

therefore N may not exist. 

To distinguish local maxima from local minima of (9) we need 

the second order condition for a maximum, which is 

(fN -x)2  + fNN % log x <0 
	

(16) 

and is equivalent to the requirement that f  must intersect (x - 1)/ log x 

from below. It should be noted that it is not enough for (16) to be 

satisfied that fNN  should be negative; it must be strongly negative. 

In the constant returns to scale case the restriction (16) 
i 

can be expressed as a restriction on the substitution elasticity, o , 

of the ex ante production function, viz: 

o < log x NfN 	 (17) 
if  

which is not a condition that all conventional production functions can 

satisfy. 

To explore further the question of whether N exists for a 

production function, we can first note from Figure 7 that if (12) has at 

least one solution, then it has at least one local maximum solution, and 

hence it has a global maximum solution, i.e. N exists. It is also apparent 

that N will exist if F is of Class I. 	If F is of Class II and N exists, 

then F will be said to belong to Class IIa. 	Otherwise F will belong to Class 
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IIb. 

A possible schedule for f  vs. x for a Class IIb function is 

shown in Figure 7. 	From this it is apparent that for a function to 

be of Class IIb the marginal product f  must fail to diminish 

sufficiently rapidly for 
f  	to intersect with (x - 1)/ log x. 	In 

this sense then, the marginal product of labour does not diminish fast 

_ 	 enough. 	In such cases the total profit (9) will continue to increase 

as N increases without bound to infinity. 	Accordingly, in such cases 

N may be said to exist in the special sense that N - 

When N exists it cannot be dominated by rule (1) for dominance. 

More generally, for any technique N not to be dominated by some local 

maximum at which (12) holds, the technique N must have earned more profits 

by some date than the technique corresponding to the local maximum. 	Since 

we have seen that for two techniques within )( their respective functions 

7(t) must cross once, this means that a technique not dominated by a local 

maximum must have a higher value of r, a shorter life, lower x and 

consequently larger N. It follows that all points not dominated by the 

global maximum N must involve N 3 N. 	Further, if there is a local 

maximum for some N 3 N, then not all N > N belong to 	This can be 

seen with the aid of Figure 8. 

From the above arguments it is apparent that no point to 

the left of N can lie within X 	The Figure 8 shows two intervals of 
N corresponding, to, the interval to the right of the local maximum N2, 

(which must be subject: to N < N where appropriate), and an interval 

(N,Nl) where N1  is constructed to the left of N2  as shown. Points in 
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(Nl,N2) do not belong in 	since they are dominated by N2: they yield 

a lower total profit over their lives and, since N  is smaller than N2  

but greater than N , they have a lower r and so cannot have earned 

greater profits at any moment in time. 

The above arguments can be gathered together in a theorem 

we may call the strong law of diminishing returns: 

The strong law of diminishing returns: the setX of techniques which 

is not dominated is restricted as follows: 

If F is of Class I; )(6 { N; N .< N 	N } 

If F is of Class IIa;~C { N; N 	N } 

If F is of Class IIb;~ 

This theorem is stronger than the weak law by virtue of the 

replacement of N by N where the latter exists. Conditions for this 

existence have been derived only for.the case where real wages grow at 

a constant rate w, in which event N is independent of w. Analogous results 

for N can be obtained by assuming that N rather than I is the fixed factor 

input. 

The restrictions imposed by the strong law of diminishing returns 

are illustrated for the constant elasticity production function (8) in 

Figure 6. 	A lower bound on the elasticity b is provided by (12). Since 

this equation can be satisfied by one and only one value of x for each b, 

the constant elasticity function is not of Class IIb; it is in fact of 

Class I. 	Moreover, the unique solution for x must correspond to a local 

maximum and be a global maximum. Accordingly for points (b,x) above the 
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lower bound in Figure 6 the second order condition (16) is satisfied. 

As can be seen from the diagram, the range to which x is restricted 

by the strong law can be quite narrow for the larger feasible values 

of b. 
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III Various Objectives 

III.1 Introduction 

In this section we explore the effects of choosing a technique 

according to specific criteria namely net present value, the internal rate 

of return, and the pay-off period. Throughout the choice is assumed to be 

made with respect to a fixed amount of investment, I, and real wages are 

expected to grow at a constant rate w. With respect to net present value 

the analysis is closely akin to that of Bliss {1}  although the ex ante 

production function is not assumed to be homogeneous here. The results for 

pay-off period criteria have a bearing on the formulation of Kaldor and Mirlees 

{9}. 

To develop the analysis some further notation is called for. Thus 

we define: 

A : the real rate of discount 

z : the present value of the profit stream Tr(t) over the period 

(O,T) 

Hence 	TT  

z = / (X-Newt)e-atdt 

0 

-aT 
	

-(a-w)T 
x(  

1-X 	) -N(1-e
a-w 	) 

DT(a) : the present value of a constant unit flow of income over the period 

(O,T)discounted at rate a. 

Thus 

	

D(a) = 	
1-ee-aT 

T   

and 	z = 	xDT(a) - NDT(A-w) 
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wT If DT(a) is evaluated subject to x = e 	then it is denoted D (a) and 

we have 

D*  (a) = a (I-X-(, /w 	 (18) 

Similarly, if z is subject to the restraint x = ewT  we have z*  given by 

1 log x 
* I 
z = 	(X-Newt)e-atdt 

0 

= XD (X) - ND (a-w) 	 (19) 

A useful result to note at this point which can be obtained by manipulation 

of (19) is that 

wXD*(a) = (w-a) Z*  + rI 

where r is the immediate rate of profit as before. 

The net present value of a technique is given by 

Z-I = XD(a) - ND(a-w) - I 

from which it follows, given T

~ 
O (a) = e-aTdT - da / / to-at  dt 

0 

that 	d(Z-I) = D(a) dX - D(a-w) dN - dI 
T 

- dX Cf (X-Newt)te-Xtdt 

0 
T 

Ndw f te(w-x)tdt 

0 

+ (X-NewT) e-aTdT 

If this relationship is now constrained to satisfy x = ewT  we get 

d(Z*-I) = D*(a) dX - D*(a-w) dN - dI 

w log x 

- dX r 	(X-Newt  ) te- xt dt 

0 

w log x 

- Ndw J 	to(w X)tdt 	(22) 

0 

(20)  

(21)  
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* 
From this result an important property of the function Z can be demonstrated 

namely that with respect to a and w, Z 
*

is a homogeneous function of degree 

minus one. This can be shown as follows. Since 

T 

to
-atdt = a (D(a) - Te aT) 

0 

the result (22) reduces for given X,N and I to 

dZ*  _ _ da X (D*(X)-Te
-XT) 

+ 	dw  N (D
* 
 (a-w) - Te(

w-X)T) 
w 

where 

x=ewT =X/N 

Thus 	dZ*  _ - da {X D*  (a) - ND*  (a-w) } 

+ (dw _ da) N(D*(a-w) = Te(w-a)T) 

Under the restriction that dw/w = dl/a = S, say, this reduces in view of (19) 

to simply 

* 	* 
dZ = -S Z 

* 
i.e. the effect of scaling up both a and w by a factor R is to scale down Z 

* 
by the same factor. This homogeneity property of Z is important for subsequent 

analysis. 

111.2 Net present value 

Properties of the technique, to be denoted N , which has the highest 

net present value, Z-1, which are to be demonstrated here are gathered together 

in the following theorem: 



-27- 

* 
Theorem 1: 	If N is the technique for which the net present value 

Z-I is a maximum for fixed I, a, w > 0, then 

	

* E 
	a 	

* 
(i) N 	nd if N is finite 

	

Z*  = 	r*I — t  

and AN 	
AN (iii) 

a 
> 0 > 

Qw 
 

The first part of the Theorem states that N 
*
is not dominated. This 

can be demonstrated with the aid of Figure 9 which shows the flow of profits 

* 
over time for two techniques N and N'. In the diagram the initial rate of 

profit r' is shown as being greater than r*. If this was not the case, then 
* 

N' could not dominate N since the profit flow from the latter would exceed that 

from N' over some initial period. Similarly the diagram shows technique N*  

earning positive profits over a longer period than technique N'. If this was 

not so, and given r' > r*, then we would have Tr'(t) > Tr*(t) for all t. In this 

event the profit flow n'(t) would have a higher present value than that for 

* 	 * 

technique N for any discount rate X. .Accordingly N could not be the technique 

which maximises net present value. 

The remaining possibility
* 

 for N' to dominate N given that the 

latter maximises net present value is the one illustrated in Figure 9 with 

r' > r and T > V. In this case there will be a moment in time, T, at which 
* 

Tr' = Tr as shown in the figure. If N' is to dominate N* then the area a in 

Figure 9 must exceed the area S according to Rule 2 for dominance. Following 

the introduction of a discount factor, X, the area a will reduce to A > ae-Xt  

while the area B will reduce to B < Se-fit. Thus if a > S , then A > B i.e. 

if N' dominates N* it must have a higher net present value. This contradicts 

the definition of N*. Hence (i) of the Theorem is established. 
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To establish (ii) of the Theorem we can assume that N* is finite 

and return later to examine the conditions under which this is valid. 

Since maximisation of Z-I has to involve x = ewT  ae can be seen 

from (21), we have from (21) that for fixed I,a and w 

d(Z*-I) = D*(a)dX-D*(a-w)dN 

Under the same condition of fixed I the fact that X,N and I must satisfy the 

ex ante production constraint implies 

dX=f N dN 

Accordingly the first order condition for Z-I to be a maximum with respect 

to N is 

D* (1-w) 
f N  = 	D* (X)  

The three results (19), (20) and (23) can be combined to eliminate 

D*(a) and D*(a-w) and yield 

Z* _ I 	 (24) 
a~w N 

x  N  

Thus part (ii) of our theorem is established. 

The result (24) implies that if w is zero then Z* = r*I/1. Since 

rI is the initial profit flow from a technique and this flow remains constant 

for w = 0 it is trivial that for w = 0, the present value Z is given by 

Z = rI/a 

With a and I fixed this means that maximising Z is equivalent to choosing the 

technique which maximises r i.e. the technique which minimises the crude 

(undiscounted) pay-off period. This is the technique ~ so we have 

N* - ~' 

for w = 0 if ~ exists. 

Of course the result (24) is more general. If profits over time 

are eroded by increasing real wages, then assuming that Z* is maximised, the 

result shows how this erosion is equivalent to an increase in the discount 

rate by an amount wfN/(x-f N). This amount is simply proportional to w, the 

constant of proportionality being b/(1-b) in the simple case- (8) of a constant 

(23) 
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elasticity ex ante production function. 

The result (24) also yields a simple expression for the 

condition that net present value be positive: 

Z* > I if and only if r* > X + w 	
fN 	

(25) x-fN  

which can be written for the constant returns to scale case as 
NfN  

r > a + w 
 if  

To establish (iii) of our Theorem we assume again that N* is finite. 

The first part of the (iii) states that the effect of an increase in the 

discount rate is to move the optimal technique to a higher value of N. This 

can be proved with the aid of Figure 10. 

If N* is optimal at discount rate hl, and N2  is optimal at a2 > 
)l 

then either rl* > r2 and Tl < T2, or rl < r2 and T1 > T2*. In any other event 

one of Ni and N2 would dominate and so by M of Theorem 1 could not be 

optimal. If r* < r2, then Nl  < N2. Consequently AN > 0 and.this is consistent 

with (iii) of Theorem 1. Accordingly, to establish (iii) we need to show that 

the remaining possibility rl > r2 with T* < T2 cannot maintain. 

Figure 10 shows the flow of discounted profits over time for the 

two techniques Ni and N2 when the rate of discount is al  and rl > r2 with 

T1 < T2. The argument follows the same lines as that associated with Figure 9. 

The schedules for the two discounted profit streams must cross at a single 

moment in time, T : the area a must be greater than R if N1  is to be optimal 

at discount rate al. When the discount rate is raised by an amount AX to a2, 

then a is reduced to A > a e-TAX While a is reduced to B < ae-TAX. Thus 

a = S implies A > B, i.e. .the profit flow from Ni has a higher present value 

than that of N1 at the higher discount rate a2. This contradicts the 

definition of N2 so the case is impossible. Accordingly we establish that 

AN* > 0 
TX-  (26) 
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i.e. an increase in the discount rate results in the choice of a more 

labour intensive production technique, that is in a technique which has a 

shorter (crude) pay-off period. It may also be the case that an increase 

in A results in the impossibility of satisfying the condition (25) that net 

present value be positive. 

The remaining part of (iii) of Theorem 1 states that an increase 

in the rate of growth of real wages, w, results in a less labour intensive 

technique being chosen. This can be shown given the result (26) for an 

increase in the discount rate and recalling that Z* is homogeneous of degree 

minus one in A and w. 

It follows from the homogeneity property of Z* that if both a and 

w are increased so as to keep their ratio constant, then Z* is scaled down by 

a factor that is independent of the technique N. Thus equal proportionate 

increases in a and w change the absolute level of Z* but do not change the 

designation N* of the technique which is optimal. 

This result indicates that the effect of an increase in w can be 

considered as being that of first an equal proportionate increase in X and w 

followed by a proportionate decline in A back to its original level. The first 

of these two steps results in no change in N*: the second step lowers N* as 

indicated by (26). Hence the proof of (iii) of Theorem 1 is complete. 

The homogeneity property of Z* implies that the location of N* depends 

only on the ratio of X and w and not their absolute value. This ratio is denoted 

by 

P = a/w 	 (27) 

and plays an important part in subsequent analysis. Thus.the effect on N* of 

w = 0 is equivalent to that of a = a and implies N* _ when the latter exists 

as has been shown. Similarly the effect of w = - is the same as having a = 0 

i.e. no discounting of profits. Present value maximisation is simply equivalent 

to maximising total profits over the lifetime of a technique in this extreme 

and leads to N* = R. More generally, as p increases from 0 to - the optimal 
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technique N* moves monotonically across the range 
A 	IV 
N to N of techniques 

which are potentially optimal as specified by the strong law of diminishing 

returns. However, as we shall see, this movement is not necessarily 

continuous. 

It has been shown that the first order condition for Z* to be 

a maximum is given by (23); 

__ D*(a-w) 
fN 	D*  (X) 

From (18) and (27) the right-hand side of this expression can be expressed 

as a function, $ say, of x and u 

D*(a-w) 
= 	D*(a) 

_ u xu-x 
u-i 	

xu-1 
(28) 

We now need the properties of ~ stated in the following Lemma 

Lemma 2: The function ~ defined by equation (28) has the properties 

(i) min(l,x) < ~ < 	x-1 
log x 

and 

0 > au 

To establish the lemma consider a random variable, y, with density 

function g(y) such that 

g(y) - Yu-2  for min(l,x) < y < max(l,x) 	 (29) 

It can be shown that ~ is related to E(y) as 

= x 
E(y) 

Since E(y) is bounded by the range of y we have 

min(l,x) < ~ < max(l,x) 

Moreover, an increase in u decreases the skewness of the distribution of y and 

hence can be shown to increase E(y). Thus E(y) is a minimum, and ~ therefore 

a maximum with respect to non-negative u for u = 0. This can be shown to yield 

from (29) 
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x = x-1 
E (y FP>0) 	log x 

To complete the Lemma we need to show that 

a~ = u 	E(y)-1  
ax E(y) xu-1 

is positive. This follows at once from the fact that for u > 0, E(y)-1 

and xIA-1 have the same sign. 

From the Lemma we have that ~ is bounded from above by (x-l)Ilog x; 

that it is an increasing function of x; and that ~ approaches its upper 

bound as p declines toward zero. Looked at in terms of Figure 11, this means 

that even if 

__ X-1 

	

f N 	log x 

has a solution, the first-order condition 

	

f 
	$ 	 (30) 

may not have a solution. And if the first order condition has a solution, 

then it may have more than one solution. Specifically, if F is of Class I 

then (30) has at least one solution : if 

F is of Class II then (30) may have no solution or one or more solutions: 

if F is of Class IIb then (30) has no solution. 

Situations where the first-order condition has no solution are 

ones where f  fails to diminish sufficiently rapidly as N increases. As N 

increases the net present value Z*-I increases without limit. Thus N* = - in 

these cases, and the optimal technique exists only in this limiting sense. 

Where one or more solutions to the first-order conditions exist they 

must include at least one local maximum, and hence there is a global maximum. 

To see this we need the second-order condition to distinguish local minima 

and maxima. This can be obtained by differentiating (21) and imposing 

x -= ewT and (23) and takes the form 

e-aT(fN  X)2 + fNN wXD*,(x) < 0 	 (31) 

where T is subject to x = e 
wT The condition (31) can be shown to be 

equivalent to the requirement that f  must cut ~ from below, i.e. f  must be 



- 33 - 

more steeply sloped than ~ at their point of intersection. From Figure 11 

it is apparent that if (30) has one or more solutions it must have some local 

maximum solution(s) and hence a global maximum. 

Under constant returns to scale the second order condition (31) can 

be expressed in terms of the substitution elasticity of the ex ante production 

function, i.e. o, as 

X11-1 	NfN 
o < 	u 	

if 
	 (32) 

It is in essentially this form that the condition appears in Bliss {11. He 

comments that the condition depends on factor prices, i.e. on p, and the units 

in which x is measured. 

This dependence of the conditions (31) and (32) on factor prices 

clearly introduces complications. However, it can be shown that for a wide 

class of cases these complications will not arise in practice. Specifically 

we can establish the following theorem: 	

,~~ Theorem 2: 	If N is a solution of the first order condition (23) and N1811  

then a sufficient condition for N to be the unique local maximum 

solution of (23) for p > 0 is 

a 	f 
8N ( x ) 	0 

which reduces to 

o < 1 

if the ex ante production function is homogeneous of degree one. 

Obvious illustrations of the theorem are that if the ex ante production function 

is of the constant elasticity or CES (weak substitutes) form, then any solution 

of (23) which satisfies the Law of diminishing returns will be a unique local 

maximum solution and therefore a global maximum. 

To prove the theorem we write the condition (31) in the form 

f 	
f 

NN < XN (f N  -x) 	 (33) 
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where 
x-f N  

xu-1 	f   

and procede to show that * < 1. To see this note that if N satisfies the first 

order condition (23) then 

__ 	x fN 	E(y) 

where y is the random variable defined by (29). Thus we have 

u 	E(y-1) 	 (34) 
xu-1 

and if NE 	 x  
u 

E(y) = c 	yu-1  dy = c 
 x 

u 
 1 	

(35) 

1 

and 	 x 
u-1 

1 = c J'  y
u-2 

 dy = c x 
u_11 	

(36) 

1 

The results (34) and (35) yield 

- c(1 E(y)) 

so that 

< 1 if and only if 1  + E 1 > 1 

Now from (36) it is apparent that 1/c increases with u. Therefore it is 

a minimum for non-negative u for u = 0. Thus 

1 + 1 > 1 	+ 1 
c 	E(y) 	c 	E(y) 

P=O  

1 _ 1 
=1+ E(y) 	x 

since 

E (y) < x 

Accordingly we have ~ < 1 so that from (33) the second order condition for 

a maximum must be satisfied if 
f 

fNN , f (f
N-x) 	 (37) 
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given 

x > f N > 1 

It is now straightforward to show that the condition (37) can be 

expressed in the form stated in the theorem and reduces to the 

requirement o ~< 1 given constant returns. Expressed verbaly it states that 

for NEJV, the elasticity of output with respect to the variable input 

(labour) must not increase with respect to the variable input. 

Bliss {ll illustrates the possibility of multiple solutions for 

the first order conditions by considering a production function which for 

a particular value of p, satisfies the first order condition for all 

values of x within some range. In such case we have 

f  = $ 	 (38) 

for all x in the relevant range. However we can easily show that such cases 

are of little interest. For it follows from the formulation 

f   _ 1 
x 	E (y) 

that the condition of Theorem 2 will be satisfied only if 

aE
a
(y) 

> 
0  

But since 

aE(y) __ aE(y) 	
f 

x 
aN 	ax 	N 

and 
DE(y)  > 0 

ax 

it follows that the Theorem 2 condition can be satisfied only if f  > x,' 

which violates our Law of Diminishing Returns. Accordingly intervals of x 

over which (38) holds exactly have to be minima of net present value. 

Notwithstanding that Bliss's example will not suffice to illustrate 

the point, multiple maxima of net present value may exist. Accordingly 

unless we are prepared to restrict the ex ante production function as 

required by Theorem 2. the possibility exists of more than one competitive 
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equilibrium in a growth mode. However, Theorem 1 will always hold good. 

III.3 Internal rate of return 

As an alternative to maximisation of net present value we now 

turn to consider the choice of technique based on the internal rate of 

return as defined by a in the equation 

T 

	

I = 	(X-Newt)e-Xtdt 	 (39) 

0 

where 

T= I  log  

As before, the choice will be assumed to be made in terms of a choice of N 

given fixed I. 

The analysis of this choice problem has much in common with 

maximisation of net present value. In particular imposing the restraint 

Z = I on the general formulation of section III.1 above easily yields first 

and second order conditions for the maximisation of l which are of the same form 

as those for maximisation of Z-I. Indeed if a°  is the maximum attainable 

internal rate of return and is realised by some technique N°, then this same 

technique is chosen if the object is to maximise net present value given a 

.fixed discount rate a = a°. 

From this equivalence and Theorem 1, the following Theorem for 

maximisation of the internal rate of return is easily established: 

Theorem 3: 	If N°  is the technique for which the internal rate of return 

X, defined by equation (39) has its maximum value, a°, for fixed 

I, w > 0, then 

	

0 	 0  
(i) N E 	and if IZ is finite 

f 
(ii) a°  = r°  - w x-f 

N 

(iii) No  < N* 4 a°  < X* #OZ* < I 

where N* is the technique which maximises Z-I for fixed 

discount rate X* and for the same fixed w and I 
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and 

0N°  

	

(14) 	
0 

Aw <  

The proof that N°  E / follows the same lines as the proof of (i) 

of Theorem 1 or from the equivalence of net present value and internal rate 

of return maximisation already discussed. Accordingly there is no need to 

develop the proof explicitly. 

Part (ii) of Theorem 3 also follows by analogy with its counterpart 

of Theorem 1. Its interpretation is that the difference between the initial 

and average rates of profit is proportional to the rate of growth of real 

wages when the average rate, 1, is a maximum. The coefficient of 

proportionality depends as previously on the elasticity of output with 

respect to the variable input (labour) as evaluated at the optimal point on 

the ex ante production function. 

This result provides an alternative theory about the 

determination of r to assuming simply that r is maximised. As such it can be 

substituted in equation (1) to provide an explanation of the contribution of 

capital to growth in terms of a and w. It has been used in this way in {41. 

Part (iii) of Theorem 3 also follows easily from the analogy with 

present value maximisation given the result (iii) of Theorem 1;  N*  > 0. 
AX 

Accordingly in the interest of economy the proof is only outlinecr here. 

Starting from maximisation of net present value Z*-I for a = a* we 

have technique N*. If Z* > I, then a can be raised; N will increase; and Z* 

will decline. If a is raised until Z* = I, then a = a°  > a* and N - No  a N* 

Parallel arguments cover the case where initially Z* t L Further, if 

a°  > a*, then maximum net present value at discount rate a° is less than at 

discount rate A*. Since the former is zero the latter must be positive, 

i.e. X°  > a* +ji Z* > I. Moreover, N* at discount rate a° exceeds N* at discount 

rate a*. But the former is N°, so a°  > X* :o No  > N*. Similar arguments 

	

° 	 ° cover the case X < a*. Finally, if N* > N then from (iii) of Theorem 1, 
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X* > ao, and conversely for N* < No. 

Part (iv) of Theorem 3 can be proved employing both of the results 

(iii) of Theorem 1. Starting with maximisation of net present value at 

discount rate 
X  we have technique No  and Z = I. If w is now decreased, N will 

increase and so will Z. The latter can be brought back to its original value 

by raising a and thus further increasing N. At the value of X which achieves 

this Z = I so a is the maximum internal rate of return at the lower value of 

W. 

For future reference the most important part of Theorem 3 is (iii). 

From this we have that if present value maximisation results in a technique 

for which Z* > I then a switch to internal rate of return maximisation will 

yeild a rate above the exogenous discount rate and result in a move towards 

a more labour intensive technique. 

To conclude this stage of the discussion of internal rate of return 

maximisation it must be recognised that there may be more than one local 

maximum. There cannot be a continuww or plateau of local maxima for the same 

reason as was discussed with respect to present value maximisation: a range 

of N over which the first order conditions are identically satisfied has to be 

a continuum of minima. However there may be two local maxima of equal 

magnitude and hence no unique global maximum technique. Even in this case, 

however, there is of course a global maximum for 
X  

and the choice of either 

local maximum for No  will not result in a violation of Theorem 3. 

III.4 Pay-off period 

While consideration of present value maximisation and maximisation  

of the internal rate of return is prompted by theory, it is largely empir?ral 

observation of behaviour which has drawn attention to the choice of technique 

based on a pay-off period criterion. However, the implications of such 

criteria are being fed back into theory, for example by King {10} and notably 

by Kaldor and Mirrless {g}. 
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For analytic purposes there is some ambiguity about the 

appropriate definition of the pay-off period. It is defined here by 0 in 

the expression 	

/0 

 

I = J  (X-Newt) e-ltdt 

0 

so that 0 is the length of time it takes for a technique to earn enough 

profits for their present value to equal the cost of the technique. Most 

authors, however, and notably Kaldor/Mirrlees and Harcourt, define the pay-

off period as above but subject to the restriction X= 0. Clearly this is 

a special case which our analysis will endeavour to embrace, not least 

because it is the case that corresponds most closely to empirical 

observation of behaviour. 

There is also ambiguity about the choice criterion to be 

formulated relative to the pay-off period. It will be assumed here that 

the object of the exercise is to find thatN, to be denoted N0, for which 

0 is a minimum. 	However others regard the pay-off period as an argument of 

a lexicographic criterion of choice. Thus Harcourt assumes that there is an 

exogeneously given horizon, H and that firms choose a technique first by 

restricting their choice to the set of techniques for which 0 < H (given 

X = 0) and then by choosing the technique from within that set for which the 

accumulated profits over the period (0,H) is maximum. 	Kaldor/Mirrlees 

formulate the problem similarly: choice is first restricted to a set of 

techniques in the same way as specified by Harcourt. However they now argue 

that competitive pressures will reduce this set to a single element so that 

no further criterion is needed. In effect, therefore, they have an equation 

of form (40) above. Both these formulations are commented on later. 

The first point to note about the pay-off period as we have defined 

it (including the special case a = 0) is that it may not exist. It is quite 

possible for there to be no technique which earns profits which will cover 

the capital cost. In this event the technique with highest net present value 

(40) 
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has a net present value less than the cost I. Thus we have as a necessary 

and sufficient condition for N0  to exist that Z* > I. This is the first 

part of our theorem on the properties of NO  as set out below 

Theorem 4: 	If NO  is the technique for which the.pay-off period 0 

defined by equation (40) is minimum for fixed I,X and 

W, then 

(i) 0  N
O  exists if and only if Z* > I 

if N exist 
(ii) N E 

and if NO  is finite 
(iii) NO  > No  

and 

ON 	AN 
(iv) A),< 

 0 
> Ow 

It can be noted that the existence condition of Theorem 4 implies for the case 

a = 0 that the technique which earns maximum undiscounted profits over its 

lifetime, i.e. technique AN, must earn profits in excess of I. Further, when 

a technique has a well-defined pay-off period, O,then 0 must be less than or 

equal to the economic life of the plant, i.e. 

0 Ift<  T = 

w 

 log x 	 (41) 

if 0 exists. 

To prove that if NO  exists then NO  is not dominated and so satisfies 

our law of diminishing returns is very simple for the case a = 0. The more 

generally case can be demonstrated with the aid of Figure 12. 'It is easily 

shown that if technique N2  is to dominate NI  while the latter has the smaller 

pay-off period, then N2  must earn higher profits initially and have a shorter 

economic lifetime: all other cases are easily eliminated and Figure 12 is drawn 

accordingly. 

In Figure 12 area a < area S since because 02  > 01  it follows that 

by time Ol  technique N1  has earned more cummulative discounted profits. If 

now the discount rate is lowered to zero, a -> A < a eaT  and s >B > beXT. Hence 
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B > A, i.e. technique N1  has earned more cummulative undiscounted profits by 

time O1  than has technique N2. Accordingly the latter cannot dominate. 

The second part of (iv) of Theorem 4 can be proved similarly. Let 

technique N1  be the technique with smallest pay-off period given w  and let 

N2  be smaller than N1. If now w is decreased the reduction in pay-off period 

for N1  can be shown to be greater than that for N2. Accordingly N1  is still 

to be preferred at the lower level of w. Thus lowering w cannot lower N0. 

In the limit where w = 0, equation (40) can be reduced to 

0 

J1 = 
	
re-Xt  dt 

0 

Thus r and 0 are inversely related and minimum 0 corresponds to maximum r, i.e. 

to the choice of technique NO  = N. Accordingly minimising the pay-off period 

is Equivalent to maximising the immediate rate of profit if no allowance is 

made for growth in real wages. 

The remaining parts of Theorem 4 yet to be discussed are illustrated 

in Figure 13. The figure incorporates the restraint (41) and embodies the 

assumption that 0 is a convex function of N. However such an assumption is hard 

to justify and convexity is not assumed in the arguments of the text. 

The Figure 13 shows 0 as a function of N for various values of X. 

The.fact that the contours corresponding to particular values of a do not cross 

can be shown from the total differential of (40) which yields for fixed I and w 

0 

	

(X-Newe)e-a0d0 = da 	t(X-Newt)e-atdt 

0 
0 

	

+ dN 	(ewt-fN)e-atdt 	 (42) 

0 

Since 0 < T we have X > Newe  and therefore for fixed N as a increases so does 0. 
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Moreover, as 0 -~- T, d0/da -* - as shown in the diagram. 

Two further points illustrated in the diagram are easily established 

The first is the obvious one that as A increases so the range of N for which 

0 exists is diminished. The second point is that as a increases without 

bound, the last technique to survive in the sense that for it 0 exists, is 

the technique N°. This is the only technique (assuming No  is unique) which 

has a defined pay-off period for X = X  since for all other techniques Z < I. 

At ao 
 the pay-off period for technique N°  is of course T = w log x°, i.e. the 

economic life of the technique. 

The diagram shows that N* increases with a as required by Theorem 1 

and that for each A, N* .< N0. To see that this must be so, consider a technique 

N' < N*. For N' initial profits must be lower than for N* and so must ultimate 

cummulative discounted profits. Indeed the whole schedule of cummulative 

discounted profits for N' must lie below that for N*. Accordingly N' cannot have 

a smaller pay-off period. 

It now only remains to show that No  decreases with a to complete 

the proof of the theorem. For if this can be established, then it must follow 

from the fact that NO  = N°  for a = a°  that N0  > N°  when the former exists 

i.e. when A < a°. Accordingly (iii) of Theorem 4 follows directly from the 

first part of (iv). 

To establish the first part of (iv) of Theorem 4 note that from (42) 

it follows that 0 is stationary with respect to N for fixed a if 

0 
f 

N 
= I e(w-a)tdt 

If 

0 
0 

e-Xtdt 
0 

= *, say 
	

(43) 

From (40) and (43) it follows that * can be written as 

0 
= N 

 

(X-I/f
o 
e-Xtdt) 	 (44) 
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so that for a given technique 

f 
d* 	={e-a0d0  - dXto-at

dt}  (X-NI) 
2 	

(45) 

0 

Accordingly since 0 increases with w, ~ has its minimum value with respect 

to non-negative w when w = 0. In this event it is obvious from (43) that 

is one in this limit and
, 
 stationary 0 corresponds to fN  = 1, i.e. to the 

technique N and hence to maximisation of the immediate rate of profit as 

previously discussed. 

An upper limit to ~ can be found by considering its behaviour relative 

to changes in a for a given technique, N. Specifically, substituting for 

d0 in (45) according to (42) with fixed N yields 

0 

d~ 	
IX-Ne wO  ) 0  

_ 	(X-N~)2d 	te-at(ew0-ewt)dt 
,~ 	

(46) 
(  

Since the integral is necessarily positive, ~ must increase for a given technique 

with respect to X. Thus it is a minimum with respect to a for w > 0 when 

X = 0, in which event (44) yields the first part of 

= ewe-1 x-1 
w0 	log x 

while the second follows from the fact that (41) must be satisfied. It follows 

then that for A = 0)~ is analogous to the function ~ defined by (28) which 

plays such a large role in the analysis of present value maximisation. Indeed 

the analogy goes further and extends to the case where a > 0. For it is 

straightforward to show that as a increases so 0 increases towards T = 1  log X. 
w 

Accordingly 

as a increases, and the approach.is  monotonic and from below in view of (46). 

Thus we obtain that for all w and )~ >0 

X-1 
1 6 	 log x 
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Consider now the following. Let N1  be the technique which has 

minimum 0 for discount rate X1 and let a2  be some lower discount rate. Then 

from (43) and (46) 

f 	
= gxlt Ni) > *(a2 tNI) 

1 

Suppose further that N2  is a technique which has the same pay-off period 
	

as 

N1  at discount rate a2. Then from (44) 

X1-X2  

N -N 	W2'N2)  < f   1 2 	 1 

Thus since we assume fNN  < 0 it must be the case that N2  > N1. Tkis result 

would be sufficient to ensure that N0  decreases as k increases if 

stationary values of 0 with respect to N are minima ie if 0 has only one local 

minimum. To see that this is in fact the case, note that from (42) 

(e 
 wt- fN)e-xtdt  

d0 	0 
dN 	(X-NewO)e-ae 

so that  

_f 
NN  j

oe_atdt 
	

f -ewe  

d d0 _ 	0 	 _ d0 N 

(X-Ne dN 	CdN) 	 w0 )e- AU 
e
-ae 	2  dN X-NewO 

d0 2 	wNe
wO  

+ ~dN) 	(~ + 	we)  
X=Ne 

Accordingly any point at which d0/dN = 0 must be a minimum point given 

f
NN 
 < 0 < x-ew 0. Together with our earlier result this implies that NO  increases 

as a decreases. 

The above completes the proof of Theorem 4, two points from whic, -re 

worth emphasising. The first is that decreases in both w and a effect N0  in the 

same direction. For w a decrease not only results in more techniques for which 
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if defined but---al-so in -less discouragement for high values-  of -N. 

Accordingly NO  increases. A decline in a might be thought to encourage 

techniques with longer lives. However what happens for t > 0 is immaterial 

and declining a results in O being defined for techniques with higher immediate 

profit rates. This last turns out to be the dominating factor so N0  increases. 

The second point to note from Theorem 4 is the simple ordering of 

the techniques N*, No  and N0  which is now established and illustrated in 

Figure 13. As we move from undiscounted profit maximisation (N), through 

discounted profit maximisation (N*), to internal rate of return maximisation 

(NO), and on to pay-off period minimisation (NO) first with a discount rate 

and then without 	, finally finishing up with maximisation of the initial 

rate of profit (1), so throughout we are concerned with techniques which are 

not dominated and which are progressively more labour intensive. 

In their formulation of growth with a vintage technology Kaldor and 

Mirrlees assume that the choice.of technique depends first on whether the 

undiscounted profits within some horizon, H, exceed the cost of the technology. 

In our terms this means 0 < H for k = 0. They then assume that if this 

condition is satisfied, the present value of a technique will exceed its cost. 

Again translating to our terms., the assumption is that Z* > I and therefore 

0 exists for a > 0. Figure 13 shows clearly that this assumption is not 

merited. For example, if A = X  and H < Ho, then Z* < I for all techniques 

which satisfy 0 < H for X = 0. More generally, the assumption of Kaldor and 

Mirrlees will be valid for given H only if A is restricted to some range of non-

negative values for given w. 

Harcourt's formulation {7} is similar to that of Kaldor/Mirrlees as 

we have seen. Harcourt assumes that the objective is to choose that technique 

for which the undiscounted profits within the horizon H are a maximum, subject 

to their being greater than the cost of the technique. This can be shown to 

involve a choice of technique which moves from A to B in Figure 13 as H 

increases, and hence clarifies the uncertainty expressed by Harcourt about the 

relative labour intensity of a technique chosen by this criterion. 
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IV. 	Various Modifications 

IV.1 	Introduction 

The analysis of the previous section assumes a number of 

simplifications both in the investment decision itself and in the 

context in which it is made. 	Such is the way in which theory is 

most readily developed. 	However, at some point it is desirable 

to relax the simplifications to obtain insights into the direction in 

which important magnitudes will be modified in a move towards greater 

realism. 	In this spirit various modifications are considered in 

this section of the paper. 

The first general area.to  be explored is taxation. In so 

far as investment decisions are motivated by a quest for private gain, 

only those parts of the benefits which accrue to the investor are 

relevant to him. This may or may not introduce distortions relative 

to the 'no tax' case. 	In point of fact we find below that while 

profits tax and investment grants may not distort, the same cannot be 

said for value added taxation. 

A second general area for consideration is uncertainty. This 

has been considered here only for a simple case where a plant might 

'die' for reasons other than technological change. The formulation has 

'radioactive decay' as a special case. 	Uncertainty attributable to 

future factor prices is not considered although it must clearly come 

into account at some point as growth theory develops. 	Indeed since 

capitalism is hard to justify in the absence of uninsurable risks it is 

hard to see the relevance of growth models in general, and investment 

decisions in particular, to the real world situation without some 
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introduction of a stochastic element. 	Accordingly we have attempted 

some generalisations in this direction, first in terms of uncertainty 

and then of risk aversion not least with the familiar Keynesian 

formulation of the importance of a risk premium in mind. The results 

lend support to Keynes' formulation of the problem in terms of the 

internal rate of return rather than net present value and suggest that 

pay-off period criteria provide a surrogate for the modifications which 

uncertainty otherwise introduces. 

IV.2 	Taxation 

With respect to each of our three criteria of investment choice 

the effects of profits tax, investment grants and a gestation period on new 

capacity can be considered simultaneously. 	Introducing these three 

considerations modifies the expression for net present value to 

Z' - aIeU 
	

$Z - 	aIeXt 
	

(47) 

where 	100 (1 - a ) 	_ 
	

% investment grant 

100 (1 - 	 % rate of profits tax 

k 	= 	gestation period 

it being assumed that the costs of investment, I, have to be met at a 

time k units before quasi-rents begin to be earned. 

A number of points follow immediately from (47). First it 

is apparent that for fixed a , the effects of a gestation lag and of 

investment grants are comparable and work in opposite directions: increasing 

k is equivalent to increasing a . 	Secondly, these factors have no 
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influence on the choice of technique with respect to fixed I. Indeed 

since (47) is simply a linear transformation of Z - I, maximisation of 

(47) involves the same choice of technique as is obtained in the absence 

of profits tax, investment grants, and a gestation period. All that is 

affected is the size of net present value at the optimum, and hence 

whether or not it is positive. 	These simple results for the optimum 

technique are expressed in the following theorem: 

Theorem 5: 	(1) The effect of introducing profits tax on the optimum 

technique is 

(a)  to lower 	N when the internal rate of return is 

maximised; 

(b)  no change in N 	when net present value is maximised; 

(c)  to raise 	N when the pay-off period is minimised; 

(2)  The effect on a gestation period on the optimum 

technique is qualitatively the same and opposite in sign 

to that of introducing investment grants, and is equivalent 

to that of introducing a profits tax for all three investment 

criteria. 

(3) The effect of introducing value added tax on the optimum 

technique is to lower N according to all three investment 

criteria. 

The results in parts (1) and (2) of Theorem 5 relating to internal 

rate of return maximisation are almost as easily derived as those for 

net present value maximisation. 	From (47) it is now required to choose 

N so as to maximise 1 in the expression 

OZ - aIeX1 
	

(48) 

where Z is, of course, a function of a 



From (48) it follows at once that increasing a is equivalent to 

decreasing 	S. 	The effects of introducing -a profits tax are isolated 

by having 1 - a = 0 = k 	Because of the tax, for any a we have 

sZ < Z. 	Accordingly since Z = I for 	a 	a°, equation (48) 

can be satisfied only at some A < a°. 	The highest value of A at 

which it can be satisfied therefore leads through net present value 

maximisation to a value of N below N°; and at this value a is a 

maximum subject to (48). 

Similarly, the effect of introducing a gestation period is to 

make the right hand side of (48) negative at a = a°. 	Accordingly a 

must be lower, leading to a lower optimal value of N. 

If the criterion of choice is minimisation of the pay-off period, 

then before and after introduction of profits tax this period is given 

respectively by 0 and 	0',  in 

0 
	 0' 

	

I = 	(X - Newt) e-lt  dt = S 	(X - Newt) a Xt  dt 

0 	 10 

for any given technique. 	To ascertain the effects on optimal N of the 

tax it is useful to consider first the effects of changing w and a 

simultaneously with the introducing of the tax. 	Thus supposing w 

and a are increased to w' = w/S 	and 	V = a/B at the same 

time as the tax is introduced. 	Then the new pay-off period is given by 

0'" where 

0" 

	

I = 	(X - Newft) e-Xt  dt 

0 
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By changing the variable of integration now to T ; 	TO = t, it is 

easily shown that 00" = 0 i.e. 0" is simply proportional to 0, 

Accordingly the technique which gives minimum v 0 also gives minimum 0" 

and so that optimum does not change if w and A change as specified.. 

Since the result we require is with respect to fixed A and w, the optimum 

will in fact shift corresponding the effects of lowering w' and V to their 

original levels. From Theorem 4 this implies that optimum N increases. 

To complete the proof of parts (1) and ( 2) of Theorem 5, it 

can be seen at once from 

0 

	

aIeAt  = B 	(X - Newt) a-Xt  dt 
0 

that the effects of investment grants and gestation lags correspond as 

stated in the theorem to the introduction of a profits tax. 

The effects of a value added tax are more complex and are 

introduced in so far as they relate to present values in Figure 14. The 

complications arise from the fact that unlike profits tax which influences 

only the sharing of quasi-rents between the investor and the tax authority, 

an effect of VAT is to reduce the economic life of a plant at fixed prices 

and hence the total sum of quasi-rents which it earns. Thus if the tax 

is levied at rate 1 - a we have 

T 	 T' 	 T 

(X - Newt) a-fit  dt 	(aX - Newt) a- fit  dt + (1 - a) X 	e ~t  dt 

0 	 0 	 0 

T 

	

+ 	(X - Newt) a Xt  dt 	 (49) 

T' 
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where the left-hand side is the present value of profits before introduction 

of the tax and the right-hand side shows first profits remaining with the 

investor after imposition of the tax, then the tax revenue, and finally 

the lost value through reduction in economic life from T to 	T', i.e. 

from 

w T = log x 	to w T' = log ( ax) 

From this it is straightforward to show that if the tax authority 

wished to obtain the same present value of revenue from the given investment, 

the investor would prefer this revenue to be raised by a profits tax rather 

than by value added tax. 	For a given technique, under profits tax, a 

part of the total tax revenue is paid from profits earned between times 

T and T' and the remainder of these profits are retained by the investor. 

Under VAT not only are there no profits retained from this period but also 

all revenue for the tax authority has to come out of earnings prior to T'. 

Since this preference for profits tax maintains for any given technique, 

it will hold in general. 	In some cases it will imply that investments 

worthwhile under profits tax will no longer be worthwhile under VAT. This 

makes no difference if the tax authority is concerned to raise revenue 

in proportion to realised investment. 	However, if their concern is to 

raise an absolute amount of revenue then it implies that tax rates under 

VAT would need to raise more revenue from each realised investment than 

would a profits tax. 	Accordingly the preference among investors for 

profits tax would be strengthened. 

If Z' is the present value of profits after imposition of 

the tax, then Z' is the first term on the right-hand side of (49). 
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There is a reasonably simple relationship between present value after 

tax, denoted Z', and its value before tax, i.e. the left-hand side of 

(49) which is Z. 	The relationship is 

0 

Z = au 1  Z' + 	( aX - Newt) e XTdt 	 (50) 

w
log a 

and can most easily be derived by transforming the variable of integration 

in the expression for Z from t to T = t + w log a. 

The integral appearing in (50) must be positive for 

a < 1 < 	ax, this second condition being necessary for T' > 0. 

The derivative of the integral with respect to N will be positive if the 

condition 

f 
	> p (I/a)u  - (1/a) 	

(51) 

is satisfied. 	But we know from (28) that the condition for Z to be 

stationary with respect to N is 

f 	= 	=  u x  - x 

P-1 xu  - 1 

and that from Lemma 2, Wax > 0 

Thus if Z is stationary with respect to N, the condition (51) will be 

satisfied given. ax > 1. 	Accordingly the difference between Z and Z' 

is an increasing function of N throughout a range of values of N which 

includes all the stationary values of Z. 	Hence the maximum value of Z' 

in this range is at a lower value of N than the maximum value of Z, i.e. 
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imposition of a value added tax lowers the value of N corresponding 

to the optimal technique, as stated in Theorem 5. 

The effects of VAT when the criterion of choice is maximisation 

of the internal rate of return can be derived from the following argument. 

We start with the technique corresponding to maximisation of a given VAT 

and with the maximum discount rate, say*. 	If we now switch to 

present value maximisation given VAT and a = 1*, we have Z = I and no change 

in technique. 	Keeping this technique a switch to profits tax which yields 

the same revenue will yield Z > I since profits tax is preferred. Keeing 

to the same rate of profits tax and to a = a* we now maximise present 

value Z. 	There are two effects. 	First, 	Z - I > 0 is increased. 

Secondly, the choice of technique moves to a higher N since while profits 

tax at any rate makes no difference to optimal N, VAT at any rate shifts 

N down relatively. 	Given that we had previously maximised Z with 

respect to VAT, the move to higher N on switching to profits tax is 

inevitable. 	This move will also have had the effect of increasing tax 

revenue since under profits tax the revenue in proportional to Z. Thus 

in relation to our original position, N and Z and tax revenue are all 

larger while X = a*. 	Suppose now we increase the profits tax rate 

so as to make maximum Z = I. 	This does not change N but it does of 

course raise tax revenue. 	Our next move is to simultaneously raise a 

and lower the profit tax rate, maintaining throughout Z = I. 	Since we 

are maximising Z the change in tax rate does not change N: but raising 

does effect N - it increases N. 	This simultaneous increasing of a and 

lowering the tax rate so as to maintain Z = I is continued until the 

tax revenue is back to the original level at which we started. The point 

reached is equivalent to maximising X subject to profits tax at whatever 

rate is necessary to yield the same revenue as we started with given a 
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maximisation under a VAT regime. 

Since all changes in N in the above sequence of events are 

increases in N it follows that N is larger under profits tax than under 

VAT. 	Moreover, since N is smaller with profits tax than without from 

Theorem 5, it follows that N is reduced by imposition of VAT as stated 

in Theorem 5. 

To complete Theorem 5 we need to explore the effects of VAT when the 

criterion of choice is minimisation of the pay-off period. To do this we 

note that 0 under VAT is given by 

0 

I _ 	( a x - Newt  ) e-Xt  dt 

0 

From this it is easily shown that for a given technique 0 decreases with 

a . Moreover, for that technique which minimises 0 with respect to N 

for given a, 	d0 / da is decreasing with respect to N. Accordingly, 

since 0 has a unique minimum with respect to N, the effect of raising a 

is to raise N corresponding to this minimum. 	Thus raising VAT lowers 

the optimal N. 
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IV.3 Uncertainty 

Uncertainty can be introduced into the investment decision 

model in a variety of ways and there can be little doubt that its 

implications will vary according to the means chosen. 	In the 

present case uncertainty is introduced in a very simple form: it is 

assumed that the physical life of plant, T 	(as opposed to its 

economic life, T_= 
w 
 log x), is exogeneously determined according to 

some stochastic distribution which is independent of the technique 

chosen. 	Accordingly, the actual life of a plant will be the minimum 

of its economic life and physical life, and it follows at once that 

our introduction of uncertainty can only detract from the attractiveness 

of an investment. 

If F(T) is the distribution function of the random variable T 

and S(T) is its complement, then S(T) is the probability that a plant 

is still earning quasi-rents at time T if its economic life is not 

yet over. 	Accordingly, S(T) can be referred to as the survival curve 

for the plant and enters simply into the expression for expected present 

value of all quasi-rents as 

T 

	

E(Z) _ 	,r(t) S(t) e-Xt  dt 

0 

where 	T = 	w log x 

If S(T ) = 1 for all T  in the interval (0,T), the plant is sure to 

survive its economic lifetime and E(Z) = Z, i.e. there is no uncertainty 

which matters. 	This is, of course, a limiting case. 	More generally 
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S(T) L 1 so that E(Z) e, Z, i.e. uncertainty reduces the expected 

value of Z. 

Since 0 < S(T) S 1, 	S(T) can be transformed into a 

function e-  6T such that 

T 	 T 

~r (t) S (t) a 
X
t  dt = 	n (t) e - (X 

+ 6) t dt 	(52) 

0 	 0  

where 6 > 0. 	Hence 6 is a surrogate discount factor which has 

the same effect on present value as does the survival function, S(T). 

In general 6 will depend on N for fixed a and w since from (52) 

T 	 T 

d6 	r t e -(a+6)t dt = dN 	aN (
e  6t- S) a -at dt 

0 	 0 

It follows that 6 will be independent of N in general only in the 

special case 

S(T) _ 	
-6T 

e 

which corresponds to what is usually known as radio-active decay and 

implies that the physical life expectation of a plant-is independent 

of its age. 

If the survival curve is exponential and we have therefore 

radio-active decay it is obvious that the introduction of uncertainty 

is equivalent to raising the discount rate, a . 	From Theorem 1 this 

implies that E(Z) is a maximum for a more labour intensive technique 
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than N*. 	(We shall see later that this result holds without restriction 

on S(T).) 	Moreover, if E(Z) > I then maximising the internal rate of 

return, a subject to E(Z) = I not only results in a further shift to a 

more labour intensive technique but also leads to the same choice of 

technique as in the certainty case, i.e. technique N°. 	Thus uncertainty 

in the form of radio-active decay makes no difference to the choice of 

technique if the criterion of choice is maximisation of the internal 

rate of return. 

This result is one of two invariances with respect to 

uncertainty which are stated in Theorem 6. 

Theorem 6: 	(i) 	If the survival curve is exponential, then the 

technique which maximises the internal rate of return 

is technique N°. 

(ii) If NE) 	exists, then N0  is the technique which 

maximises Pr (Z > I). 

The second invariance result in Theorem 6 applies for any 

survival curve, S. 	It states that the technique with minimum-pay-off 

period under certainty is the technique for which, under tarcertainty, the 

probability that net present value is positive is a maximum. This result 

follows directly from the fact that a technique will have a positive net 

present if and only if its physical life exceeds its pay-off period. It 

implies that a pay-off period criterion is a particular way of abstracting 

from uncertainty which is equivalent to weighing the outcomes of an invest-

ment on a binary scale of 'success' (Z 3 I) and 'failure' and maximising 

the chances of success. 	More generally, the restriction of choice of 
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technique to those which have a pay-off period less than some horizon, 

H, is equivalent to restricting choice to those techniques which have 

a probability of at least S(H) of being 'a success'. 

Pay-off period criteria are such a complete means of abstracting 

from uncertainty that there is no way of introducing uncertainty into them 

beyond the analogy pointed out above. In particular, the expected pay-off 

period cannot be well defined since for some outcomes of T which may 

have non-zero probability of occuring the pay-off period is not defined. 

The nearest we can come is to consider the probability that it is defined, 

which is the probability that Z >, I as already discussed. 	Accordingly 

there is nothing more to be said about pay-off period criteria under 

uncertainty. 

Theorem 7 gathers together various results for present value 

maximisation and internal rate of return maximisation under uncertainty 

which apply in the general case where the survival function, S(T), is 

restricted only to being monotonic decreasing for non-negative T and 

such that S(0) = 1 ; 	S(C-) = 0. 

Theorem 7: 	M 	The technique which maximises B(Z) is.more labour 

intensive than technique N*. 

(ii) If max E(Z) >, I, then the technique which maximises 

X subject to E(Z) > I is more labour intensive than the 

technique which maximises E(Z). 

(iii) The technique which maximises E(a) is more labour 

intensive than technique No 
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The first part of Theorem 7 states that maximisation of E(Z) 

results in a more labour intensive technique than does maximising Z 

given certainty. 	The proof is simple: starting with two techniques 

with the same Z in the absence of uncertainty it is easily shown that 

E(Z) must be greater for the more labour intensive of the pair. Analysis 

on similar lines establishes the next part of the theorem which can be 

explained in relation to Figure 15. 	The figure shows two techniques with 

the same E(Z) at some discount rate, a , say. 	Accordingly areas a and S 

are equal in the Figure. 	If now the discount rate is raised to a2  > X1 
then area a falls to some are A > a e(X1 ~2) T 	Similarly S falls 

to some area B - < ~ 1 -X2) T 	Accordingly A > B and the more 

labour intensive technique, technique 1, is to be preferred at the higher 

discount rate. 	From this point it is straightforward to establish that 

provided max E(Z) 3 I, the technique which maximises a is more labour 

intensive than.that which maximises E(Z). 	From Theorem 6, the former 

is of course technique No  in the special case of radio-active decay. 

The final part of Theorem 7 states that maximising the expected 

internal rate of return, E()L), calls for a more labour intensive technique 

than maximising a in the absence of uncertainty. 	To establish this 

we can note that the internal rate of return is given by 

in(T,T) 

I = 	Tr e-Xt  dt 	 (53) 

Q 

from which it is straightforward to show that T is a concave function of 

A and hence that E(X) S X + T =E(T), 
	However this plays no part in 

our proof which requires from (53) that 



in (T ,T) 

da 	87r a 
 -at dt 

dN - 	8 
0 

min(T,T) 

Tr t e -Xt  dt 

0 

(54) 

Since the denominator of (54) is necessarily positive, the sign of 

da / dN is that of the numerator of (54). 	Now if T = min(T,T), then 

the numerator of (54) will be zero for the technique N°  since N°  

maximises 1 in the absence of uncertainty. Moreover, again at N°, the 

numerator will be positive for T < T° since 8fr /eN is a monotonic 

decreasing function of t. 	Accordingly for T < T°, any technique 

which yields a higher k than technique N°  yields, must involve 

N 	> N° 	all N < N
P  are inferior for . T < T°  = 

w 
 16g x°. 

Further, for T > T°, all techniques other than N°  by definition yield 

a lower A than 	I°. Accordingly in no circumstances is a greater 

than that yielded by N°  if N < N°. 	Thus the technique which 

maximises EM must involve N 3 No. 

From these results we can note that since the effect of 

uncertainty is to make E(Z) a maximum for some N > N*, a surrogate for 

uncertainty which would result in choosing the same technique would be 

to add an uncertainty premium (not a risk premium) to the discount rate 

and proceed to treat the choice problem under uncertainty as having a 

certainty equivalent. 	By making this premium large enough, any technique 

in the range N* to N could be reached. 	However, there is a disadvantage 

in this since raising the uncertainty premium will lower the certainty 

equivalent Z. 	Accordingly, if the restraint Z 3  I is not to be violated, 

the uncertainty premium cannot exceed a°  - a and the chosen technique 

° cannot be more labour intensive than N 
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To get beyond N°  one possibility is to switch our criterion of 

choice. 	Thus maximising Pr(Z - I > 0), which we have seen is equivalent 

to minimising the pay-off period, results in N = NO  > N°. An alternative 

is to maximise E(X). 	Both are effectively risk-averse types of behaviour. 

Yet another procedure is to introduce risk aversion directly as in the 

next section. 	Meanwhile it is apparent that risk aversion cannot be 

treated simply as certainty equivalence by adding a risk premium if its 

effect is to call for something more labour intensive than N°  while 

maintaining Z . I. 

IV.4 	Risk aversion 

The introduction of uncertainty into the analysis of choice of 

technique allows not only that there may be lack of certainty equivalence 

but also that there may be specific attitudes among investors towards 

risk. 	Here we shall only be concerned with attitudes which take the form 

of risk aversion defined as: 

Risk aversion: 	A decision maker has risk aversion if his 

criterion of choice is to maximise the expected 

value of some function of a positively desirable 

characteristic, a, given by U(a) with properties 

(i) U(0) = 0 

(ii) U' (a) 3 0 

(iii) d 	U(a) . 0 
da -7- 

Property  (i) above states that zero satisfaction is obtained when 

a = 0 and essentially defines a scale of measurement for a. 	Property (ii) 
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makes 'a' a positively desirable characteristic, or more strictly, not 

undesirable. 	Property (iii) states that the average amount of satisfaction 

obtained from a must fall as a increases and hence must be greater, at 

positive levels of a and less for negative a than the marginal 

satisfaction to be obtained from additional a. 	This then is a weaker 

requirement than that marginal satisfaction should diminish but is by no 

means incompatible with it. 

The properties of the function U are not retained under an 

arbitrary monotone transformation of U. However they are retained for 

a transform W(U) which has the same properties with respect to U as U 

has with respect to a. 

Our interest in risk aversion derives from the following theorem: 

Theorem 8: 	Maximising EU(Z - I) results in the choice of a more 

labour intensive technique than maximising E(Z) if U 

is consistent with risk aversion. 

To establish Theorem 8 we consider two techniques, N1  and N2, 

for which E(Z) is the same and show that of the two the one which is more 

labour intensive, denoted N2  , is preferable under risk aversion. 	From 

this the theorem follows directly. 

The analysis is developed with the aid of Figures 16 and 17. 

Figure 16 shows how the present value of cumulated profits builds up as a 

function of the physical life of each plant, T . For T = 0 both graphs 

start at - I and that for technique N2  has the steeper slope since it 
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it corresponds to the technique with higher immediate profit rate. 

Technique N2  also has the shorter economic life and the lower present 

value over its economic life time. 	These properties must hold, as must 

the property that the two graphs cross once and once only if the two 

techniques are to have the same E(Z). 	The point at which the schedules 

cross is denoted by Z = C so that the probability Pr (Z 5 C) = p is the 

same for both techniques. 

This last point is reproduced in Figure 17, which shows the 

distribution functions, F(Z - I) of cumulative net profits Z - I for each 

of the techniques. 	Again the schedules cross at Z = C and we have F(C - 	I) = p. 

Below C. 	F1(Z) > F2(Z) implying that low values of Z are more likely for 

technique 1, and this follows directly from Figure 16. 

To go further we note that 

E1  (Z - I) = p E1 (Z-  I/Z < C) + (1 - p) E1  (Z - I/Z > C) 

and 

E1U (Z - I) = p E1(U (Z - I) / Z < C) + (-I-p) E  (U(Z -I) /Z > C) 

and similarly for technique N2' 	Moreover, by definition E1(Z - I) _ 

E2(Z - I). 	From these results it is easy to show that 

	

A E U = E2  U - E  U = p A E (Z/Z < C) jQ E (U/Z < C) - tiE (U/Z >C) 	
(55) LA E (Z Z < C) 	AE (Z Z >C) 

Now 	 F(C - I) 

E  (U/Z < C) 	= 	U (Z - I) dF1  (Z - I) 

0 



=ice 

F(C-I) 

	

= 	U(Z - I) (Z - I) dF (Z - I) 
Z 

0 

So that 
F(C-I) 

A E(U/Z < C)= - 	U(Z_i) (Z i I) d(Fl  (Z - I) - F2  (Z - I)) 	(56) 

0 

Similarly 

F (C-I) 

A E (Z/Z < C)= - (Z - I) d (F1(Z - I) - F2  (Z - I), 	 (57) 

0 

> 0 

since 

E2  (Z/Z <C) > E1(Z/Z < C) 

as can readily be seen from Figure 16. 	From (56) and (57) we have 

F (C-I) 

	

A E(U/Z <  C) 	U(Z - I)  g(Z) d (F (Z - I) - F (Z - I) (59) 

	

AE(ZZ<C) 	 Z - I 	 1 	 2 
0 

where 

g(Z) _ _ 	Z - I 
F C- I 

(Z-I) d (Fl  (Z-I) - F2  (Z-I)~ 
0 

F(C-I) 
so that 	1 = $ (Z) d {F1  (Z-I) - F2  (Z-I) } 

0 



- 65 - 

It follows at once that the right-hand side of (59) is an average 

of values of U(Z-I) / 	(Z-I) k to en over the range (-I, C-I). 	As such 

it must exceed its smallest value within that range which occurs at 

Z = C if U has property (iii) for risk aversion. 	Therefore 

A E (U J Z < C) 	> 	U (C - I) A E (Z 	Z< C 	 C- I 

An exactly parallel argument establishes 

A E (U / Z > C) 	U (C - I) 
DE(Z Z>C) 	 C-I 

Hence from (55) , (58) , (60) and (61) 

A EU = E 2 U - ElU 3 0 

i.e. technique N2  is preferred to N1  under risk aversion. From this 

Theorem 8 follows directly. 

(60)  

(61)  
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V Sufficient Conditions 

V.1 Optimal timing 

So far throughout our analysis we have been concerned only 

with the choice of technique so as to maximise some particular choice 

criterion. Thus we have been concerned with the best choice in some sense 

without reference to whether the best is good enough. To complete the 

discussion, therefore, it is necessary to explore the conditions under which 

a positive investment decision will be made. 

The necessary and sufficient conditions for a positive investment 

decision are discussed here only in relation to the choice of technique based 

on net present value. Parallel discussion deriving from alternative criteria 

are clearly possible and not without interest. However, they are not 

pursued partly because this paper is already long enough, and partly because 

the lines of argument emerge readily from the case considered. 

The obvious necessary condition for an investment selected 

according to net present value to satisfy is that its net present value, 

Z-I, should be positive: otherwise the investment is not worth making. This 

is not a sufficient condition, however. To obtain a sufficient condition we 

need to demonstrate that it is better to invest now rather than at some later 

moment. In particular we need to check that the rate of technical progress 

is not so great that deferment of the investment decision will produce greater 

returns. 

If it is assumed that firms are operating in perfectly competitive 

markets then the deferrment of an investment will not influence the firms 

future environment and the net present value of making the decision to invest 

at time t is given by V(t) where 

V(t) = (Z(t) - I(t))e-Xt 	 (62) 

so that 	V(t) = -XV(t) + e-at{Z(t) - I(t)} 

The condition that there should be no advantage to delaying the investment is 

V(t) < 0 implying 

aV >(Z - I)e-at 
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and hence from (62) that 

a (Z-I) > 

This condition can be further simplyfied by noting that for comparability we 

require the present value of capital expenditure to be constant in base 

prices, i.e. 

I(t) = I(0)eXt 	 (63) 

Thus our sufficient condition reduces to 

aZ>Z 	 (64) 

i.e. the rate of growth of Z to be achieved by delaying should not exceed the 

discount rate X. 

To develop this condition further note that Z(t) is given by 

t+T 

Z = 
J 	

(X(t)-N(t)ewT)e-X(T-t)dT 

t 

so 
It+T 

Z = XZ - rI + N 	(f -ewT)e-~(t-T) N 	 dT 

t 

f
t+T

+ (f II + ft) 
	

e-a (T-t)dT 
	 (65) 

t 

This result simplifies considerably if N is now assumed to be such as to maximise 

Z at a moment in time. Under this condition the first integral on the right-hand 

side of (65) is zero and the second is equal to 	Z 	Thus the condition X-N f 
N 

 

(65) becomes 

f I+f 
rI > Z X-N  t 

fN  

But if N maximises Z, then from Theorem 1, 

f 

Z(A+w x -f ) 	rI 
N 
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while from (63) we have I = XI. Accordingly the condition (64) further 

simplifies to yield 

a(X-NfN If I) > ft  - wNfN 
	 (66) 

as our sufficient condition. 

From (66) it is apparent that if X is a homogeneous function of 

degree one in N and I at each moment in time then the condition (66) reduces 

simply to requiring ft  > wNfN. 

The function ft  that enters into the condition (66) is the partial 

derivative of X with respect to t. It will be positive, therefore, if there 

is technical progress. More specifically, if technical progress is Harrod 

neutral at rate g(t) at time t, then 

ft  = g(t)NfN  

so that the condition (66) becomes 

X (X-NfN If I) > NfN(g-w) 	 (67) 

Accordingly we require the Harrod-neutral rate of progress to be not greater 

than the rate of growth of real wages if our sufficient condition is to be 

satisfied under constant returns to scale. 

V.2 Feasible growth paths 

It is apparent from the above discussion that if we are to have 

constant growth of real wages, w, then the sufficient condition (67) puts 

a lower bound on w which must not be violated if investment is not to be 

deferred. By contrast the necessary condition that net present value must be 

positive can be interpreted as an upper bound on w. The combination of 

conditions accordingly constrains the possibilities for any model which is to 

satisfy both conditions. 

To illustrate these constraints we can consider the putty-clay vintage 

model as set out by Bliss {1} on which we impose constant a and w and hence 

constant U = a/w. 
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- 	 In the model we have techniques chosen so as to maximise net 

present value which will imply from (28) that 

b = 	p 	Y' _1 
u-1 	yu-1 

where b = a l-- g-X and y = xe-wt, 	The condition that net a loog N 	 present value 

be positive can be expressed from (25) as 

SZ =  y-1 	> 	I  
+w b 	Ne

wt - R 	 (6$) 
1-b 

while the sufficient condition that investments should not be delayed is g > w 

given constant returns from (67). It need not be assumed that g is constant 

to obtain from this last condition by some lengthy manipulations the 

equivalent expression 

y  < (1-b) 
R 

An equally tedious but otherwise straightforward series of algebraic 

manipulations yields 

S2 - y 
Q y 

so that combining results we get 

S2 	R 	 (69) 

while from (68) 	Q 3  R 	 (70) 

The two conditions (69) and (70) are perhaps the simplest 

expression of the necessary and sufficient constraints imposed by investment 

theory under the specified assumptions. It can be noted that in no way do 

these assumptions restrict the path of N. They imply that the ratio of 2 

to R must always be at least one and cannot grow. The ratio will be one in 

the limiting case where net present value is identically zero. In this 

event Q and R must have the same growth rate. Accordingly the rate of Harrod- 

netural progress must be constant and equal to the rate of growth of real 

wages. 
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Footnotes 

(1) For some production functions which we shall want to regard as admissible 

there is no initial range over which the average product labour, x, 

increase with respect to N for fixed I. However since this range is of no 

significance in subsequent analysis it can be assumed to exist by modification 

of the production function for low values of N in such cases. 
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