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1. Introduction

In order to assess the validity of the specification of an
econometric model, it is useful to have a variety of diagnostic statistics
which might provide evidence on the existence and possibly the type of
misspecification involved. One source of diagnostics is hypothesis
tests where the model under consideration is taken to be the null and
the alternative is some generali ation. A particularly attractive approach
is to construct optimal test statistics against a variety of specific
alternatives. In this way is is possible to have reasonable power against
a collection of interesting alternatives, although when looking at sets
of non-independent statistics, one must be cautious about interpretations

of the overall size of the test.

Strong rejection of any of these tests suggests some degree of
misspecification as the data and model are apparently incompatible. The
rejection does not however require acceptance of the alternative, as

this test may have power against a collection of alternatives: comparisons

of the test statistics with the underlying economic theory should help in

formulating a strategy for respecifying the model.

In order to calculate such test statistics easily and inexpensively
it is frequently desirable to avoid estimation of the alternative models.
This is especially true when the alternative is more complicated than the
null. The Lagrange Multiplier or Score test is ideal for this situation
since it examines the fit of the model under the null for evidence of
departures in the direction of interest. All of the tests formulated in
this paper are calculated in terms of the residuals from estimation of the

model under the null hypothesis. These LM tests can be thought of as ways



of examining the residuals of a model for specific types of non-randommess.

The Lagrange Multiplier test has only recently become familiar to
econometricaians through papers by Savin (1976), Berndt and Savin (1977)
and Breusch (1979) who examine the numerical inequalities between LM
Likelihood Ratio and Wald tests, Godfrey (1978) and Breusch and Pagan
(1979) who develop tests for heteroscedasticity, Godfrey (1978a)(1978b) and
Breusch and Pagan (1979a) who present tests for serial correlation non-
linearities, variance components and non-nested hypotheses and Engle (1977)
(1979) who derives tests for spectral regression problems and for autore-
gressive conditional heteroscedasticity. The basic principle was
originally suggested by Rao (1948) and subsequently by Aitchison and
Silvey (1958) and Silvey (1959) and examples are familiar in the Durbin
Watson (1950) statistic, and Durbin's - m test and approximately

in Durbin's (1970) h test.

In this paper a different general approach is taken to the
derivation of the tests, which eliminates the need to construct the in-
formation matrix of the full parameter set. In this way many apparently
unrelated testing problems are easily seen to have the same solution.

There are additional advantages for non-regular or non-normal problems
although these are not exploited here. The approach is described in
section 2 and the general theorems giving the distribution of the score are

in section 3.

As an application of the approach, several groups of testing
problems are analysed which have traditionally been found difficult.
Section 4 gives simple examples while 5, 6 and 7 present results for non-

linearities, common factor dynamics and simultaneous equation systems with



particular attention to exogeneity testing.

2. The Approach

For most hypothesis testing problems, the Wald, Likelihood Ratio
and Lagrange Multiplier tests share the optimality criterion of being
asymptotically locally most powerful. This is most easily established
for the LM procedure. Let f(y;6) be the joint density of the data y
as a function of a set of parameters 6. Under the null hypothesis the
first p parameters 6. are restricted to take on the value 9;. Under the

1

alternative, 61 = 6; + § where for local alternatives § will shrink to the

zero vector usually as 1//T. The log of the likelihood ratio will be

log £(y;8] + 6,8)) = log £(y367,0,)

which approaches the gradient or score times §

1 .0 o
§'3 log f(y,el,ez)/ael

apﬂ therefore locally optimal tests will reject for large values of the score m

in the relevant direction. The maximum likelihood estimates under the null of the
nuisance parameters 62 would generally be used to evaluate the score statistic how-
ever other estimates with the same asymptotic distribution can be used with no
change in large sample propertiés of the procedure. If 62 were known, then the
problem would be a multidimensional Neyman-Pearson testing problem for

which the critical region defined by the score would be locally most

powerful invariant where the invariance comes from equal interest in all
departures §. If in addition, 61 were one dimensional and one sided

tests were desired, then the score test would be locally most powerful, and,

in the exponential family, uniformly most powerful. Even if 62 were estimated,
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frequently the critical region based on the score would be locally most
powerful similar or unbiased. Asymptotically the parameters 62 can be
considered known if they can be estimated consistently and therefore

the asymptotic local optimality of the LM test follows directly. For

more details see for example Cox and Hinckley (1974 , section 9.3).

This statistical argument suggests the asymptotic optimality of
a critical region based upon the score. For economists another argument
is perhaps more convincing. Estimation subject to a restriction can be
considered as maximization of an objective function, the log likelihood,
subject to a restriction. Associated with such a problem is a vector
of Lagrange Multipliers which give the shadow price of the comstraint.
If the null hypothesis is false then the shadow price should be large
and thus a critical region would be constructed for large values of the
multipliers. For the set-up in the preceeding paragraph, the multipliers

are simply the derivatives of the log likelihood evaluated at the null.

The standard approach to obtaining the critical region from
the score is to use the information matrix. With L as the log likelihood,

the information matrix and score are defined as

o _ P
(D d(y; 91 ) 92) = 31-(}': 61’62)/3 91 efei
(2) $(8,,0,) = - E(% /3 0 30").
Letting 8, be the maximum likelihood estimate of 6, under the null, and

yllthe partioned inverse of § , the test is based on the statistic

= dtv:e® . 8 y-411¢g® g 0% g



which has a limiting distribution which is x§ when the null hypothesis
is true. For the statistic & to have this limiting distribution, the
regularity conditions of maximum likelihood theory are required. In
addition, many familiar problems present non-standard situations with
dependent sampling, non-identical distributions and boundary solutions.
Hence the assertion of the limiting distribution frequently includes

several unmentioned assumptions.

The approach used in this paper explicitly lists the assumptions
required for a central limit theorem to hold for the score when the null
is true.

. D
Thus (4) d(y;e‘l’ 20,0/ > N(O,V,)

and the test is based upon

1 ”~
d(y;ei , 62)

= . ) 5 ' N
(5) £ d(}'931 ’ 92) VO
which will by construction, have a limiting chi square distribution. Usually

(4) will be satisfied without distributional assumptions on the data.

These approaches generally give the same test statistic, however
there are several advantages to the formulation in (5). Most important
for this paper, it is easier to derive a variety of tests from (5) than
from (3) because the score vector frequently has the same form even though
the information matrix may appear very different. Of theoretical importance,
version (5) will often be available for non-standard problems such as when

ei is on a boundary of the parameter space or when one tailed tests are



required, or when the regularity conditions are not satisfied. Further-
more, (5) provides a certain degree of robustness to incorrect distributional
assumptions. If an incorrect distribution is assumed for the data, the

test in (5) will no longer be asymptotically optimal but at least it will
have the appropriate size for large samples. The test in (3) will have
unknown properties. Finally, the explicit listing of assumptions required
for (4) is useful and holds out the possibility of better approximations

to the asymptotic distribution than (5) itself. It also allows construction

of a test when 07 is inefficient.

3. Limiting,Diétributions of the Score

All of the testing problems in this paper can be reparameterized to

be omitted variable problems. In the model

(6) y =xB + 20 + ¢

the null hypothesis is simply 6=0. If ¢ 1is normally distributed, the

score for these problems will have the form

(N d=2'Q " u

where u are the residuals under the null and 5 is the estimated covariance
matrix under the null. The theorems below give sufficient conditions for
normal limiting distribution of the score when the model is estimated with
non-linearities, serial correlation, instrumental variables and several
other complications. These conditions do not require normality of the data.
The theorems also provide a unified approach to calculation of the test

statistic.



To establish notation, let Ver ¥y and z, be 1,k and p dimensional
row vectors and let y = ’yl,...yT)',x = (xi,...,xé)' , 2 = (zi,...,z%)'
be data matrices. All probability limits and limit statements are
taken as T goes to infinity. The R2 is taken as the (uncentered) sum
of squares of the fitted values divided by the (uncentred) sum of squares of
the dependent variable, all after any transformations. For models with an

intercept and mean preserving transformations, the centered definition

will give the same statistic.

Theorem 1

If
(1) E(ytl xt) =x.8 and E ee'==021 where € = y-xB .
Ux e
(ii) plim w'w/T = Q which is non-singular. Q =
Ux %2

and w= (%, z).

D 2
(iii) w'e / /T » N(0,0°Q )

Then with u=y-x(x'x)-1x'y

D -
@  u'z /T >N, (Q, -Q, Q. ))

zZX XX

. z'u/c2 2 xg where o2 = u'u/T

u'z(z'z-—z'x(x'x)“1 x'z)

(®)

m
(]

TR2 of the regression of u on w.

(c) g



Proof:

u'z/ /T e'(I-x(x'x)_lx')z/ T
= s'(z—x(x'x)—lx'z)/ /T

elw (-(x'x)—lx'z)
I

T

= e'w A /T
By assumption (ii) plim AT exists and let it be A. Then by (iii)
u'z/ T 3 no,0%arqQy = N(O,oz(sz = szg;lc Q)
establishing (a). Result (b) is established by noting that the
expression in the brackets in the statement, converges in probability to

the variance of the limiting normal.

To establish (c)

TR Tu'w(w'w)—lw'u/u'u

(O,u'z)(w'w)"1 (0,u'z)'/u'u/T

because u'x=0, Taking the partitioned inverse of w'w yields the
expression (b). Notice that if x includes an intercept, the centered

and uncentered definitions of RZ coincide.

Theorem 1 applies to the stochastic regressor problem in which
least squares may be consistent but biased. Conditions (ii) and (iii)

merely assert that the z's satisfy the same conditions as the x's them-



selves., More generally however, the z's may be smooth functions of
estimated parameters such as 8 , because in the limit z(B)'e /YT and

z(B)'w/T will have the same distributions for B as for 8.

Conditions (ii)(iii) can be established by appeal to more
primitive assumptions. For example Schénfeld (1971) gives sufficient
conditions for a dynamic simultaneous equation system to generate data
satisfying these conditions. His theorem assumes that the system is
stable, that the exogenous variables are bounded and have second moments
and autocovariances at all lags and that the disturbances are gaussian.

Weaker conditions are surely possible.

Several alternative computational approaches are available as
is generally the case for linear hypothesis tests. Letting SSRO be the
sum of squared residuals from (6) under the null using the covariance
matrix under the null and SSR1 be the sum of squared residuals under
the alternative using the covariance matrix from the null, Engle (1977)
showed that £ = T(SSRo = SSRl)/SSRo. An even simpler procedure is to
use the t or F test from a direct estimation of (6). These test
statistics will differ from the pure LM test because 02 is estimated under
the alternative and because it is defined as u'u/T-K~P rather than by
u'u/T. For finite samples it is not clear which is preferable and
asymptotically they are equivalent tests. The use of the centered
definition of R? may have a similar effect. If the mean of the residuals
is not exactly zero then the test statistics will differ; however, the
expected value will always be zero and therefore the statistics will not

differ asymptotically.
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These alternative computational approaches apply equally well to
the results of theorems 1 and 2. For theorems 3 and 4 which deal with
instrumental variables estimation, the t and F versions are available;
however, the difference in the sums of squares residuals will no longer

give the right statistic.

When there is only a single omitted variable, a one tailed test
may be desirable. The square root of the chi square statistic will be
normally distributed with the sign of the coefficient of z in the auxilliary

regression.

To develop tests when the null hypothesis may be non-linear and

there may be non-spherical disturbances, theorem 2 is required.

Theorem 2

If
3 ' 2

(i) E(y %) = g(x.,8), Eec' =00, € = y~g

(ii) Q = Q(w) and w is a consistent estimator of w. Let
2= (0).

(1i1) g(xt,B) has second derivatives with respect to B which are
uniformly bounded over t in a neighbourhocod of the true 8.
g(xt,B) = g(xt,B) for all t only if B=8.

) . o=1 . . _ 98
(iv) Plim w'Q ~ w/T = Q non-singular with w=(G,z) and G= 38 |g=g * 2

TxK matrix.



)

(vi)

Then with G = =&

(a)

(b)

(e)

(d)

Proof

11.

W'Q-le /VT-R N(O, 2Q).
B 1is the interior solution to min(y-g)'Q—l(y-g) and any one

of the following conditions is true

(1) g(x,B) = x B8 (a) and B (a) has continuous first

derivatives everywhere in the parameter space

(2) @ =TI and g has continuous first derivatives with respect

to B everywhere in the parameter space

-

(3 B is consistent.

9 ~ and u= -A
38 |B=8 M

207w/ A 3 N0,6% (q, - Q¢ O Q)

1 G(G'Q_lG)G'Q—l . . u/c2

Yo

E = u'Q-l z(z'Q—1 z=z' 0 X

02 = u'Q-l u/T.

g =T R2 of the regression of u on (z,G) taking Q—l as the

covariance matrix.
~ 2 -
/T (6 -8 Pneo,e® QL)

See Appendix.
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Theorem 2 is a direct generalization of Theorem 1 to allow both
non-linearities and non-—spherical disturbances, in addition to stochastic
regressors. If g 1is a linear function, then G=x.

Condition (v) excludes models with lagged dependent variables and serial
correlation. In fact it excludes all cases where the information matrix

is not block diagonal between the parameters w and the coefficients of w.

The case of lagged dependent variables and serial correlation can
generally be reformulated as a non-linear regression with white noise
disturbances. In this case Q = 1, condition (v) is satisfied and Theorem 2

can be applied.

It is often difficult to verify (v) or even (vi) in the general
case. Malinvaud (1970) Jennrich (1969) and Gallant and Holly (1978) give
some sufficient conditions for the consistency and efficiency of non-
linear least squares, which directly imply conditions (i)=(vi) when x
is exogenous and Q = I. Even these more primitive assumptions are
frequently extremely difficult to verify and often they are substantia11§
stronger than would be necessary for the theorem. In practice, assumptions
(iv) and- (v) are quite plausible even in complicated models, and, as they
are implicitly assumed for most econometric work, the more primitive

assumptions are not explored.

If the model estimated under the null hypothesis has simultaneous
equations bias or other stochastic problem which leads to correlation
between x and €, then theorem 3 is necessary. It deals with instrumental
variables estimation but by careful choice of instruments, it also

represents maximum likelihood estimators.



Theorem 3

A

13.

Let X be a TxK matrix of instrumental variables which without loss

of generality are assumed to satisfy x'x = x'x.l—/

If
(1) y=x8 + ¢, Eee' = o1
(ii) Plim g's /T = Q where s=(x,w), w=(x,z) and Q;; is non-singular

~

(iii) w'e #T 2 N(0,0° )

Then with u=y-x(x'x).-1 x'y and vex-x

(a) z'u/ /T 2 N(O:UZP) P=sz - Qz; Q;i sz - sz :i Qﬁz * sz *
= - ~ Q:} A 0+ -
sz sz XX sz sz Qﬁﬁ sz
(b) E = u'z(IA’)-1 z'u/;2 2 x: where ;2 = u'u/T and 5 is the

sample value of P.

If in addition

(iv) Plim z'(x=x)/T = O

then

-1

> Q

X "Xz

A A A ) ~

1/ If x'x#x'x, then let x*=2(x§x)?1 x'x to give x*'xk=x'x*



(c) an asymptotically equivalent statistic is T R2 of the regression

of u on w,
Proof : See Appendix.

Theorem 3 establishes the framework for calculating IM tests in
simultaneous systems. The conditions (ii) and (iii) are sufficient for ;
to be a legitimate instrument, and imply the asymptotic normality of
instrumental variable estimators. They are standard assumptions for
instrumental variable problems. Assumption (iv) is somewhat stronger as
it asserts that the omitted variable is asymptotically uncorrelated with
the difference between x and its instrument. In a linear simultaneous
equations set-up 2z might already bé included with the predetermined
variables and therefore (iv) would be satisfied exactly for two stage
least squares. If the full set of candidate instruments is used in the
first stage regression, then x—; is simply the reduced form disturbance
which could reasonably be assumed uncorrelated with a new variable z.
However, if less than the full instrument list is used, which might often
be the case in non—linear simultaneous equation systems, then z could be
correlated with the omitted candidate instruments and (iv) would fail. If

an asymptotically efficient estimator is used then (iv) will be satisfied.

To generalize this theorem to system estimation and parameter
restrictions within or between equations theorem 4 is required. Stacking
the equations, the problem again becomes one of an instrumental variable
estimator where there is a covariance matrix Q=% ® I and the coefficient
vector B may be a function of a smaller number of unrestricted

parameters Qe
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Theorem 4

A

Let x be a matrix of instrumental variables which without loss of general-

AAlA
-

ity satisfy x'ﬂ-lx =x'Q "x. If

(i) y=xB + €, Eege' = 029,
(ii) 2 =Q(w) and w 1is a consistent estimator of w. Let { = Qw).
(iii) B = B(a) where o is Jx1 J<K. 8 has bounded derivatives to the

second order in the neighbourhood of the true a. B(&):=B(a)

only if @ = a.

(iv) Plim s'Q_l s/T = Q where s=(x,w), ;=(x, z) and Q" 1is
non-singular.

W) waele//T ¥ o, o Q)

(vi) Let a be the interior solution to min (y-xB)(Q_l) (y-x8) and

let B have continuous first derivatives in the parameter space.

Then with u=Y°XB(G), H = 2—2 R H = _gg . each KxJ mattices and
° a=a .a=a
V=X-X
( ) '5-1 / T ']:N(O O'ZP) P = ~ H(Hv AAH)_]- H'Q
a z u 3 s sz-Qzﬁ Qxx -

QPG R, + o R TH,,

= Q,,7,:2 H(H'Q;gﬂ)'_l B'QL + qsz(H'Q;;H)-l Qvz
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~_ ~ A ~ D ~_
(b) E = u'ﬂ'lz (P) 1 z'Q 1 u/o2 > : where 52 =u'Q 1 u/T and

A

P 1is the same as P with H replaced by H and all Q matrices

replaced by sample estimates.

If in addition

(vii)  Plim z' ' (x-x)/T=0
Then
(c) an asymptotically equivalent expression for & is T R2 of the

AA A

regression of u on(xH, 2 using 9—1 as covariance matrix.
~ D y R | . . .
(d) //E(a—a) + N(0, ¢° (H H) *) under assumptions (i) - (vi).
Proof : See Appendix.

4. A Simple Example

In order to see the simplicity of these results consider the
omitted variable problem in (6) with normal errors. If the model is a
dynamic regression with white noise disturbances, then, the score is
proportional to u'z. The test for 6=0 would be found by theorem 1 from

TR2 of the regression of the least squares residuals, u, on x and z.

If the model is a static model with non-white noise disturbances,
then the test, by theorem 2, would be TR2 of the regression of u on x and
z using the estimated covariance matrix under the null. An alternative
formulation is sometimes easier. If the data are transformed to make

5 v v .
the disturbances white, let y and x be the transformed variables.



17'

N
zl

. ] n
Then TR2 can be calculated from the regression of u on 2,

If this model includes lagged dependent variables in either x or
z, as well as serial correlation then theorem 2 must be applied as a non=-

linear regression problem with white noise errors. TFor the first order

. . 2 . n Ny
autoregression, this becomes TR of the regression of u on X, Z, U_ys

-~

" . .
where w = wEpW_y for the estimate of p obtained under the null and

~

u = y-xB. See section 6 for more details.

If some of the x's are endogenous variables and are estimated with

A

instruments x, then theorem 3 must be invoked. Suppose the difference

between x and x 1is purely a reduced form error term which is reasonably
assumed to be uncorrelated with z. The test is calculated by TR2 of the

regression of u on x, z, where u is the vector of residuals from instru-

mental variable estimation under the null. There is no need to recalcualte

instruments.

If in addition this equation has first order autoregressive

errors and there are no cross equation lags, then the auxillary regression

A A ~

would be u-;:u_1 on x—px_l, z-pz_l, u_y from which TR2 would be calculated.

This is an application of theorem &,

If the equation is a stacked system of simulataneous equationms,

then theorem 4 is required where the covariance matrix has the form 0 @ TI.

PN

Let x be the instruments calculated under the null which may be the
efficient instruments which give FIML as in Hendry (1976) or Hausman (1975)

or simply reduced form regressions and let @ be the estimated contemporary

2

covariance matrix, The test is based upon TR™ of the regression of u
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A

on X and z using @ ®# I as the covariance matrix.

In all of these cases the test statistic is asymptotically
distributed as chi square with degrees of freedom equal to the rank of
z. If this rank is one, then a one tailed test is available by taking the
square root of the statistic and giving it the sign of the coefficient of z

in the auxilliary regression.

5. Testing for Non-Linearities

Frequently an empirical relationship derived from economic theory
is highly non-linear. This is typically approximated by a linear regress-—
ion without any test of the validity of the approximation. The LM test
generally provides a simple test of such restrictions because it uses
estimates only under the null hypothesis. While it is ideal for the case
where the model is linear under the null and non-linear under the alternative,
the procedures also greatly simplify the calculation when the null is non-
linear. Three examples will be presented which show the usefulness of this

set of procedures.

Several studies have examined the demand for money to test for the
existence of a liquidity trap. Pifer (1969), White (1972) and Eisner (1971)
test for a liquidity trap in logarithmic or Box-Cox functional forms while
Konstas and Khouja (1969) (K-K) use a linear specification. Most studies
find maximum likelihood estimates of the interest rate floor to be about 2%
but they differ on whether this figure is significantly different from zero.
Pifer says it is not significant, Eisner corrects his likelihood ratio test
and says it is, White generalizes the form using a Box-Cox transformation

and concludes that it is not different from zero. Recently Breusch and
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Pagan (1977a) have reexamined the Konstas and Khouja form and using a

Lagrange Multiplier test, conclude that there is a liquidity trap.

Except for minor footnotes in some of the studies, there is no
mention of the serial correlation which exists in the models. In re-
estimating the Konstas-Khouja model, the Durbin-Watson statistic was found to
be .3 which is evidence of a severe problem with the specification and

that the distribution of all the test statistics may be highly misleading.
The model estimated by K-K is
il
(8) M=+yY +B(x—a) " +¢

where M 1is real money demand, Y is real GNP and r is the interest rate.
Perhaps their best results are when Ml is used for M and the long-term
government bond rate is used for r. The null hypothesis to be tested

is o = 0. The normal score is proportional to u'z where 2z is the
derivative of the right-hand side with respect to o evaluated under the

null:s

Therefore the LM test is a test of whether —%- belongs in the regression
r
along with Y and 1/r.

Using the procedure from theorem 2, Breusch and Pagan obtain
the statistic ELM = 11.47 therefore rejecting a = 0. Including a constant
term this becomes 5.92 which is still very significant in the x2 table.

However, correcting for serial correlation in the model under the null
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changes the results dramatically. A second-order autoregressive model was
required to whiten the residuals with parameters 1.5295 and -.5597. These
parameters are used in an auxiliary regression of the untransformed residuals
on the three right-hand side variables and a constant, to obtain an R2 =
.01096. Thus, the LM statistic is ELM = ,515 which is distributed as x2

if the null is true. As can be seen it is very small suggesting that the

liquidity trap is not significantly different from zero.

As a second example consider testing the hypothesis that the
elasticity of substitution of a production function is equal to 1 against
the alternative that it is constant but not unity. If y is output and
X, and X, are factors of production, the model under the alternative

1 2

can be written as
(9) log y = -2 log (8 X.,° + (1-8) X.°) + u.
: B! 2
If p = 0, the elasticity of substitution is one and the model becomes

log y =a 6§ log X1 +a(1-8) log X2 + u.

To test the hypothesis p = 0, it is sufficient to calculate %5-
p=0
and test whether this variable belongs in the regression. 1In this
3g __a 2 .. . .
case = === §(1-8) (log X,/X,)” which is simply the Kmenta (1967)
P |p=0 2 172
approximation. Thus the Cobb-Douglas form can be estimated with approp-
riate heteroscedasticity or serial correlation corrections and the unit

elasticity assumption tested with power equal to a likelihood ratio test

without ever doing a non-linear regression.

As a third example, Davidson, Hendry, Srba, and Yeo (1978)
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estimate a consumption function for the U.K. which pays particular attention

to the model dynamics. The equation finally chosen can be expressed as

(10) A4Ct - 61A4yt * BZAlAayt ¥ 83(ct—4-yt-4) * B4A4Dt * 65 Py * BGAlpt

where c y p are the logs of real consumption, real personal disposable income
and the price level, and Ai is the ith difference. 1In a subsequent paper
Hendry and von Ungern-Sternberg (1979) argue that the income series is mis—
measured in periods of inflation. The income which accrues from the holdings
of financial assets should be measured by the real rate of interest rather
than the nominal as is now done. There is a capital loss of ﬁ times the
asset which should be netted out of income. The apéropriate income measure
is yt = log (Yt—aﬁLt_l) where L is liquid assets of the personal sector

and a 1s a scale parameter to reflect the fact that L 1is not all

financial assets.

The previous model corresponds to a=0 and the argument for the
respecification of the model rests on the presumption that a#0. The LM
test can be easily calculated whereas the likelihood ratio and Wald tests
require non-linear estimation. The derivative of y* with respect to o

evaluated under the null is simply —ﬁL /Yt' Denote this by X, . The

t-1
. ' =o\ + A~ -A
score is however u'z where z 81A4xt 62A1A4xt B3xt_4, and the betas are
replaced by their estimates under the null. This is now a one degree of
freedom test and can be simply performed using theorem 1. The test is

significant with a chi squared value of 5. As a one tailed test it is .significant

at the 2.57 level.

6. ' Testing for Common Factor Dynamics

In formulating dynamic single equation models, it is common to
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consider some of the dynamics as due to the structure and some to the error

term. In the model

* = vk * 1
(11) a*(L)y, = v (L)xk' + e,
where o*(L) is a general lag polynomial and Y*(L) is a matrix lag polynomial,
Sargan (1964, 1975) and Hendry and Mizon (1978) suggest testing for a common
factor such as that a*(L) = p(L)a(L) and Y*(L) = p(L)y(L). 1In this case the

restricted model can be rewritten as

( = ' =
(12) a(L)yt y (L) xk +e., p(L) e =€,
Putting the lagged y's on the right hand side and redefining the x* matrix

and coefficient vector, this becomes

(13) V. = %8 *e, p(L) e, =€,
Both Wald and likelihood ratio tests have been developed and employed by
these authors. The Wald test has the advantage that the unrestricted
model in (11) can be estimated by ordinary least squares and the test stat-
istics computed by rearranging the output. Both likelihood ratio and LM

tests require estimation by correcting for serial correlation.

However, once the investigator has chosen his model, he may want
some final check on the validity of his dynamics. In this case, an LM
test is ideal because he has already estimated the null and wants to examine

it against a slightly less restricted model. 1In this spirit Godfrey (1979a)

and Sargan (1969) have tested for omitted serial correlation.
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Suppose the researcher conjectures that there are a set of lagged v,
lagged x, and perhaps lagged u's which could enter the equation but are not

already present. Call this data set z. The regression model is now
(14) ; = X8 + 26 + €, X = p(L) x

which is a non-linear least squares regression and the null hypothesis is 8=0.
The normal score is proportional to U'z where u=y-xé. To apply theorem 2
requires calculating the G matrix which is the derivative of ¢ with respect
to the parameters B and p. The result is G = (;, U_jseees u_r) where r

is the order of the serial correlation process, p(L). The test is therefore
easily computed by regressing 3, the whitened residuals, on G and z and

testing T R2 as chi square with rank (z) degrees of freedom.

Frequently in the literature there is interest in testing the
hypothesis that the order of the serial correlation process is r against the
alternative that it is r-1. Consider the case where (13) is static.

When r=1, this implies that z=x;1:. However, when r > 1 the formulation
of the alternative must be carefully considered. Let p(L) = (1-9L) ¥(L)
wvhere ¥ (L) is of order r-1 and @ is therefore one of the r possible

roots of p(L). |Letting x = $(L) x the alternative can be written

R R "
which can be expressed as

(15) Y. =%8 +X% .0 +c..

e=1° The LM test is easily calculated.

Thus the omitted variable is clearly
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The difficulty with this test, however, is that it will give
different answers depending upon which root @ is extracted. Furthermore,
the full asymptotic power will not be achieved unless the appropriate choice
is made. Unfortunately, when the null is true, the correct root is not
identified, although there are only r possible values for @. Several
partial solutions are available. One might arbitrarily pick one of the
% and sacrifice the optimal asymptotic power. . One might include
all of the x's and jointly test them which would give a test with rK
degrees of freedom rather than K; however, this would in general be
equivalent to testing against r=0. Finally one might follow Davies (1976)
and develop a test based on max (Ei) but the distribution of r dependent
chi square statistics would b: difficult to find and thus the critical value
would be unclear. 1In short, one must decide whether the alternative of
serial correlation of order r-]1 is of sufficiently great interest to solve

this problem. Lots of very similar and sensible alternatives can easily

be tested as described above.

7, Testing for Exogeneity

Tests for exogeneity are a source of controversy partly because of
the variety of definitions of exogeneity implicit in the formulation of
the hypotheses. 1In this paper the notions of weak and strong exogeneity
as formulated by Richard et al (1979) will be used in the context of linear
simultaneous equation systems. In this case weak exogeneity is essentially
that the variables can be considered as instruments and the equations
defining them can be ignored without a loss of information. Strong
exogeneity implies, in addition, that the variables in question cannot be
forecast by past values of endogenous variables which is the definition

implicit in Granger (1969) "non-causality."
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Consider a complete simultaneous equation system with G equations
and K predetermined variubles so that Y e and V are TG, X is TxK and

the coefficient matrices are conformable. The structural and reduced forms

are:
(16) YB=Xr+e',Eeet=sz
(17) Y =XnI+7V

where €_ are rows of € which are independent and the X are predetermined.
Partitioning this set of equations into the first and the remaining G-1

the structure becomes
(18) Yl - YzB = X].Y + El
- ' =
(19) yio' * Y8, =X, T, +¢,

where X, may be the same as X and

1 -2a' Q Q
(20) 5 \ o - 11 1%
B B %1 922/

The hypothesis that Y2 is weakly exogeneous to the first equation

in this full information context is simply the condition for a recursive

structure:

(21) H° Pa = 0,912 =0

which is a restriction of 2G-2 parameters.
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Several variations on this basic test are implicit in the structure. If
the coefficient matrix is known to be triangular, then o = O is part of
the maintained hypothesis and the test becomes simply a test for 912 =0,
This test is also constructed below: Holly (1979) generalizes the result
to let the entire B matrix be assumed upper triangular and obtains a

test of the diagonality of . If some of the elements of 8 are known

to be zero, then the testing problem remains the same except for the special

case where B2 is upper triangular.between the included and excluded

variables of Y, and the disturbances are uncorrelated with those of_y1 and

the included Voo Then it is only necessary to test that the a's and Q's

of the included elements of y, are zero. In effect, the excluded Yy
now form a higher level block of a recursive system and the problem can be

defined a Eriori to exclude them also from YZ' Thus without loss of

generality the test in (21) can be used when some components of B take on

known values.

To test (21) with (16) maintained, first construct the normal log

likelihood L, apart from some arbitrary constants.

(22) L = T log|B| - %-log le] -4 ) € ot €,
t=1,T
Partitioning this as in (20) using the identity || = IQZZIIQII = 912 Q;; 921
gives
. -1
(23) L = T log|B,| + T log |1-u'B,"8| - T/2 log [0,,|- T/2 log |0, -

-1 11 22 12 .
9 89y Oyl = Z e1e ¥ e T 4 ZEZt a ‘E.;_t - Et €1t ¥ kot

where the superscripts on & indicate the partitioned inverse and upper case
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characters represent matrices. Differentiating with respect to o and setting

parameters to their values under the null gives the score:

3L | ~ay 2 ~22
(24) % | TB, 8 +i9 Uy Yy,

where hats represent estimates under the null and U2t is the row vector of
22

residuals under the null. Recognizing that £ Q Uét U2t/T I this can be
t
rewritten as
oL | _ 222 I A22
25) 3 |, EQ Upe Oge ~Upe By B 2 i Uy Ope * 4y

where ;& is the reduced form prediction of v, which is given in this case
le + X r B;l B. Clearly under the null hypothesis, the score will
have expected value zero as it should. Using temsor notation this can be

expressed as
[y = . 4 6—1
(26) da (I @ (y1 + ul)) (922 @ I) vec (Uz)

which is in the form of omitted variables from a stacked set of regressions

with covariance matrix ﬁ;; ® I. Theorem 4 applies directly and allows

calculation of a test for a = O under the maintained hypothesis that 912 =0,

The other part of the test in (21) is obtained by differentiating

(23) with respect to @ 9 and evaluating under the null. It is not hard

1
to show that all terms in the derivative vanish except the last. Because
-1 —1 .
39 /3912 o 11 22 the score can be written as
-1 -1
(27) d = ¥ u u'..
912 - 1t 11 22 2t

which can be written in two equivalent forms
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a1 -1

= 1
(28) dQ 911 922 U 2 ul.
12
= ol voaL
(29) Qll (1 e ul) (922 ® I) vec (Uz).

Either would be appropriate for testing 2., = O when a = 0 is part of the

12
maintained hypothesis. In (28) the test would be performed in the first
equation by considering U2 as a set of G-1 omitted variables. 1In (29)

the test would be performed in the other equations by stacking them and then
considering 10 u, as the omitted set of variables. Clearly the former

is easier in this case.

To perform the joint test, the two scores must be jointly tested
against zero. Here (26) and (29) can easily be combined as they have just
the same form. The test becomes a test for two omitted variables, ;i + uy

and U, in each of the remaining G-1 equations. Equivalently, ;i and uy

can be considered as omitted from these equations.

This test would be computed as an application of Theorem 4. Natice
that the assumption that Q;;“ is non-singular is violated if the model is
not identified under the alternative. Surely in this case the data would
not be able to reject the hypothesis and indeed the likelihood would not
increase at all by relaxing it. Thus a test on an unidentified model would
give a zero test statistic (assuming the compute is able to take generalized
inverses) and if the model is very weakly identified, the test would be

likely to have very low power.

In the special case where G=2, the test is especially easy to
calculate because both equations can be estimated by least squares under

the null. Therefore theorem 1 can be applied directly.
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As an example, the Michigan model of the monetary sector was
examined. The equations are reported in Gardner and Hymans (1978). In
this model; as in most models of the money market it is assumed that a
short term interest rate can be taken as weakly exogenous in an equation
for a long term rate. However, most portfolio theories would argue that
all rates are set at the same time as economic agents shift from one asset

to another to clear the market.

In this example a test is constructed for the weak exogeneity of
the prime rate, RAAA , in the 35 year government bond rate equation,

RG35 . The model can be written as

(30) RG35 BARAAA + le + ¢

1

ARAAA

aRG35 + Xzy + e,

where the estimates assume a = 019 = 0, and the X's include a variety
of presumably predetermined variables including lagged interest rates.
Testing the hypothesis that o = 0 by considering RG35 as an omitted

variable is not legitimate as it will be correlated with Ey - If one does

the test anyway, a chi squared value of 35 is obtained.

The appropriate test of the weak exogeneity of RG35 is done
by testing uy and RG35 - éuz as omitted from the second equation where
u, = ARAAA - X2 ;2 . This test was calculated by regressing u, on X2 .
Uy and RG35 - éuz . The resulting TR2 = 1.25 which is quite small,
indicating that the data does not contain evidence against the hypothesis.
careful examination of X1 and X2 in this case shows that the identifi-

cation of the model under the alternative is rather flimsy and therefore

the best probably has very little power.
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A second class of weak exogeneity tests can be formulated using
the same analysis. These might be called limited information tests because
it is assumed that there are no overidentifying restrictions available
from the second block of equations. In this case equation (19) can.be

replaced by

(31) Y, = Xm, +§&, .
Now the definition of weak exogeneity is simply that le = 0 because
o = 0 imposes no restrictions on the model. This situation would be

expected to occur when the second equations are only very roughly specified.

A very similar situation occurs in the case where ¥, is

possibly measured with error. Suppose Yg is the true unobserved value of

but one observes Y, = Y& + n . If the equation defining Y% is

3 9 = Y3

2

= x,T, + &,

where the assumption that Y% belongs in the first equation implies E 5{62 = 0.

2

The observable equations become

(32) Y1 Y,8 + Xy + e -

Y, = X

2 T €y +m

If there is no measurement error, then the covariance matrix of n will be
zero, and 912 = 0 . This set up is now just the same as that used by

Wu (1973) to test for weak exogeneity of Y2 when it is know that o = 0 .
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The procedure for this test has already been developed. The
two forms of the score are given in (28) and (29) and these can be used with Theorem
to test for the presence of U2 in the firs; equation. This test is Wu's test
and it is also the test derived by Hausman (1979) for this problem. By |
showing that these are Lagrange Multiplier tests, the asymptotic optimality
of the procedures is established when the full set of X2 is used. Neither

Hausman nor Wu could establish this property.

Finally, tests for strong exogeneity can easily be performed.
By definition, strong exogeneity requires weak exogeneity plus the non-
predictability of Y2 from past values of ¥y - Partitioning X2 in
(19) into (y? , X3) where y? is a matrix with all the relevant lags
of yi s and similarly letting Pz = (on, P23) the hypothesis of strong

exogeneity is
(33) H : a =20, 912 =0, on =0

This can clearly be jointly tested by letting ugs ;1 and y? be the
omitted variables from each of the equations. Clearly the weak exogeneity
and the Granger non-causality are very separate parts of the hypothesis and
can be tested separately. Most often however when Granger causality is
being tested on its own, the appropriate model is (31) as overidentifying

restrictions are rarely available.

VII. Conclusions

Lagrange Multiplier tests have been derived and applied to a wide
variety of situations from omitted variables to non-linearities, common
factor dynamics, errors of measurement and exogeneity. In general they are

inexpensive to compute and can be reported by a single statistic.
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A recommendation of this paper is that a series of such tests be
performed for each equation published and probably for each equation estimated
by a researcher. The range of alternatives as well as the values of the
statistics considered would provide a measure of confidence which a reader
or researcher could have in the particular result. The approach has the
advantage that each diagnostic test requires only a single number rather
than a fully tabulated regression and thus leads to economies of reading,
printing and digesting as well as computing. It is possible that wider
use of these techniques would make a small step forward in improving the

reliability of economic models. If so, the costs seem small.
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APPENDIX

Proof of Theorem 2

First the limiting distribution of £ must be established, by
showing consistency (if vi(3) has not been assumed) and then the limiting
distribution.

From condition (vi),

~ 16_1 ~

(A1) (y-8) @ (y-8) s €'Q "¢ .
Applying the mean value theorem
(A2) g=g+Gx(p - p)
where G* is G evaluated at Bg* which lies between B and B8 .
Substituting y = g + ¢ and (A2) into (Al) gives

A "_1 ~ "_1 \ PN
(A3) (B -B)'G*'Q G*(B -B) £2¢c'Q G* (B - B)

If (vi(l)) 4is assumed then G* = x H* where H* = %S- so

that the right hand side of (A3) becomes ¢' Q_le* . Dividing both sides

o = o¥

by T and taking probability limits, establishes by (v) that the quadratic

form

plim (é - B) 'H*! QXXH*(é -B8)g0.
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Because the interior matrix is positive definite, plim(B - B) = 0. If
on the other hand, (vi(2)) has been assumed, then the right hand side of
.ag(Xt B)
. . 9
(A3) is proportional to % € 58— |g = p* °

expectation of € given X, is zero, each term in the sum has expecta-

Because the conditional
tion zero and the law of large numbers establishes that

plim(g - 8)' Q&% (8 - B) < O

~

and therefore B 1is consistent.

A

The estimate B8 must satisfy the first order conditions

1A A
(A4) - etce=o0.

From (A2) this becomes

~ ~ A

(A5) B-8 = (G atenleg?

which will be shown to have the same limiting distribution as

Q—l

(A6) (G'cﬁflc;)"1 G'Q e,

which by (iv) and (v) establishes
- 2
T (8-8) 3 NO, o® Q)

Now to show that (AS5) and (A6) have the same limiting distribution.

w2l - 0

Plim T

e |
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where B 1is a TxK matrix with the uniform upper bound of 3G/dB in the
neighbourhood of £ as guaranteed by (iii), and b is the maximum

Iéj - Bj[ . From assumption (v) the first term has a finite probability
limit while the second goes to zero because 8 1is consistent. Hence

G'Q "G*/T has the same limit as G'QR G/T which is the same as G'Q G/T .
Similarly e'ﬂ—lG//T- has the same limiting distribution as e'Q-lG//f
This establishes (d).

Now to find the limiting distribution of the score.

z'Q—lu//T‘ = z'Q—l(e +g=-g)//T

2'Q L(e - G*(8 - B))/VT

z'n’l(e - G*(G'sz'lc)'1 G'n‘ls)//f

which has the same limiting distribution as
z'a”te - z'a et L ety VT = A W' Le//T

where AT = (-z'SZ--]'G(G'Q“lG)_1 , I) . The probability limit of AT is

A = (_QzGQ;é’I) and therefore by (iv) and (v)

D

z'Q “u/YT - N(O, 02

2 -1
A Q A') = N(o’ g (sz - QZGQGGQGZ))
establishing a.

Propositions (b) and (c) follow directly from the same argument
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as follows theorem 1. When G includes an intercept and preserves means,
. 2 . .

the estimates based on the centered and uncentered R~ will be numerically

equal. However, when the mean only has expected value zero, the statistics

will only be the same asymptotically.

Proof of Theorem 3

To establish the limiting distribution of the score

z'u//T z'(y - x(;'x)-lg'y)/ff

z'(e - x(;';)_lg'e)/ff

A w'e/VT
where A, = (-Z'X(X'X)—l » I) . The probability limit of A, =A by

assumption (ii) and therefore
'a/ YT 2 oanas B 2
z'u/YT -+ N(O, o AwaA ) = N(0O, o"P)

— - ~ :} — :1 ~ -1 * o_
where P sz szQxexz szQxexz + szQxexz . This rather surpri

A~

sing expression is symmetric and positive definite. Letting x - x =v

and defining sz ‘in the obvious fashion

~ P -1
A sz szqﬁﬁqxz * szQQﬁsz

This expression differs from the previous cases because of the third term.



Under (iv) Q. = 0 . Then noting that u'w = (O,u’'z) the

0 2, .
statistic can be calculated as T R~ just as in theorem 1.

Proof of Theorem 4

~ A

First establish the limiting distribution of o and B .

From the mean value theorem

H*(; -0,)

W >
]
w
+

(A7)

A

ali = ok and ao* lies between o and o .

]

where H*

Y]

Q

=3
I

>

The value o must satisfy the first order conditions for a minimum;

= (e + xR - x8)'Q ; ﬁ

= (e - x(B - B))'Q-1 x H from the comstruction of x

= (g - xH*(a - ot))'Q-1 x H by (A7)

So a - a (H'x'Q_l;Hﬁ)_l H'xine

which has the same limiting distribution, by the argument of theorem 2, as
-1 -1,

(B'x'Q

and therefore



-1

T - a) 2 N, o?@' Qi mh .

The score is given by

2@ VT = 20 Ny - xB) /YT
= 20 l(e - x(8 - RI/IVT
= 2'27l(e - xB*(a - a))/IT
= 2'0 e - ak@E'x'Q =) ME =0 e) /T
= Ay w' e//T

AAA_lA

where AT = (--z'S'l—1 xH*(H'x'Q xH*)—1 H' , I) . By (iv) AT has a

limiting distribution A = (—szH(H'QxxH)-IH', I) and therefore
o= D 2 .. 2
z'Q "u/T + N(, o AQWWA) = N(0O, o"P)

where P 1is given in the text.

When sz = Qz; then the expression for P simplifies to give
the lower right hand cornmer of the partitioned inverse of H'Q;;H and

2 . . .
therefore T R~ of the regression of u on w wusing § as covariance

matrix will calculate the statistic.

38.
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