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1. Introduction

This paper has two main aims. First, to comsider the
econometric problem of estimating a regression model in which the
coefficients, on theoretical grounds, must be regarded as varying
from one cross gectional observation to_another; second, to derive,
in terms of a fheoretical model the exact form of the relationship
between research and development expenditure and market structure.

This relationship being one in which parameters vary across industries
we adopt a random coefficients approach to estimate and test the éverage
relationship. We thus develop a random coefficient regression estimator

and apply it to this relationship between R & D and market structure.

The specification of the model is derived in Section IL.
In Section III we consider the problem raised by parameter variation
within the sémple. In Section IV we discuss the problem of estimating

a random coefficient model and our empirical results are presented in

Section V.



II. The Model

The relatlonshlp between research and development expendlture
and market Structure has in the last ten years received much attention
from economists, A good indication of this is the number of surveys of
the area that have suddenly appeared (Grether [3/, Kamien and Schwartz /67,
Kennedy and Thirlwayg [1]). Even so, Needham [11] can still complain of
the lack of any Congistent framework for analysing the relationship between R & D
and  market si:ructure, Needham goes on to suggest a format based on
Dorfman—Steiner ¢onditions. In this paper we pick up this approach and
in combination With an approach based on that of Cowling and Waterson [1/ generate
specific relatlonﬂhips between R & D expenditure and a measure of concentration
that are amenable to estimation. This is achieved by deriving a relationship -
between R & D expenduure and market structure for the industry, as opposed
to those derived for the firm by Needham, This level of aggregation is
essentially conditicned by the fact that R & D data tends to be availlable
only at the ind“Stry level. ﬁoreover by explicitly dgtailihg the derivation
of this relationship wé obtain a) ﬁhe exact concentration.measure' to use
and b) the form of the functional relationship between R & D expenditure

and concentration .

FOIIOW1ng Nerlove and Arrow [13], we assume that the f1rm

: iti tting a
maximises its Present value, subj ect to the condition that, le g

;‘ - x, + &x = 0 (i)
i



where Xee = satock of technical knowledge of firm i in time ¢t
X0 = addition (gross) to the stock of techmical knowledge
of firm i in time t
8 = rate of depreciation of technical knowledge of firm i

The firm operates in an oligopolistic market with differentiated products

with the inverse demand function &)

p. = £(Q, +Q,. t.-- ~ * *
it (Qlt ta + Qnt) + gi(xlt’ xzt, seey xnt)
* * *
= f .
Q) *+ 85 (kyps Fge» *o0 2 xnt_)
h <
where th o, gii > 0, gij < 0,
n
Q = L Q.
t i=1 it
Qit = output of firm i in time t measured in suitable units
Pit = price of firm i's pioduct in time t.

(1) Our method here of introducing differentiated products follows
closely that of Nickell and Metcalf fi0]. It should also be noted
that we are following Needham here by allowing the firms technology

to affect its demand function, but we g0 one step further in (ii)
by also allowing technology to affect costs (i.e.process innovation
in addition to product innovation).



We assume t .
hat Current additions to technical knowledge are related to

current R &D ex -
Pendjiture (R. ) by

From the Lagrangean (i1)
]

y %
+ A(t) (xit -x. + §x

where r = p .
ate of discount, we show in the Appendix that one can derive

(iii)
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In equation (iii) .
(1ii) we have two terms that allow for conjectural variations,
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By making different assumptions with respect tc the conjectural variations

. .
terms axjt and ant we can derive a number of different
C2 9Q;,

forms relating R & D to market structure. We are going to assume that firm

i expects that (1) z ant = Ai . f(i.e. following Cowling and
#j Q.
. *
Waterson /1] and Nickell and Metcalf . [10/)and (11) axjt = 0 for all j,
*
axFe
so that retaliation on R & D is taken account of by &, (this is the rationale
i
provided by Nerlove and Arrow 13] for &> 0)_(1) Given the form of the
demand function, aPi‘t = aPit = 3f . and if we further assume,
aQit an t aQ1:
using n to represent an elasticity, that Nyx R . = Nape NG, i*: = Moy d
it it it” #t
n 5 =7 and n * =n, ., (i.e. that these elasticities
Cit Qe CQ Pt Xie 2ol

are the same for all firms in an industry in each time period), and that

Ai =2, Gi = §, then we can rewrite (iv) as 2)

- N { PR . Q. .
Rit —?;—%—Ej—'an *PieQie | Mpxw 395_ ( 1+ [14] %%_ g ) (iv)
CcqQ t it

Summing over i, letting zRit = Rt’

(1) For a more general approach allowing for more conjectural variation
see Lambin /9]

(2) These are rather drastic assumptions implying that in an industry all firms

in each period are equally efficient at producing R & D results, the
cost innovation/product innovation split is given, that all firms have
the same constant elasticity cost functions and demand functions (w.r.t.
R & D) and that expectations of retaliation are the same. We return to
this in the conclusion below.
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We can define __ . Qt as the inverse of the market elasticity
N, 3P
£ 2
1 , and I Qit = I-lt , the Herfindahl index of



concentration. This yields our final equation (Vi)

- ~ . _ n . o )
z Qt = rid v xR (Tpxx T Moxa ?;%ET Neag ~_CX* L(Q#A). B (vi)
i | - e "cq Mt
€Q
which we can write as

R

5 t = a + b Ht . (vit)

tQt

We may note that in the case of pure product innovation,
an*=‘0 and thus b = 0, i.e. the R & D/Sales ratio is independent of H.
This gives a good guide to how the model works - the amount of R & D
expenditure undertaken depends on its profitability and as R & D affects:
costs, it is the more profitable the higher is the price cost margin. This in

turn depends on H, and thus R & D is related to the Herfindahl index of

concentration.

This analysis indicates that the appropriate measure of concentration
to use #n the relationship between R & D and market structure is the
Herfindahl index. Moreover as we can see from (@I) the coefficients a and b
are made up of industry specific elasticities and parameters and we do not
expect these to be the same in each industry. In the next section we
deal with the problems involved in empirically estimating from cross section

data a model with coefficients that vary in this way.



III. Data and Estimation Problems.

There are two major data problems. The first is obtaining R & D
data at a low level of aggregation and the second is obtaining estimates of
the Herfindahl. The Herfindahl indices used were based on those of

(1)

Sawyer [15], as amended and updated by Waterson and are based on the
concentration of employment rather than output. The R & D data available
has been taken from HMSO [/5/ and is, but for a few observations, at SIC
Order level. It was only possible to find data on both R & D and the
Herfindahl for one yéar (1968) and thus we have a single cross section of

16 observations from which to estimate., Because of the level of aggregation
of this data, we use a second data set utilising information on the

" employmert of scientists and technologists (ST) (this is derived from
unpublished material collected for the Department of Employment L7A Survey)

at MLH level. Again it is a single cross section for 1968. We call these

data sets 1 and 2.

With data set 1, the data on total R & D expenditure (TR) can
be supplemented by data on the share of this expenditure provided by
government\(G). There is no clear argument as to whether the relevant
variable should be TR or TR-G. i.e. is government just providing
funds for R & D that would be undertaken anyway or is it supplementing
the amount of R & D expenditures? Utilising data on salesvtaken from

the Census of Industrial production for 1968, we thus consider regressions

on data set 1 of the form,

TR . _ TR=G . _ .
56 i o + BHi + Ui and oa i ql + Bl Hi + Ui

(1) Whom we wish to thank for proyiding his data,



and on data set 2 of the form,

ST,

po- T % By H +U,

In considering the estimation problem, we rewrite equation (vi) or (vii)

in the form
Y., = a, + bi Xi y, i=1, ..., n, (viii)

where Y = R/pQ, X =H and the parameters a5 bi vary across

industries.

Introducing an equation error Ui and writing a, =a+ Vi’

bi =} + Wi, we can specify a simple linear regression as

3 = + [ £ o L3 L] L
Y1 a+hb X1 + (U1 + Vl + W1 Xl)

Fitting this relationship by least squares will then provide unbiased
estimates of a and b provided U, has zero mean and is uncorrelated with
Xi. The parameters a and b in this model have an interpretadtion as

weighted averages of the individual industry coefficients a;, byy i=1, .00y m.

1.’
However, following Klein /8] unbiasedness requires the conditions
ZVi.+ ZWi Xi = 0

IV, X, + IW, X, =0 .
BRE S 1 i1

Solving these equations for a and b we find
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2 2
. . ZXi (Zai + Zbi Xi) ZXi (Zla:.L Xi + Zbi‘xi)
2 2
n zxi (z Xi)

n(fai X, +Zbi X?_) N in Gz, +Zbi X,)

22 2
n IX; (Z X,)

b =

It is not possible, therefore, given this specification to interpret the
intercept and slope as weighted averages, respectively, of the individual
intercepts and slopes. In particular the slope coefficient, b, depends

not only on all the individual slopes, bl’ R but also on the

n,
intercepts, 815 ey 8. Thus if we specify the model in terms of
parameters which vary systematically from industry to industry, we are faced

with the problem, without further assumptions, that the estimates do not

bear any simple relation to them.

One way out of this difficulty which may be justified in some
circumstances is to treat coefficients, not as constants, bﬁt as realisations
of random variables whose distributions depend on a few parameters. The
estimation problem in such random coefficient regression models then becomes

that of finding suitable values for these parameters, in particular the

means.
Writing E(ai) = q, E(bi) = B, equation (viii) becomes
Y. = a+B8 X, + U,
i i

1

where the error term Ui = (ai -0) + (bi - B) Xi. If we let
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2 2 2 2 )
E(ai -a) = o, s E(bi - B) = db’ E(ai-~a) (bi -8) =aqg

ab’ then

the variance of the error term is

E(U?) = a® ¢+ 20. X +4g
1 a 1

ab X

2
b “i°
Provided the industry coefficients a;, bi are ‘uncorrelated
with the independent variable, market concentration, then least squares
estimates are unbiased. Ignoring the heteroscedasticity, however, means
that theyare inefficient in general and we would expect their estimated
standard errors to be biased. The standard error of the estimated slope
coefficient will be negatively biased since the error variance is
positively related to the independent variable. Gpldfeld and Quandt [2]
present some illustrative calculations of the inéfficiency and bias of
the least squares estimates on different assumptions about the strength of
heteroscedasticity and the behaviour of the independent variable. The
usefulness of least squares was shown to depend very much on the skewness
of the independent variable; the more skewed to the right, the less the
efficiency of least squares and the greéter the bias in the standard errors.
In our case the independent variable is considerably skewed and therefore
there might be a non negligible payoff to making explicit allowance for
the heteroscedasticity. Table I contains some calculations of the bias
and inefficieﬁcy for one of our independent variables, under different
assumptions about heteroscedasticity. The model is Yi =0 + B Xi + U,

. 2
with Var(Ui) = a+b Xi + (:Xi .
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Table I
Efficiency(l) Bias in estimated(z)
standard error
a b c o B o B
100 0 0 1 1 0 0
100 1000 0 0.99 0.98 0.07 -0.15
100 5000 0 0.92 0.93 0.22 -0.29
100 10000 0 0.85 0.91 0.29 -0.33
100 0 1000 1 1 O_Ol‘ -0.03
100 0 10000 0.99 0.97 0;06 -0.19
100 0 100000 0.84 0.82 0.33 -0.42
100 0 500000 0.57 0.71 0.54 -0.48
0 0 500000 0.15 0.58 0.65 -0.49
0 0 10000 0.15 0.58 0.66 -0.49
100 1000 10000 0.98 0.95 0.12 -0.24
100 10000 100000 0.76 0.84 0.39 ~0.41
100 15000 500000 0.57 0.75 0.52 -0.46"
1) The ratio of standard errors:
2434522- 5:5:531- where é are OLS estimates and
s.e.(a) s.e.(B) -
g GLS

(2) The bias is expressed as a proportion of the true standard error:

est.s.e.(&) - S-e-(&)

s.e.(&)

est.s.e.(é) - s,e.(é)

s.e.(é)
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It can be seen from the table that there may be a considerable
gain from using an estimator which specifically recognises the heterosced-
asticity present in the random coefficient model. On the other hand,
of course, this would mean estimating a larger number of parameters, in
this case five as against two, and with only a small sample it may prove

difficult to achieve a sufficient degree of precision.

Iv. Estimation and testing of a random coefficient model

Random coefficient regression models have been considered by
a number of authors and a survey is provided by Swamy /lg/. Two main
approaches have been adopted: a two stage Aitken estimator with hetero-
scedasticity parameters derived from least squares residuals and maximum
likelihood in which all parameters are estimated simultaneously. A
problem common to both is the necessity to ensure that the heteroscedasticity
pattern which emerges in the course of estimation is feasible in terms

of the random coefficient hypothesis.
Writing the model as in equation (viii)(l)

Yi = ai + bi X:.L

with E(ai, bi) = (o, B) and
. a8, - o (ai - o bi -B) = z = | 9 g
bi - B 03 0'2

(1) Since the equation error is indistinguishable from the random intercept
we omit it and interpret g, as the sum of the variances of a," and

the error term.
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is equivalent to a heteroscedastic regression with constant coefficients

written as

Y. = o+ 8 X, + U,
i i i

_ | 2 . 2
where E(Ui) 0 and E(Ui) o, + 20 Xi + 0 Xi 5

1 3 2

A

A two stage Aitken estimator can be found using an estimate, I,
based on residuals from a first stage least squares regression, to compute
a weighted regression

W

Y. = a Wi'+ B W:.L Xi + Wi Ui

ii

- 4
2
x)

where Wi = (51 + 233 Xi + 52
The specification of the model requires £ to be positive definite or
positive semi definite. Hildreth and Houck /4] considered the case in
which I is diagonal where the only problem is to ensure the nonnegativity
of the estimated variances. They use two methods of incorporating this

a priori information, a truncated estimator wherg negative estimated
variances are given the value of zero, and an estimator based on quadratic
programming. Both of these are somewhat unwieldy and are unavailable in

our case since we must allow for a non zero covariance. This implies

a nonlinear restriction of the form c§ €0, O,

The same problem is present in the maximum likelihood approach.
On the assumption that (ai, bi) is bivariate normal, the log likelihood

function is written
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n
L = - . X log (0, + 20, X. + o X2 ) +
2 . 1 371 271
i=1
Ui
2 “ (iX)
01 + 203 Xi +a5 Xi

Unrestricted maximum likelihood estimates can be found by maximising (IX)
simultaneously with respect to all five parameters. Restrictions on ¥

can be imposed explicitly using Lagrange multipliers. Rubin /14/ considered
the case of a diagonal I and imposed nonnegativity restrictions im this
way but found the resulting likelihood equations difficult to solve.

Again this approach seeme somewhat cumbersome, particular if we wish to

allow for a nonzero covariance.

The ﬁroblem becomes much more tractable,  however, if we can
impose the restrictions on I directly. If we reparameterise I in
such a wa& that it is always positive definite or semidefinite, w; can
maximise the likelihood function directly using standard numerical optimisation
techniques. A simple way of doing this ié to write I = QQ' where Q is lower

triangular Q = “1 0| . The elements of & are given in terms of those

Wy U5
of Q by 0, =w? , 0, = w2 +w, 0, =ww, and if all the el
y 1 1° 9 2 32 03 1%2 nd 1f a the elements of

Q are non zero then I is positive definite. The three cases in which I
is gemidefinite correspond to certain elements of Q being equal to zero.
The cases g, = 0 and 0, = O correspond to w, = 0 and w, = w, =0

2 3
. = o2 - (1)
respectively and the case gy 0, = 05 to Wg, = 0.

(1) This approach has some points of similarity with that of Nelder,[i%/.
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Having obtained point estimates of the parameters, hypothesis
tests and confidence intervals can be constructed either by evaluating the
information matrix and thus finding approximate standard errors, or by
the likelihood ratio approach. In this study we are concerned with
tests of the mean regression coefficients and also a test of the'random
coefficient hypothesis as such. The former are carried out using standard
errors estimated from weighted regression using the maximum likelihood
values for I to generate weights. This amounts to the same as using the

information matrix to obtain standard errors for the estimates of a and B.

A test of the random coefficient hypothesis is based on a
comparison of the likelihood function at its global maximum with its value
when the regression parameters are estimated under the assumption that they
are constant. The latter case corresponds to the standard linear regression
model with an additive (homoscedastic) error term and implies restrictions
on the elements of £ . Since the behaviour of the error term is indist~
inguishable from random variation in the intercept we must allow o, to be
nonzero but impose the restrictions g, = 04 = 0. In terms of the elements
of Q this amountg to w, = wg = 0, two restrictions on the parameter space.

The (approximate) likelihood ratio test is comstructed by evaluating (ix)

in both.. cases.

]

~

e ~ ~ ~2  ~2, L2
2 { log | wi + 2 W, W, Xi + (m2 + w3) Xi +

| o

)

\ . . 2
(Y, - a -8 X,)
= - o (x)

~ ~ ~

w2 + 2 w, w

R N
1 P W Xyt (wy wg) Xy

for the unrestricted maximum and’
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A n - n
L -2— log 0'1 E
n
- 1 - . 2
where oy o ) (Yi o B Xi) s

i=1

for the value using least squares estimates, then the test statistic is

2(£ = ﬁ) which is asymptotically distfibuted as x2 with 2 degrees of
freedom. This test allows us to employ a mixed estimator in which least
squares estimates are used whenever 2(£ —£) < x§ (o) and maximum likelihood
estimates taken otherwise, at the 1000% level. Monte Carlo experiments
which provide evidence supporting the use of this kiﬁd of mixed estimator

in the general heteroscedasticity case are reported in Goldfeld and Quandt
[27. Both ordinary least squares and maximum likelihood estimates are

presented below in Section V.
Besides these we also present two stage estimates obtained without
the normality assumption. Denoting the least squares residuals by ei the

elements of  (and hence I) were estimated by the regression

2, 2
+ w3) Xi + error,

N
-
N

i.e. by numerically minimising

2

n
. . .2, 20 .2 )
1i (wz + w3) Xi ) . (xi)

2 _ 2
es _ -
izl Ci - =200
Having estimates the w's in this way values for o and 8 were found

by weighted regression after using these estimates to compute weights.

This approach was used, in addition to maximum likelihood, to
meet the suggestion that the latter requires very rigid assumptions about

the specification of the model. Since the two stage method just outlined
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does not require any distributional assumptions it might be expected to

be relatively robust in this respect.

V.. Results

The estimates are presented in Table II. The ML point estimates
were obtained using a Powell algorithm appiied to the likelihood function
{(x)' and the t values and R2 found conditionally on the ML values for
I by weighted regression. The first stage of the two stage estimator,
to find estimates of the o's, was also carried out using a Powell algorithm
to minimise (xi) . For the OLS results two sets of t values are shown.
The first set were computed using biased standard error estimates and
the second using consistent estimates of the standard errors based on

the ML values for ZI.

The last column of the table contains the values of the likelihood
rgtio test statistic. The critical values of xg at the 57 level and
1% levels are, respectively, 5.99 and 9.21. We can therefore only reject
the constant parameter hypothesis in the case of equation (1) when the
1R is 14.17. Our mixed estimation procedure is therefore to'take the
ML estimates for equation (1) and the OLS estimates for the otﬁer three
equations. In terms of our'fheory these four estimates indicate that
there is no significant relationship between the R & D/sales ratio and
the level of conceﬁtration. The only situation where a significant
relationship is found (OLS estimate of equation (1)) is shown to be due
to an error in estimation and is refuted using the ML estimates. These
results, it might have been thought, were due to the level of aggregation
of the data with regard to equations (1) and (2), but no improvement is
observed in equations (3) and (4). Moreover comparing (2) to (1) abd

(4) to (3), allowance for government contribution and the removal of
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TABLE II
e 0. (1) 2
Dependent variable method ] B R 01 02 03 LR
1. TR/SA68 OLS 5.44 635.6 0.29
(0.40) (2.38)
(0.63) (1.35) ,
ML 9.49 524.7 0.12 106 483388 7167 14.17
(1.75) (1.38)
Two Stage 15.06 . -346.9 _
(1.51) (-0.99) 0.066 829 1030225-29232 .
2. TR-G/SA68 - OLS 11.7 78 0.05
(2.58) (0.88)
(2.23) (1.12)
ML 9.5 48 .4 0.04 326 49366 =40 4,31
Two Stage 13.71 -291.7 9xi0° loxiad  —3xi0
(2.15) (-=1.30)
3. ST/SA68 OLS 5.61 13.5 0.009
(2.09) (0.35)
(1.92) (0.47)
ML 7.1 -12 0.016 76 1490 -337 1.05
{(2.41) (-0.46)
Two Stage 5.96 6.89 0.002 53 140.2 86.2
(2.16) (0.20)
4. ST/SA68(2> OLS 2.3 33.3  0.18
(1.47) (1.54)
(2.19) (1.06) .
ML 2.0 40.7 0.17 1.7 1709 53.6 5.82
(2.42) (1.46)
Two Stage 2,06 39.1 0.21 7.2 302 46,6
' (1.72) (1.71)
(1) SA are f£m; TR are £'000s; ST are units
(2) Same as equation 3 but excluding observations on scientific instruments

and electronics, on the hypothesis that these are industries that will
be using large numbers of scientists and technologists in non R & D

activities.
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outlying observations lead to no significant improvements in the results.
We cannot therefore accept the hypothesis of a prositive relationship
between the industry R & D/sales ratio and the degree of conceﬁtration.
In terms of our original model either (a) firms do not have reaction
functions as we haQe assumed or (b) in equation (vi) the elasticities in
the coefficient on H seems on average to take a value of zero. Our
conclusions thus lend further support to the statement of Kennedy and

Thirlwall [7, p.61) that,

"the evidence appears to be heavily weighted against
the hypothesis that a necessary condition for technological
change and progressiveness is that firms should be large

scale and dominate the market in which they operate."
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VI. Conclusions

We have described a maximum likelihood estimator for a simple
regression model with random coefficients and applied it to the relation-
ship between R & D expenditure and market structure. The rationale for
using a random coefficients model in this case is that the theory
predicts a different equation for each industry an& empirical estimation
using a cross section is only meaningful if we cbnsider estimating the
average parameter values. A feature of the estimator used is its
explicit allowance for non zero covariances between random parameters,
required in this application because of a theoretical functional
dependence between the slope and the constant of the relationship in

each industry.

The maximum likelihood approach depends on two crucial assumptions.
Firstly the normality of the distribution of the random parameters within
the sample is difficult to justify a priori. However results obtained
without making this assumption, using a two stage Aitken approach (the
two stage estimates) are equally negative and on that basis we might
regard our inferences as being reascnably robust to non-normality.
Secondly we assume that the degree of concentratidn, as measured by the
Herfindahl, is exogenous in the sense of being independent of the
stochastic component of the model. Specifically our approach requires
the independent variable to be uncorrelated in the limit with both random
coefficients. Since the coefficients may be functions of industry
parameters the assumptions we have made, noted in the footnote on p.o

that are necessary to achieve independence, are very strong and we may
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therefore be criticised on these grounds. With so few observations,
however, only the simplest models are feasible and we can regard our
single equation approach as a necessary first step while recognising

its inadequacies.

The smallness of the sample used here is, of course, such
that any gain from using a random coefficients estimator over least
squares is likely to be very small and perhaps we ought properly to
regard ou¥ estimates as only illustrative (specifically, our variance
and covariance estimates are highly imprecise). Applied to a large
sample, however, covering a larger number of industries, the random

coefficients approach might be a suitable estimator for models of this

type. (1)

(1

Monte Carlo experimental results reported by Goldfeld and Quandt /2/
indicate that the efficiency of ML relative to OLS increases markedly

with sample size beyond 30.
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Appendix

Given the Tagrangean, (1), with X, = xit(Rit)’ and the firms

: * * *
demand function Pft = -f(Q'lt + Q2t 000 Qnt) + g(xlt, Xgp oo xnt)

* * *
o = EQ + gl Xpps -ee Xye)
. ’[ € [lit Qe = C3e(Qieox;e) ~ Ry ]+ My Gy =%y +8x) (1)
(o)

the necessary Euler conditions for a maximum are,

L . T 4q, Pie - ¢ | -0, .
3‘6 it it 3Q 34 (ii)
it it it
Lo L et o e = 0 (i)
aR1t ath
oL 4L/ ) t IR ac dx(t)
e X, hat 3 s : 4
—, — " [Qit 5 - it]'« SA(t) - —— = 0 . (iv)
axit ,dt Bxit axit dt
-rt k) A aC, -rt
L] - - { +
Thus e Q1t ;t :t (§ r)[ e = 0 )
X ¥, 9% ¢
R;e

aRI - ol



From (ii) we derive (vi)(l)
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* L3 + a o L] ¢ r.d [ - . 3 . [} N
it Qlt Plt Qlt aB1t.'01t = aClt Q1t C1t = 0 (vi)
apit Pit aQit Cit
From (v) we obtain that
R, = 1 %=y Ry % % % - 9Py, Jig . g - ¥
.+ R, . : .
Sj¢r Ry, e o By B, Cit
(vii)
Gi hat (2 i = + *
iven that (2) Xt T X, -fxit >
%
3% « xf,
aRit aRit
Thus
] * * 96
R, = .1 . ™ By Q. - oce e -3 ¥ €| (viii)
( -+ . * 'o. } * I3
JES Bie e Me P @ Ty

Substituting for Cit from (vi) into (viii).

(1) This equation leads to a generalisation of
result for they assume 5C, Q. to e
it . _it
, aQit Cit
This enables us to reduce from long period
and follows the procedure of Cowling in "0
policies", in Cowling (ed.), Market Struct

(2)

the Cowling and Waterson [1/
qual unity.

to short period conditions
ptimality in firm's advertising
ure and Corporate Behaviour,

Gray Mills, 1972, London.
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R, = _1 . % . Rie . Pie Qe [P S
T+, Ry, Xy, axf, Pye
=%, % 1+ % . fﬁ; (ix)
xy,  Cy 99, B
e+ QY
0 Sy )

Equation (ix) is that used in the main text.



