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I. INTRODUCTION

In applied work in macroeconomics using simultaneous equation
systems relationships between variables are sometimes described by means
of a triangular model. However, in a simultaneous equation spirit
the a priori assumption of full recursivity is typically not made. The
purpose of this paper is to suggest a recursiveness test for models
which are already written in a triangular form. It is a score test
(Rao (1948)) applied to the concentrated likelihood function, which is
equivalent to Neyman's C(a) test (1959). As indicated in Holly (1978)
this type of procedure is quite general and can be applied to a large
variety of tests of model specification. It is based on estimators of
the model under the null hypothesis, which are, in the particular case

of the recursity test the 0.L.S. estimators of each structural equationm.

In Section 2 of this paper we define some notatiomns and state,
without proof, the statistical properties of this procedure when applied
to the recursiveness test. Moreover, as these properties depend on the
non-singularity of the information matrix under the null hypothesis, it
is shown in Section 3 that this recursiveness test is valid if and only if
each of the structural equations is identified by means of zero
restrictions. This result is not a priori obvious since under the null

hypothesis the model is always identified.

The explicit form of the test statistic is given in Section
4, It is a weighted sum of the estimators of the correlation
coefficients between the disturbances of each pair of structural equations.

In the case of a two equation model, it is shown that the weight i$



related to the ratio of the variance of the disturbance of the first
equation to what is known in the literature as the concentration

coefficient of the first equation.



2. NOTATIONS AND PRELIMINARY RESULTS

We consider the following simultaneous equation model
(2.1) YA' + XB' = U

where Y is a T x G matrix, X a T xKmatrix, A a Gx G
matrix, B a G x K matrixand U a T x G matrix. The reduced

form may be written as
(2.2) Y = XC' +V

By a triangular model we mean a model in which the elements
a , of A satisfy the conditions agg = 1 for g = 1, . .., G

gg

and agg' = 0 for g' > g. Additional zero restrictions can be also

imposed on the elements of A .

The T observations on the g-th structural equation may be

written as

(2.3)

«
]

Y a +X B +u
g & g 8 g

where

and S-ag is a Gx Ng selection matrix. Also,

{



where Sbg is a K x Ké selection matrix.

Equation (2

Tg
where

Z -

g
and

s =

g

.3) may be written also as

(Y, X) s

The complete model may be written as

y =
where

7 =
and

§ =

Z§ + u

(I, ® (Y, D) S

diag S
(diag 5))



We also have

E(w') = I1@I,
with

I = (ogg.)
Let us define

g = vec I

and 61 as the G(G - 1)/2 x 1 vector containing the off-diagonal

elements of I, each entered only once, that is,

1 = (0'12’ es ey GlG,. 023, e ey GZG’ CRCIC N Y GG-l,G)

and let 6, be the (G+ I N + I K) x 1 vector such that
2 g g g 8
2 2 2
| - . ' ' v
02 (011, 000F cgg, cess Toos 61, veus Gg, vo GG)
Also define 6 = (61, 62).

Let L(el, 62) be the likelihood function and 62(61) be
the (unique) value of 62 at which L(el, 62) is maximised conditionally

upon 6 The concentrated likelihood function is defined as

1"

¢

Lk(8) = L(o;, 8,(8)))



The recursiveness test which is suggested in this paper for
testing the null hypothesis 6, =0 against the alternative hypothesis
61 # 0 1is a score test (or "Rao's efficient score test'", Rao (1948))

applied to L*(el).

If 62(0) satisfies the first order condition

oL - _
35-'(03 92(0)) = 0
2
then, as proved in Koopmans, Rubin and Leipnik (1950) and Barnett (1976),

o 2@ = & (0,8, )

8 30,

and

2.5 aZ _ [ _ 3 22
36,236 36,67 3600, FEPELM 39 36'
1991 198 99199, 2% ©, 5,0

Under general conditions, the following statistic

(2.6) <i xiul (0)> 911m< - geLZG(OD <i 5o >

is asymptotically distributed as a central chi-square with G(G - 1)/2

degrees of freedom. Moreover, under a sequence of local alternatives

G

1T} such that



with

limT*w dT = d

RT is asymptotically distributed as a non-central chi-square with
G(G - 1)/2 degrees of freedom and non-centrality parameter equal to

-1 3%1#(0)

L]
861391

4’ plim - T



3. VALIDITY OF THE TEST STATISTIC AND IDENTIFIABILITY CONDITIONS

In this section, we show that the test statistic RT is valid
if and only if each structural equation is identified by zero

restrictions. This result may be proved by showing that

-1 3L

(3.1) plim -T ~

is non-singular if and only if each equation is identified by zero

restrictions.

1/ .
The Log-likelihood function of the model is™

L = Cte-%logdetz-%trz-lU'U

Its first differential is

(3.2) L = - % er () - % s yw rYar - % tr £ L a' v
and its second differential is
-— -— ' —-—
L= -z laz@t Zop ot oar]

s2tr 70 az s tam ] - e 27w ' (aw)

Since we have

' 1/ It must be noted that the results of this paper do not depend crucially
on the normality of the disturbances. They are valid for the quasi-
maximum likelihood procedure.



Uu's = =

| =

plim

we may write,

1 1

plim(- 3 d’L) = ¢ tr(z Tazz lar) - 2 erfz taze” plim = (dv) 0]

+ tr [2_1 plim %-(dU)' (dU)]
which may be written in our notation as,
(3.3) plim(-%_dzL) = -;'—(dc) v @z Yo - 2¢do) [T @z plin % U'(Y,X)]sds
+ (d§)’ [plim-Tl- 2zt ®Dz] ds.

Now, we need to take proper account of the symmetry of I
when evaluating the first and second order partial derivatives of the
likelihood function. This problem has already been stressed by Richard
(1975) and Balestra (1976). A more extensive treatment has been given
recently by Magnus and Neudecker (1978) whose results cannot be applied
without modifications to our problem. For this reason we develop here
a procedure, which is parallel to the one adopted by Magnus and Neudecker

(1978), in order to obtain (3.1) in a convenient matrix form.

Let M be a square matrix of order G and define sd(M) the
vector obtained by retaining the under diagonal elements of each succes-

sive columns of M . For example, if



M1 k) %3

\"'13 ™23 33

then we have

Now cdnsider the identity matrix of order G(G-1)/2 and its partition

into columns

I

= (e, e cee € e vee €n 1 (1)
%-G(G—l) 11 21 G-1,1 “22 G-1,G-1

Taking into account the symmetry of M , we may write

G-1
3.4 aa) = "
( ) sd (M) .gzl gz)g_ gg' eg'-l,g
Note that
G-1
' 1 =

(3.5) Lol epig, %p1,e ! G(e-1)

g=l 4g'>g 2

and

10.



sd(M) = m_ ,

3.6 '
(3.6) ®g'-1,g gg

Let us now consider the relationship between vec(M) and
sd(M) . The vector e*g(g =1,+eey G) 1is defined as a G x 1 vector
whose elements are equal to zero except its g-th element which is

equal to 1.

Taking into account the symmetry of M , it can be verified

that
G-1 G
= S " o+ e'
vec M y )y L vec(eg egr v,y e ) Zl L vec(eg g)
=1 o' g
g=l g’>g
Since for any vector x and y of any order we have
3.7 veeyx' = xQ@vy

we may write

G-1 G
= . + + e e
vee M= ) ) oo (eg, ® e, eg® eg.) ) mg_g( g® g)
g=1 g'>g g=1

Taking into account (3.6) we have

1 G

(3.8) vee M=|])] } (eg, @eg + eg®eg')eg'-l,g sd(M) +

g=1 g'>g g

We define the G2 x G(G - 1)/2 matrix D as

G-1
= U
&I D ) (eg'®eg ¥ eg®eg') ®g'-1,g
g=1 g'>g

11.

Zlmgg(eg ®ey)



If we apply (3.8) to dI , we obtain
2
3.10 do = Dde, + do” (e e
In order to evaluate (3.3) we need to evaluate expressions of the form
(3.1D  (e!@e) ¢ @z plim £ U' (¥, X)) sds
: i 3 ) T ’

for different values of i and j . We can observe that, under the

null,

and hence (3.11) may be written

(3.12) C1,27 (e} @e)) (I @rplin 7 U' (1,))5ds

i

We can easily verify that (3.12) is of the following form

1

c.0.
1]

|'l-_v
(0 o.... ej(pllm T Uu'(y, X)) Sidsi 0 .... 0)

and the term ej(plim~%-U'(Y, X))Si occupies the i-th block

Now, since plim-%-U'X = 0, we may write

1 ~ -1
plim £ U'(Y, X) §; = (T A" §_., 0)

12,



13.

and hence, under the null hypothesis

1 | -
(3.13) e} GlimgU'(Y, M) §; = (of el A" 5,5, 0)

It is now crucial to observe that, because the model is already

in a triangular form, A'-IS . has the following feature

ai
Ny
=
bi-n
atls = C e e e

0 }G—(i-l)

and hence,
-1

. 1 oAt = : .
(3.14) ej A S.; 0 for jz1i

As a consequence, it follows from (3.10) and (3.9) that

@' Cr@:™? plim % U'(Y,X))sds =

G-1 _
@p T T e, e @e) ) @@ 00548
1 1 o g'-1, g g g
g=l g'>g
We define F as
T
(3.15) F = (e_,(De) e',_
g=t g'>g & g g -l,8

We can see that the information matrix is of the following form



2 2
t ]
61 UI . . L ] L] L] . GG B 6

8 x o |

1 x -1 -1

A 0 F'(Z "® @', 0))s

2 X

o] x 0
xx

. 0 * 0
0_2 0 xx

el X

-1 Kl 1 =

§ $'(z '@ (4, NF 0 plim = 2' (2 1®I)Z

Because of this particular form of the information matrix we
only need to consider the regularity of the matrix obtained by deleting

the column and line blocks corresponding to the diagonal elements of I .

It is also important to verify that we may write, under the

null hypothesis
%«(da) "(z"l®>:'1)dc = (o))" F' (z'1®z'1)Fcle1
1 2,2, , RS R |
+.2.§ (40 )% (e, @e) T @ (e, @)

Consequently, the matrix in which we are interested may be
written as
- - - -1 '
F' 0 zl®zl C @@ T8 F 0

‘(3.16) _ - "
0 1 s':l @ (a 1,0)) plim—%-Z'(X 1®I)Z. o 1/

It should be noted that F has rank G(G-1)/2. In effect,

we can easily verify according to (3.5) that

' = .
FIF = I5e-1)/2



and hence, rank (F) = rank (F'F) = G(G - 1)/2. Consequently and
according to (3.16) the information matrix is non-singular under the
null hypothesis if and only if

et c e @ tos

1

(3.17) -1 -1 -1
s'(z " @@ ",0)) plim = 2'(Z ®@I)Z

is non-singular.

It can be easily verified that

) 4 - [eqc! sa Al g
(3.18)  plimzz'C "®@DZ = S'I @
Qc’ Q
where
. X'X
(3.19) Q = llmT_m-—,F-

and we assume that Q 1is positive definite.

Since Z—1®2—1 is a non-singular matrix, (3.17) is non-

singular if and only if the following matrix

1 1

cQc' + A L A" cQ

(3.20) gt [z'l )
. QC’ Q

COEE )

is non-singular. But it is easy to verify that (3.20) is equal to

15.



_ cqQc’t cQ
(3.21) stz 1@ S
Qc’ Q

which, under the null hypothesis is block diagonal, and its g~th block

multiplied by o: is equal to

T C t
(3.22) 5 2 (I) Q (C' I) Sg

which is a non-singular if and only if

rank [(C' I) SB] = N+ Ky

which is the well known identifiability condition under zero restrictions

of the g-th equation,

To summarize the discussion of this section, we have proved
that the recursiveness test that we would like to suggest is valid if
and only if each of the structural equation is identified by zero
restrictions, although the test statistic depends on the estimators under

the null hypothesis.

16.



17.

4, THE RECURSIVENESS ‘TEST STATISTIC

Rather than considering the inversion of the information matrix

in the form given by (3.I6) it is simpler to observe that the first block diagonal
element of the inverse of (3.16) is itself a diagonal matrix. The element

(g, g') position is the first block diagonal element of

which has the
-1

L : —l—-(eéA'-S.,O)

2 2
g g
L — —
(4.1) g A e . CQC’ + A 1, 40l cQ
?
o Syt S¢
o, Tgr B qQc’ Q

By applying standard results on the inversion of a matrix in

]H

(12 3)

term of submatrices, we may find that the first block diagonal element

of (4.1) is équal, after simplifications, to

! A—le
2 2 2 -1 -1 [ ag’
(4.2) Og Tgr |1+ 95 (eé AT S0, 0) H 8 8
0

with
coct + ANz - 0% e e') ATTE cQ
(4.3) H, = §', g 8 8 Sy
According to (3.2) we have
~ ' ~
aLx(0) _  Yg Y
(4'4) .8-0——' ~ A'2

2
[o BN ¢}
f24:4 g g’



18.

Consequently, application of (2.6) to the recursiveness test leads to

-1 631 (u) u_,) .
(4.5) R, = T ] ] =8 (1+u )
- 1 An 2424
g=1l g'>g 02 02
—_— g g'
with
il
. s' A" e
, 2 Sl ik ag' g
4,6 = g (e' A" " S 0) H
( ) uggv g ( g ag'’ ) g' 0

and ugg' is obtained by replacing the unknown elements in ugg' by

their 0.L.S. estimators and Q by X'X/T.

As mentioned in section 2, RT is asymptotically distributed
as a central chi-square with G(G - 1)/2 degrees of freedom under the
null hypothesis. Moreover, under. a sequence of local alternatives
{o } such that

gg', T

_ o
gg', T -~ T 9

with

1imT¢o dT = d

RT is asymptotically distributed as a non-central chi-square with
G(G = 1)/2 degrees of freedom and non-centrality parameter
G-1

.7 I I &.,4
g=l g'>g

y (L+u )



In order to get a better insight into the interpretation of

RT let us consider the following two equation model

Vi o= X Bty

Yo = ay; + X, B8, +u,

_ We assume that the second equation is identified by zero restrictions

We have
Sa2 = (: .:>
A'"l (:‘ :)
.2 '
I - 01 e1 e1 (::

and

-1 2
1 - v =
SAZ A" (z o1 ¢ 1) A Sa2 0

Consequently, (4.3) simplifies as

19.



s', cQcC's.. s!', CQ8,
2 2 2
(4.8 H, = a e ? b2
a4 ] 5
S, QC'Sa, 2 Q Sb,
since
X, = X§,
we may write (4.8) as
. X'X ., . X'X
. Sa2 © —,17— C Sa.2 S.az C '—,i,—g
(4.9) H, = 141 .
2 R X' X C' S, X' X
- a2 g8
T Gy

The first block diagonal element of the inverse of H2 is the

inverse of

X'% X', X, . X' X
' $ - : L U
(4.10) SaZ-C 11mT+°° T T T T C Saz

and .”12 is equal to

2
_ 1

U = T 7 T — T
12 o far XX X%, (X)) 1% o s
a2 e\ T T T T /. a2

The expression which appears in (4.11) may be recognised as

o

(4.11)

the numerator of what is known in the literature as the concentration
coefficient of the first structural equation. We may also interpret Mo
as being the ratio of the structural disturbance in the first equation

to the variability of the déterministic term in the reduced form of v,

20-



projected on the subspace generated by the columns of X which is orthogonal-
to the subspace generated by the columms' of Xz. In other words, a large
M, means that v, is "relatively" more random than deterministic which
induces a large value of the test statistic. On the contrary, a small

My, means that v, is '"relatively" more deterministic than random.

More generally, it may be observed that the test statistic
RT measures the product of two e#fects. The first one is the correlation
coefficient between the disturbances, and the second is a measure of
the''relative randomness" of the endogenous variables which appear in each

structural equation.

21.
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