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Introduction

The relationship between the core of an exchange economy and
competitive equilibrium is well-known from the work of Debreu and Scarf []96iiv
If we define a group of individuals of the same type to be a group with the
same preferences and endowments, Debreu and Scarf have shown that if thers
are a fixed number of types in an economy, and if the economy is expanded by
increasing equal numbers of each type, then the set of core allocations

converges to the set of competitive allocations.

There are a number of different ways in which we can introduce
uncertainty into an exchange economy. The most straightforward is to
assume that there is a given set S of possible states of the world.
We introduce state-contingent markets for each good and simply reinterpret the
Debreu-Scarf theorem. Individuals of the same type now have the same
preferences for certain outcomes, the same probability distribution cver
states of the world, and the same distribution of endowments. In addition
they are assumed to maximise expected utility . A coalition is said to
block an allocation if a redistribution of endowments within the coalition
leaves at least one member of the coalition with higher expected utility,
and none with lower. The set of core allocations again converges to the

set of competitive allocations.

However, there is & problem that is immediately apparent in this
kind of approach. The set of states of the world is assumed to be givern,

and must therefore be unaffected by the process of replication necessary to

1 A0
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generate the convergence result. This will only be true if the characterist

of any risk state can be specified independently of the circumstances or



characteristics of any individual agent. In other words, we must confine
ourselves to considering only communal risks. If we wish to consider
individual risks, then we must allow for the possibility that the set of
states of the world will expand as the number of agents increases. A
natural way of introducing individual risks is to suppose that agents

have their initial endowments determined by personal risk states.

Caspi [}97%] has examined the problem of core convefgence in a simple
exchange economy with individual risks where agents have the same tastes and
differ only in their initial endowment distributions, and where there is only
one good. We shall first consider the case of an economy with many goods,
and will show that in the core of a large economy risk-spreading will occur,
and almost all individuals will receive an allocation close to the expected
initial endowment which is the competitive (no trade) equilibrium in the mean
value economy, where everybody receives the expected value of his endowment.
The particular method of proof used allows us then to consider the
introduction of a simple form of production. We show that in the same
sense as indicated above, the core will converge to the competitive equilibrium
allocation in the mean value economy, where the random variables in the
production functions are replaced by their expected values. 1In the case
where there exist non-convexities in production, the core converges to the

competitive equilibrium in the convexified mean value economy.



The quel

Consider an exchange economy E° in which there are r traders who
have identical continuous, strictly concave utility functions. There are n
goods in the economy, and a set of states of the world {dr}- st, The
endowment vector of any trader is determined by his personal state 8, € Si'

The subjective and objective probability of 8; is H(si). The set of

states of the world S* we define as

s* = x*¥ 8.7 (1)
. i
1=]
We use H(sr) to denote the probability of any state of the world
g' = (81'82""sr)' The endowment of individual i in state sr, xi(sr)’
]

is determined only by his personal state, so that xi(sr) = xi(s'r) if 8; = 8.

We assume that

E(le xl,xz,...xj_l) = Ex j=1,2,...r (2)
where x, 1is an n-vector random variable.
Note that this implies neither independence nor identical distribution of
random endowments, as was assumed by Caspi. [1978]

Traders are assumed to maximise expected utility, and an
allocation [};(-), N0C y:(-)] in E* is feasible if
r r

T oy.(sM<x x,(sh) for all ses”
i= i=1

Results

We wish to show a resﬁlt which has been demonstrated for the one
good economy by Caspi [1978] under the more restrictive assumptions mentioned
above. The result states that, as the economy is increased in size, so the prop-
ortion of traders who .receive in the core an allocation which does not converge in

probability to Ex, the common expected value of initial endowments, becomes



arbitrarily small. The result on convergence in probability, although

stated in Caspi El978:[, is not proved correctly.

Lemma 1. Let [yi(*), y:(-)] be an allocation in the core of
ET. Then for every € > o and o, o<a<1, there exists R

such that for r > R

r
Prop { ]Eu(y;) -u(Ex) | <e}>1-a 3)
r ; r
Prop {p} denotes the proportion of individuals in E  who satisfy

proposition p.

Proof: As Theorem 1 of Caspi [1978] noting that (2) in conjunction with

the condition

I E(ller) < for some r in [_'1,2], clearly
.-1

J .r

J

satisfied here, is sufficient to establish that

1 T a.c.
= I x, —+ Ex (4)
r i

(see Theorem 9.5.1. of Whittle [1970]).

Lemma 2. Let l_-yi(-), 'y;(-)] be an allocation in the core of E'.
Then for every € > o and «a, o<a<1l, there exists R such that for

r >R

r
Prop {u(Ey;) > u(Ex) —el> 1-a (5)



Proof : This follows straightforwardly from lemma 1, once one observes

that u(Ey;) > Eu(y;) by the strict concavity of u.

Lemma 3. Let X, Y be finite dimensional Euclidean spaces, and let

$ : X>Y be an upper hemi-continuous (u.h.c.) compact-valued correspondence.
Define ¥(x) = con ¢ (x) (i.e. the convex hull of ¢$(x)). Then y(x)

is also a u.h.c. correspondence.

Proof : See Hildenbrand and Kirman {1976}, A.III.4.

Now we state the first result

Theorem 1. Let [}f(~),.... yi(-l] be an allocation in the core of
E'. Then for every € >0, and a, o<a < 1, there exists R

such that for r > R

. .
Prop'{llEy’i’-ExH <cl} > a (6)

Suppose the theorem is false. Then there must exist a sequence {rk} and

numbers g > 0, 0<a <1, such that

rﬁ'v T, _ _
Prop { H.Eyi - Ex||<T}<1-37 k=1,2,... (7)

Define the set

A(e) = {Ey | u(Ey) > u(Ex) - € ; ||Ey - Ex]| :.E-} (8)

Then it follows from lemma 2 and (7) that there exists X such that for

k> K

rk r

Prop '{Eyi k o A(e)} > o 9)



Now define

B(e) = {Ey | u(Ey) > u(Ex) - ¢ ; [|Ey - Ex]| < ¢ }

Tk Tk Tx

Clesd ) = {Ez | A "Ey+ (1 -2%) Ez <Ex ; Ey € con A(e)}
r T
T k k
where A ¥ o Prop {Eyi € A(e)}
r r r

r .
Pro% {Eyik € A(e)} + Pr%p {Eyik € B(e)}

and con A(e) is the convex hull of A(e).

Consider the tangent hyperplane H = {Ey |p Ey = p Ex} to the
indifference surface at Ex. By construction A(o) does not contain any
point in H. Also A(o)l is a subget of D = {Ey I u(Ey) > u(Ex)} , the
upper contour set at Ex. Since D is strictly convex, con A(o) is also
a subset of D. But Ex is an extreme point of D, by the strict concavity
of u. Since A(o) does not contain Ex, neither does con A(o). But

H n D= {Ex} , so that con A(0) 0 H=¢ .

Now it is clear that A(e) is a u.h.c. correspondence. From
lemma 3 we infer that con A(e) is also u.h.c. So there must exist

Y

€ > 0o such that

~

con A(e) f H=¢ for all €, 0<e <e. (10)

The above argument can be illustrated as in Figs. 1 and 2.



Figure 1:
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-~ u(Ex)=-e




Ty, % Tk
If Ez€ C(e,A ), then A Ey+ (1-21") Ez <Ex for some
T, r
Ey € con A(e). Therefore A k pEy+(1-2 k) p Ez < p Ex. We also know

that

min [p Ey] >p Ex for o<e<ce¢ by the theorem
Ey € con A(e)

of the separating hyperplane. From Lemma 2 and (7). we know that

o -
lim inf X " > a > 0.
k>0
If we define
n(e) = lim sup "sup P Ez] (11)
ks %
Ez € C(e,X )
then n(e) <pEx'_fo.r e<e<e.

Since inf [p Ey] = p Ex, there exists €, satisfying
B(o)

o<E_<_c-:, such that

inf [p Ey] > n(e) for 0o<e<e€ (12)
B(e)

We see this from the fact that the closure of B(e) is u.h.c.

Using the theorem of the separating hyperplane, (11) and (12) imply
that for all €, o0 <e¢ _<_E » there exists K such that for k > X,

T
Cle, A ]_‘) and the closure of E(e) are disjoint.

We conclude that, for any Ey € con A(E), Ez € B(E), there exists
8 > o such that for k > max (X, X)

I.

r
ej(A k Ey + (1 - A k) Ez = Ex) > 6 for some j (13)

8.



where ej is the jth unit vector.
) r, a(rk)
Su.ppose we write A L] amrk) Where

& X

k k

T, _ T _
a(r,) = r, Prop {Ey € A(e)} , b(rk) =r, Prop {Ey € B(e)}

i i

r T
and that 1 ¥ (C) 1is the set of agents in E B whose allocations lie in

C.

Then (13) tells us that

a(r, ) 1
e, | — K _ : b¥

7 latr)en(r,) a(r,) ier'k (A(c))

.

r
k1 .,
Eyi :) +
b(r,) 1 r
_ K 5 Eyik> - Ex" > (14)

a(r )+b(r)  \b(r) ie1"k@(e))

for some j.
1 LN
This follows from the fact that e Eyi is a convex

a(rk) ier L (A(E))

combination of points in A(c) and must therefore be in con A(e). Similarly,

since B(e) is convex, a convex combination of points in B(g) must lie in

B(e).
It follows that
T T
e. /L _ Ey.© + - Ey. ) > (a(x;) +b(r,))(e.,Ex + 8) (15)
I (1erfkcacey) jer k(p(s)) & k LSS

for some j.



Since

a(rk)+ b(rk)

r r
= - Ptgp o u(Eyik) > u(Ex) - ¢}

k

we know from lemma 2 that there exists X > max (X, X) such that for

k>K

a(r,) + b(r,) e. Ex .
k Ko, A __ (16)
rk ej Ex+6

Thus for k > X

e, L _ _ E'yik >rT, e, Ex for some j. (17)
3 jer"k (A(E))U B(E)) ]
Feasibility requires that
r r
I x (82 I y; (s
i=1 i=1
for all s € S . This implies that
r r
I Ey, < r Ex for all r (18)
i=1

But (18) is inconsistent with (17). It is not possible
I T
that [ilk ()yeos yrk (-)f] are core allocations as assumed. Therefore,
k

contrary to hypothesis, (6) must hold.

10.



11.

Theorem 1 only establishes that most individuals will receive

similar allocations in expected value in the core. It is not correct then

directly to infer that allocations converge in probability to Ex, as Caspi
does. We need to use the results contained in Lemma 1 and Theorem 1. We

proceed as follows.l/

Define a function

¥ = uy) + 37 -3 u () - ) (19)
Since u is strictly concave, ¢ is strictly convex and possesses the
properties ¢(y) = O, ¢(y) >0 for y ¢y, Fix any € > 0 and let
inf {6 | [ly~y || =€} =ke, >0
Lemma 4. If ||y -%|| >¢ then ¢ > X(c,5)
Proof: Suppose not. Let 2z be such that

z=dy+ (L-0y; [lz=F]] = e (20)

By strict convexity

$(z) < 2¢(y) + (1 = 1) &(3) (21)
< AK(e,y) + (1 = 1) «0 (22)
< K(e,y) (23)

which contradicts the definition of K.

lema 5. (1) lim Fu(y]) = u(Ex) (24)
(ii) 1lim Ey; = Ex (25)

1/ 1 am indebted to Avinash Dixit for supplying the proof given here.



12,

then, for all € >0

lin  Prob {||y] - Ex|| > e } =0 (26)
oo

Proof: Suppose not. Then there exists a sequencé'{rk} and numbers

€, 8 >0 such that

. |
prob {||y* - Ex||>T) >3 k=1, 2,... (27)

=k Tk
Then, using Lemma 4, and letting y;, = E

r, , b3 r _ , r r, Tx o
Bo(7,5) 2 Prob {|ly;*- By *|| > T dint tor™ | |y -8y 11 >F1 08

Therefore
T — _
1lim inf E¢(y,”) 2 & . K(e, Ex) > O (29)
ko 1
r r T .
But E¢(yik) = u(Eyik) - Eu(yik) (30)

and (29) contradicts (24).

We now state

Theorem 2. Let '{yz(-), cee y;(-)} be an allocation in the core of EF,

Then for every € >0, and a, B, 0 <a <], 0< B <1 there exist R such



that for r 2 R

Proof:

Prop {Prob (Ily; - Ex|| <€) > a} > B

This follows directly from Lemmas 1 and 5 and Theorem 1.

(31)

13.



14.

A model with production

Let us assume that each individual i has a stochastic production

function
i i

where Y' is the output of a single good, L, is the labour input of
individual i, and 8 is the personal risk state of individual i. We
make the assumption that

i-2

EEL L) | £, £ ) = £@) = 1,2, (63)

i
which is a generalisation of the assumption made above on endowment
distributions. We do not assume that £f(L) is concave, but write ?(L)

for the concavified version of f£f(L). This is illustrated in fig. 3.

Figure 3:
£(L)

o
™

What we are doing is to take the convex hull of the production set

associated with £(L), thus generating a new production function f(L).
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Then we may state the following result :

Theorem 3. If L maximises u(£(L),L), and

Iky;('), L;), 000¢ (y:(-), L: )] is a core allocation in Er, then for

all € >0 and @, 0 <a <1, there exists R such that for r > R
* r .r =, T
Prop { | Eu(yi, Li)—tx(f(L).L)I >el}<a (34
Proof: Suppose that (34) is not true. Then there exists a sequence

{rk} » and numbers € > 0, ¢, 0 < a < 1 such that

T T, r - _ _
Prop { l Eu(yi O Li ) - u(f(L),L)|3_e }>a k=1,2,... (35)

If (35) holds, it must be true that there exists 8 > o such

that either

r r r
Pr%p { Eu(yik, Lik ) } > k=1,2,... (36)

™1

> u(E@),L) +

or
T, T, T - _ _
Prop { Buy,” » L;) <u(f(),L) - e} >8 k = 1,2,... (37)
We show first that if (36) holds, then there must exist y > o and
5 . 0<8<1 such that

k * Tk Z = - =
Prop { Eu(yi » Ly ) < u(f@),L) -y} >3$ k=1,2,... (38)
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Define

A = {(Ey,1) | u(By,L) > w(E@),I) + ¢}
B(y) = {(Ey,L) | u(E(@),L) + &> u(Ey,L) > u(E(@),L) - v }
c(y) = {(By,L) | u(Ey,L) 2 u(E(L),L) - v} .
We note first that if (Ey,L) € A, then Ey > £(L), since L is assumed to

maximise u(f(L),L). So

inf [Ey - f@w)] = o >0 (39)
(Ey,L)€A
Let inf [ Ey - E(L)] = nly) . It is clear that
(Ey,L)€B(y)
n(y) < o and that lim n(y) = 0. Further, if the maximum amount
e’

*
of labour an individual can supply is L , then

inf [y - £ ] = - £ (40)
(Ey,L)€C(y)

(assuming that a negative allocation of the output is ruled out).

Putting this together, we find that

T
k r r

D@y - E) > @8+ - B s 1 (41)
i=1
T X r
where 6(rk) = Pr%p [ (Eyik s Lik ) € C(y) ] .

The feasibility condition

T 4
k i rk k T
r £ (Li » 8) > I v; (s) for all s €5,

i=1 i=]
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implies that

Tk T T rk
I f(L) 2 1 Ey, (42)
i=1 i=1

But since f(L) > £(L), we see from (41) that feasibility will be violated

if

o8 + n(y) - f(L*) 6(rk) > o. (43)

We can always choose y sufficiently small that 6 B + n(y) > o.

So if the allocation is feasible, it must be true that, for some y > o,

lim inf G(rk) - %> o (44)
koo

So if (35) holds, (38) must always hold, since (37) obviously implies (38).

Now we need to consider the feasibility of the allocation (E(f).i).

It will always be possible to write

fL) = a £@L) + (1 - a) £(L,) for some o, 0<a <1, (45)

L = qa L1 + (1 - a)L2.
Then if we denote by [}J the largest integer less than a

lim 2 { [an] £L) * (2 - [on]) £(L,) } = E@) (46)

n->ee

What -(46) tells us is that if each member of an n-member coalition

supplies labour L, then an equal division of output will produce individual
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shares which approach progressively closer to f(L), in the mean-value

economy.

But our assumption on the random variables f! enable us to

use the strong law of large numbers to obtain

r

1im Eu ( %- b fi(f,s), L)y = u (E@),D) (47)
T i=1

r

Now consider the coalition, call it V 3 , whose members have

expected utility no greater than u(E(@),L) - v . We have established from
(44) that their number, noo is at least Srk . From (46) and (47) there
must exist some K such that for k > X

Fu (£ s £t

1 . - -
(= ([a f(L,) + (n -lon, |) £(L,))), L) >
iev n [tiJ 1 [. kJ 2

w(E@,L) - ¥ (48)

r
which means that V . will be a blocking coalition. So (34) is true and

the theorem holds.

Before we proceed to establish the analogue to Theorem 2 in our

economy with production, we observe first that the following general result

is true

Theorem 4, Let [};('),...yi(-i] be a core allocation in ET,
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~Then if

i) Lim r _ =
o Ey; y

1
r 1

e 4

ji) for all € >0, and a, O <a <1 there exists

R such that for r 2 R

r
Prop { |Eu(y§) -u¥@ | se)2a (49)

then for all € >0 and a, B, 0 <a < 1,0 < B <1 there exists R such

that for r 2 R

r . -—
Prop { Prob ( ||y: - 5]lse)2gt2a (50)
Proof: As for Theorem 2,
We now state our final result.

- . . - - r r r r
Theorem 5. If L maximises u(f(L),L) and {(yl(-),Ll),...(yr(-),Lr)}
is a core allocation in Er, then for all € >0 and a, B, O < a< g1
O « 8 s 1 there exists R such that for r Z R

r
Prop { Prob (|| (v;, L) - (ED, D) || 2e) 28} 2@ (51)

Proof: In view of Theorems 3 and 4, we need only show that

n (L p gt -}zn;) - D, D. (52)



From Lemma 2 and Theorem 3 we see that for every € >0 and a, O < a < 1,

there exists R such that for r 2 R

r r r - T
Prop { u(By; , L) 2 u(f(), L) -e} Za (53)

If p is the vector of prices which produces equilibrium in the mean-value

economy at (£(I) , T), then we must show that

Al

lim inf 'p.(-; z Ey;' R -]1_; LY > p. (@D, D (54)
roo if it
If (54) is not true
. . 1 T 1 T — =
lim inf p(; 2 Ey, , TI L)) < pEF@D, ) (55)
T i i _
Then
. . 1 T 1 T - =
lim inf w(~ I Ey., , =L L,) < u(f(L) , L) (56)
T . i r., i
o i i

But strict concavity of u guarantees that

1 r T 1 T 1 T
T Dol by < AR R 7
and so
.. 1 r T —— -
lim inf ?-Z u(Eyi , Li) < u(f() , L) (58)
T i

which is clearly inconsistent with (53).

If (54) holds, then so must (52), in order to preserve feasibility.

20,
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It is worth remarking upon the absence of any concavity assumption
for the function f. Tt ig well-known that the presence of non-convexities
in production may mean that 8 competitive equilibrium does not exist. The
reason for this is that there may only exist market-clearing prices at which
some firms are required to make losses. This is illustrated in figure 4,

where A is the market-clearing production Plan for the firm, But the firm

Figurey& N

& ' o
would prefer to shut down at these prices. So, if there exists no

competitive equilibrium in the mean-value economy, to what is the core

converging ?

It is known from the work of Farrell [1955], that the conditions
under which core convergence is examined are precisely those which tell us
that we need not worry about non-convexities. When an economy is
sufficiently large, we can average out non-convexities and consider equilibrium
in a convexified economy. This is what we do here. We allow individuals to
provide labour as an inmput to somebody else's production function. If we
suppose, for example, that we are dealing with an economy of peasant farmers,
whose production functions relate to levels of output on their own plots of
land, then we are assuming that individuals can offer to work on somebody else's

plot in return for a share of the output.



Conclusion

We have shown that in a many-good exchange economy in which traders
face individual risks which affect their endowments, as the economy becomes
large, so the core allocations of an arbitrarily large proportion of traders
are likely to be close to the common expected endowment vector. Another
way of characterising this result is to say that individual risks are spread
in the core. We examined also the nature of core allocations in a simple
production economy. Without non-convexities in production, core allocations
in a large economy are now likely to be close to the competitive equilibrium
in the mean-value economy. In the presence of non-convexity, not only is
risk spread but the economy is convexified, and core allocations are likely

to be close to the competitive equilibrium in the convexified mean-value

economy.

22,
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