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l. INTRODUCTION

Most macroeconometric models are built with the cbject, wholly or
partly, of providing forecasts. The term "forecast" covers three
rather distinct types of exercise:

(a) genuine "ex-ante" forecasts, in which the model user predicts
the actual future development of the economy, and for which
projected future values of input variables must be supplied;

(p) "ex-post" forecasts, in which the model user eliminates the
effects of error in the projections of the input varijiables
by calculating "forecasts" over some period in the recent
past, given the actual observed values of the input variables;

{c) hypothetical forecasting or policy analysis exercises, in
which the model user estimates the response of the economy to
alternative scenarios, that is, to alternative values of
policy instruments or to different kinds of c*ogcnous shock.

In each case there is interest in evaluating the results of the forecast-
ing exercise, not only for its own sake but also to provide information
that is useful in model validation, that is, in checking the specification
- of the model. Of course the various forecasting exercises and their
respective evaluations are not necessarily independent of one another,
for example it is often said that in order to be useful in policy
analysis a model should have a good real-world forecasting record over a
period that was not part of the estimation period, so.that it might also

be expected to provide "good" estimates of responses to policy changes.



As elements of the evaluation process we identify for further

discussion three main types of forecast comparison:

(a) compariscn of the forecasts of a single model with actual
outcomes;

(b) comparison of the forecasts of an econometric model with
those obtained by ostensibly different methods, such as
statistical time series ("Box-Jenkins") methods;

(c) comparison of the forecasts of a number of different macro-
econometric models,

Theoretical and practical aspects of these comparisons are discussed in
Sections 2-4 of this paper. In general this discussion is set in the
context of standard linear textbook models, and in Section 5 we discuss
further issues that arise from the non-linearity of practical models.

Section 6 deals with structural change, and Section 7 contains concluding

comments.

The practical userf model-based forecasts is in decision-making,
and in principle the evaluation of a model and its forecasts shouid'be
associated with the loss function relevant to the particular objective.
In practice this does not feéture in the literature, since decision-
makers and.the users of forecasts seldom discuss such matters, at least
not in public. As a result models are generally evaluated by the model-
builders themselves and their econometric critics, in rather gencral
terms, using statistical criteria that seem reasonable but are seldom
rigorously justified. Model-builders typically report a range of
criteria, perhaps in the hope that a particular model-user will find

therein the information needed for a particular decision problem. That



models are built to achieve different objectives is clear from their
different sizes and their coverage of different markets in the economy.
Thus a different loss function is implicit in each model, occasionally
made more explicit as, for example, when a model is given a specific
control orientation (Wall et al., 1975). 1In the absence of a completely
explicit specification of a loss function, our own discussion is concerned

with some of the various general criteria that are employed,



2. COMPARING A SINGLE MODEL'S FORECASTS WITH ACTUALITY

We begin by assuming a linear simultaneous equations model, describ-

ing the relations between the elements of a vector of current endogenous

-~

variables Y and a vector of predetermined variables Z, s and of which

the reduced form can be written

= + .
ye =Tz, + v,

A

Given estimates of the coefficients, I , based on a sample period

-~
A

t =1,...,T, and projections of the predetermined variables, z

T+3 , for

a forecast period' t = T+1, T+2,...,T+h, ex—ante forecasts are given as

T+j' j=1,2,...,h.

o
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For a correctly-specified model, the corresponding actual values are

given as

= +
¥T+j g fT+j YT+j !

and in this event the forecast error can be written as

A
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This expression breaks down the forecast error into three components.

First, projections of the predetermined variables are unlikely to

be exact, and the error in these projections, zT+j = ZT+j' contributes

to the overall ex-ante forecast error. Secondly, the coefficient

A

estimates II based on the sample-period information differ from the

~

true values I . Finally the random disturbances VT+j occurring in the

-~
~

forecast period affect the outcome, the above equation for yT+j

having assumed that the optimal forecast of these disturbances is their



unconditional mean value of zero. In practice this might be modified
either given evidence that the disturbances are autocorrelated, so that
earlier residuals are helpful in forecasting later disturbances, or

given information about extraneous influences likely to impinge on the
model in the forecast period but not explicitly incorporated in the original
specification. This last possibility occurs frequently in practical
forecasting exercises, since good information about changes in legislation,
institutional arrangements both foreign and domestic, labour contracts,
and so forth is ofteﬁ available and incorporated into ex-ante forecasts

as predictions of residuals, equivalently handled as adjustments to the
intercept terms of the appropriate equations. The success of these
adjustments reflects the skill and judgment of the model-user, hence

their evaluation contributes little to model validation. However a
persistent need for modifications to an estimated equation, perhaps with
similar justifications being offered from one period to the next, would
suggest that an important explanatory variable had been omitted from the
original specification. In the absence of a complete respecification,

the construction of simple statistical models for the residuals might

provide a short-run, but second-best solution (compare Surrey and

Ormerod, 1977). .

The first component of the forecast error results from errors in
the projections of the predetermined variables, and in dynamic modelé
further possibilities arise by distinguishing between lagged endogenous
and exogenous variables. We partition ft' the vector of predetermined

variables, into sub-vectors Ye 1 and xt, taking the case of one-period

lagged endogenous variables for simplicity. Partitioning the reduced

form conformably we have



= + o
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In ex-ante forecasting one period ahead, only the exogenous variables
contribute to the errors in projecting predetermined variables since

Yo is known, and the forecast is given by

Ypep = 0y Yp v 0y Xy

In forecasting further ahead, the model generates its own lagged endog-

enous variables, and the sequence of forecasts is given by

~ ~ ~ ~ A

+ j = 500 5
T Ypygop ¥ 0y Xy o I

Yr4q

which reverts to the general expression given above.

Errors in the projections of exogenous variables, by definition
formed outside the model, also reflect the skill of the model-user rather
than that of the model-builder. When the model forecasts are compared to
the actual outcomes after the event, as in studies of forecasters' "track
records" (for example, Osborn and Teal, 1979), this contribution can be
eliminated by considering ex-post forecasts. These are based on the
actual realized values of fT+j’ and are given by

~ ~ A

=1 z = X_ ., i =1,2,...,h.

Yiraq r4g = T Ypegor T T Xy

Ex-post forecasts can be calculated as part of an evaluation of the

model's genuine forecasting performance, or as a check on the model's
structural stability carried out immediately after specification and
estimation by holding back from the estimation period a sub-sample of
h observations specifically for this purpose. Assuming that the data

are truly generated by the given linear model, the ex-post forecast



errors have two components:

~

. =V - (I -1 =z 7 j=1,2,...,h.

Yoeg ~ Ypeg T Ve
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Study of the absolute magnitudes of these errors may be informative, in
the light of the known deveiopment of the economy, but in the absence of a
standard of measurement such a study is of limited usefulness. A standard
of comparison is provided by an estimate of the variance of these errors,
based on the estimated variances of disturbances and coefficient estimates,
obtained as a by-product of the sample-period estimation process. Clearly

ex-post forecasts can be calculated within the estimation period,
y, =11z, t = RN FL

and estimates of the variance of the forecast errors for the period

t = T+l,...,T+h are in effect based on the variance of the ex-post
forecast errors or residuals Xt - %t in the period t =1,...,T.

Formal tests are available to compare this estimated forecast error
variance with the actual mean squared error of the forecasts (Christ,

1966, Ch.X.7; Dhrymes et al., 1972; Hendry, 1974), and if the latter is
not significantly greater than the former, the model passes its structural
Astability test. (Using stochastic simulation methods, Fair (1980) provides
analogous estimates of the forecast error variance for non-linear models.)

Note, however, that there is no statistical theory available for the

case in which the forecasts sequentially gencrate their own lagged values,

as follows:

A

+ X j=1,2,...,h.

= 82 ~T+j’

%= *
Yooy = 01 Yreg-1

In this case forecast errors typically cumulate, and while various plots

can be informative, in particular for checking that the forecasts do not



"drift", the theory of standard cusum techniques does not cover models
with lagged endogenous variables (Brown, Durbin and Evans, 1975). A
further possibility, given'forecasts calculated over a suitably long
period, is to compare the properties of the forecasts to actuality
through the National Bureau of Economic Research business cycle method-
ology, that is, by considering whether the forecasts reproduce actual
behaviour in terms of such features as the length of cycles, the coin-
cidence of turning points, and the lead-lag relations of the variables

to one another and to the reference cycle.

If the model fails its structural stability test, then respecific-
ation is indicated. However such tests are not very powerful, since
specification errors also affect the sample-period estimates of the
model's behaviour. For example, omitting a relevant explanatory variable
increases the residual variance of an equation and biases its coefficients,
hence it is not necessarily the case that forecasts from the misspecified
equation have mean squared error greater than that anticipated on the
basis of (erroneous) sample-period calculations. Indeed, if the behaviour
of the variables is unchanged, the forecast-period estimates will be
equally erroneous as the sample-period estimates. Thus forecast periods
in which the behaviour of exogenous variables is substéntially different
from that in the sample period provide particularly informative comparisons,
which may lead to improved specification, as in the case of the aggregate
consumption function following the high inflation of the early 1970's
(Wallis, 1979, Ch.1l). 1In effect, the hypothesis being tested in structural
stability tests is that the model's explanation of the variables is

equally good in the sample and forecast periods, and no absolute standard



is available. ?hese difficulties in directly validating models in an
absclute sense have led to econometric forecasts being evaluated
relative to forecasts produced by other means, or to forecast comparisons
being conducted across different models, in order to gain an impression

of their relative merits. These are discussed in turn in the next two

sections.
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3. COMPARING FORECASTS FROM ECONOMETRIC AND

"NON-ECONOMETRIC" REPRESENTATIONS

In the absence of an absolute standard, the forecast performance
of an econcmetric model has often been evaluated relative to the
performance of some simpler forecasting rules. In the words of Cooper

(1972, pp.828-9):

Comparing an econometric to a naive method of forecast-
ing supplies a technique for assessing the economic
information contained in an econometric model. The
defining characteristic of a 'naive' forecasting method
is that it depends exclusively on purely statistical
properties of economic time series, such as trend, past
levels, or past changes. A naive method does not incorp-~
orate any economic information ... Forecasts made by
naive methods are then compared with forecasts made by
other methods. Forecasting methods that cannot do better
than a purely mechanical one should be discarded.

That progress has occurred since the early development of econometric
models is clear from the fact that the forecasting methods against which
the models have been compared have gradually become less naive. Initially

) fore-

"no-change" yT) or "same-change" (y,

(Ypypq = o1~ Yp T ¥p T Ypop

casting rules were employed. Subsequently autoregressive models of the

form

= + taus
Ye =0 Y g 0y Y Ty Yy ot e

fitted to individual endogenocus variables were used to generatc forecasts.
Finally there have been applications of the ARIMA models of Box and

Jenkins (1970), possibly in their seasonal form, that is,

s d ,D _ s
$(L) &(L7) A As Y, = 8(L) o(™) €,
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where L is the lag operator, the first factors on each side are poly-
nomials in L, the second factors on each side are polynomials in LS,

s is the number of seasons per year, A =1 - L and As =.l - Ls.
Nelson (1972) compares the FRB~-MIT-PENN model against ARIMA models
for certain endogenous variables, and finds that in within-sample comp-
arisons the econometric model was ahead, whereas outside the sample the
"pure time-serieé" modéls had smaller forecast errors. In this section
we challenge the idea that "purely statistical" models for endogenous
variables provide an independent check on the econometric model, and
more generally consider the relations among the various representations

"of a model that might be used for forecasting and other purposes (Prothero

and Wallis, 1976; Wallis, 1977; Zellner and Palm, 1974).

A linear dynamic econometric model, explaining the behaviour of a
vector of endogenous variables yt in terms of a vector of exogenous variables

and a vector of disturbances u_, may be written in structural form as

*t t

B(L)Yt + C(L)x, =u

t t

where B(L) and C(L) are matrices of polynomials in the lag operator, viz.

L+...+BLS, CL) =C +C.L +...+ C 15,
- -0 -1 s

?‘L) - ?o * ?l .r

Usually Bo # I, hence there is "instantaneous coupling" between the
endogenous (output) variables. This is removed in the reduccd form,
which expresses each endogenous variable as a function of predetermined

(exogenous plus lagged endogenous) variables, as follows:

-1 S
= - ...+ + :
gt ?o {glgt-l ?rgt—r S(L)ft} * ?o Et
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The present formulation generalises the reduced form used in the previous
section by including higher-order lags of both endogenous and exogeﬁous
variables. It also makes explicit the dependence of reduced form coeffic-
jents (the Il-matrices, in the previous section) on the structural para-
meters. In practice estimates of the reduced form coefficients are
obtained from estimates of the structural parameters, rather than directly
from regressions of each endogenous variable on the predetermined variables,
and although the directly estimated reduced form equations have smaller
sample-period residual sums of squares, the argument for preferring the
"solved out" or restricted reduced form equations is that they forecast
better if the (typically over-identifying) prior restrictions incorporated
in the specification of the B- and C-matrices are correct.

An alternative solution of the structural form is obtained by multi-
plying through by the inverse, not of ?o' but of ?(L) (under appropriate

stability conditions). The result is the final form

+ B(L)—l u,

1

Yo = ~?(L) g(L)f

t

in which each endogencus variable is expressed as an infinite distributed

lag function of the exogenous variables, together with an error term that

is a moving average of the original structural disturbances. The coefficients
in the expansion of B(L)-l C (L) provide dynamic multipliers, describing

the response of yit to a unit shock in X, In empirical work the

J ,t—Rl.
infinite distributed lag is generally approximated by a ratio of finite-
degree polynomials in L, but in the present context an explicit expression

is obtained by writing B(L)-l = b(L)/|B(L)|, where b(L) is the adjoint

matrix of B(L) and IB(L)I the determinant. Thus the final form may
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" be written

-b (L)C (L) b (L)
Ye=s = % o+ Ye v
|B(L) | |B(L) |

giving a set of multi-input "transfer function" equations. Multiplying
through by IB(L)[, we obtain a further representation known as the

final equations (Tinbergen, 1939; Goldberger, 1959):

201 y, - b@cws + bW -

Since I?(L)l is a scalar polynomial, each final equation relates a given
endogenous variable to its own past values and to the exogenous variables,
current and past, but to no other endogenous variable, current or past.

In effect, the dynamic inﬁerrelations with other endogenous variables have
been solved out. The interesting property of this representation is that
the autoregressive operator IB(L)I is common to all endogenous variables
(unless, as noted by Goldberger, the model is decomposable, for this ;esults
in cancellation of common factors across some of the final equations). Thus
the characteristic dynamic behaviour of the endogenous variables could, in

principle, be studied by considering a single endogenous variable or, more

abstractly, the common characteristic polynomial IB(L)I.

To obtain a further representation, we add an assumption about the

data generation process of the exogenous variables, namely that this can

be represented as the vector ARMA process

G(L)x, = H(L)n

t t '’
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where n is a vector white noise process. The complete model of the

~

data generation process of the observable variables can then be written

L) Xe [H@Ing
cw sw| |y, A

where u, is assumed to have a vector moving average representation.

(If Et is non-autocorrelated, only the ieading coefficient matrix éo

is non-zero. If a vector ARMA representation is alternatively assumed,
then it is postulated that the autoregressive operator has been multiplied
through and incorporated in B(L) and C(L).) On multiplying through by
the inverse of the matrix on the left-hand side, defined as its adjoint

matrix divided by its determinant, as in the previous paragraph, we

obtain "final equations" for Yo of the form

$Lly, = Fy Eing + E@IE,
where ¢ (L) = IG(L)I XlB(L)|, and Fl(L) and FZ(L) are defined in terms

of the original matrices and their adjoints. Thus a typical element Yo
is expressed in terms of a finite number of its own past values and a
composite error term which is the sum of a number of separate moving
average processes. By a result in time series theory this error term has
a representation as a moving average of a single white noise process, eit

say, and so we have a univariate AKMA modcl for cach Yt of the form
L = 0, (L)e, 5
¢ ( )Yit 6, ( )Elt

We can thus interpret this ARMA time series equation for an endogenous

variable of an econometric model as an alternative solution form, that is,

an implication of the model.
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It is interesting to note that a further member of this sequence
of alternative representations of the same structural model is the
state space representafion favoured in other disciplines. Thus fore-
casts generated from-the Kalman filter via a state space econometric
model may'be seen as the application of a common statistical principle
to an equivalent representation of the same structure. This equivalence
is obtained by rewriting either the structural econometric model or the
equivalent ARMA representation in stafe space form. The system of

equations

W . =Dw +Ex +
Wer1 T Ve T X T &1

t .t 2t

is known as a state space model. The matrices D, E and J are constants,
'nOt polyﬁomials in L, since the vector of state variables, Yt' incorporates
all relevant lags explicitly. The concept of the state may be defined
either as the minimal set of variables, knowledge of which is necessary

faor prediction of the future state (excluding exogenous inputs) or altern-
atively, and more rigorously, as a basis for the predictor space. It can
then be seen as a rather fundamental form in which our previous represent-

ations may be expressed. A simple transformation allows the above equations

to be rewritten as

2L
Y, = f(} S PL) EL:Et + §(L)Et ’

which corresponds to our earlier final form representation, but with a

different set of parametric restrictions. Many ramifications of this
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equivalence are developed by Akaike (1974a) and Hannan (19792). It is
interesting to note that in general there is not a uniquevstate space
repfésentation, and while the structural econometric model leads to
one form, the vector ARMA model leads to another. Akaike (1974a)
demonstrates the statistical eguivalence of the various state space

forms.

The relations among these alternative representations raise a
number of guestions. First, since they are mathematically equivalent,
the application of a common statistical approach to the different repres-
entations of a given model can only yield different answers if the
various representations impose different restrictions on the statistical
method, or have different requirements in statistical implementation.
The choice of a particular representation that is most appropriate for
a given statistical application is often clear, but the ghoice remains
between deriving this representation from an estimated structural form,
so that any implied restrictions are imposed and the equivalence of the
representation is guaranteed, or obtaining it empirically, perhaps relying
on the above development for part of the specification but relying on the

data for the remainder.

Economists find the structural form, with its explicit statement of
different economic agents' autonomous behaviour, accounting identities,
technical relations, and so forth, to be the most convenient framework in
which to consider questions of economic theory and on which to impose the
resulting restrictions. But to obtain forecasts of the endogenous variables

the structural form is transformed to the reduced form as above, and as
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already noted, given estimates of a correctly specified structure the
derived reduced form gives more efficient forecasts than the directly-
estimated reduced form (comprising unrestricted regressions of endogenous
on predetermined variables). Similarly the implied final form and final
equations can be readily derived from an estimated structural form, and

in practice dynamic multipliers and/or the properties of the characteristic
polynomial are frequently reported. However it is again possible to ignore
the structural form and estimate these dirxectly, with the only restriction
being a prior classification of endogenous and exogehous variables, the

detailed dynamic specification being data-based.

The same arguments apply to the consideration of univariate ARMA
representations, except that in this case an additional assumption has
been made, namely that the exogenous variables satisfy a vector ARMA
process. On incorporating this assumption the "purc time-series” repres-
entation of an endogenous variable that is implied by an estimated structure
can be derived. However in the last stage of this derivation we construct ga
moving average error term, with a single innovation process, that is observation-
ally equivalent to the sum of a number of such series, and so the “structural”
information on the separate series is lost, and in consequence the implied
time—series representation gives less efficient forecasts than the econometric
model. In the formal framework of this section, ex-ante forecasts of a
given endogenous variable are obtained from the reduced form, with forecasts
of the exogenous variables being obtained from the vector ARMA model: it
can be shown, following Pierce (1975), that such ex-ante forecasts have
smaller mean squared error than forecasts from the implied univariate ARMA

models. Again, in contrast to this derivation, a univariate‘ARMA model



-~ 18 -

for an endogenous variable, to be used in forecast comparisons with

the structural model, can be obtained directly from the data, using

the "model identification" and diagnostic devices developed by Box and
Jenkins and others. It is commonly said that such models "let the

data speak for themselves", and so they qualify as "naive" models in

the sense of the quotation at the beginning of this section. Usualiy
the degrees of the autoregressive and moving average operators in
empirical ARMA models are substantially less than those implied by the
formal derivation, since lB(L)l is typically of high degree, and so

in practice there is some conflict between the theoretical and empirical
‘models. Statistical reasons for this are discussed in Wallis (1977), and
more general explanations for this disagreement between, in effect, two

different approximations to reality are discussed below.

The foregoing analysis shows that there are difficulties in inter-
preting the univariate ARMA model as an independent check on the ecorio-
metric model, in terms of forecast or any 6ther comparison. Since the
data used in empirical specification and estimation of the two forms are
the same, their summary measures are not statistically independent.

Moreover the theoretical derivation of the ARMA model from a given
structural form does not in general result in restrictions on its para-
meterisation that could provide the basis of a fbrmal test. The structural
form implies the existence of various alternative representations, of

which the univariate ARMA model is one, but a given ARMA model is consistent
with a number of different structures. Perhaps for this reason, the implied
ARMA model is seldom derived (although other difficulties arise in practical

models, discussed below) hence in practice the comparison simply rests on
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the relative forecasting ability of the structural model and the data~
based ARMA model. However it is impossible in practice to be sure that
the two models are not simply two different representations of the same
structure. Different forecast properties may indicate that they are

two different approximations to reality, or that the two different rep-
resentations of the same structure are affected in different ways by

the réquirements of the statistical method in each case. It is difficult
to compare models at different points in the sequence of alternative
representations, and it cannot be maintained that, from their forecast
properties alone, the pure time series models provide an independent

check on structural econometric models.

However practical forecast comparisons have often tended to suggest
that for a number of variables the empiricaltime series representations
have the better forecasting performance. This result is in conflict with
the theoretical result that forecasts based on the implied time series
representation have larger mean squared error than thosé based on the
structural econometric model. How can this discrepancy be rationalised?
The equivalence of the alternative representations rests on a number of

assumptions, few of which may be valid in practice. The implications of

the assumption of a linear model are examined more generally in Section 5.

The impact of parameter estimation errors may be different in different
representations, but although little is known about this, it is clear
that their contribution to forecast error variance is of relatively small
order of magnitude. The vector ARMA process assumed for the exogenous
variables may not be a good approximation, since the variables classified
as exogenous in mac?oeconometric models often exhibit jumps and discontin-

uities. Indeed a number of dummy variables (indicator variables) are
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often included among the exogenous variables, and while these can be
appropriately treated in the model~-based forecasts, one would expect that
the neglect of such discontinuities in univariate ARMA modelling (unless
taken into account by what is termed "intervention analysis" in the time
series literature) would work to the disadvantage of the purely statistical
forecasts. More generally, however, the model is assumed to be correctly
specified, and in practice one doubts this assumption particularly insofar
as the dynamic and stochastic specification of large models in concerned.
In these areas there is little guidance from economic theory, and one
suspects that, taking a large model equation-by-equation, relatively less
systematic attention is given to these matters than when a time secries
model is identified for a single endogenous variable, for it is precisely
the dynamic and stochastic aspects of the behaviour of the variables that
such models emphasizg. Rather than providing an independent post-construct-
ion check on an econometric model, comparisons with time series models
represent a useful diagnostic device during model-building, moreover
attention should not be limited to a comparison of forecast variances,
since a comparison of the dynamic specifications of the various represent-

ations yields valuable information about their adequacy.
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4. COMPARISONS ACROSS MACROECONOMETRIC MODELS

An alternative response to the absence of an absolute standard of
forecasting performance against which to assess a single econometric
model has been to turn to comparisons across a number of models of a
national economy. Three related aspects of the different models have
been compared:
(a) pure forecasting ability, based on the mean squared error of
forecasts over a post—model—builaing period;
{b) policy multipliers, through simulation or hypothetical forecasts;
(c) dynamic properties, stability and cyclical behaviour, through
stochastic simulation or spectral analysis.
For U.S. examples of (a) and (b) see Christ (1975) and Fromm and Klein
(1976), for the U.K. see Laury et al. (1978), and for (c) see Howrey (1972).
The validation of a single model as an approximation to reality is not an
objective of these exercises, instead models are compared in a rather
general; descriptive manner. Thus few strong conclusions have been drawn,
although outliers are occasionally detected. We first discuss the statistical
foundations, or lack thereof, of these comparisons, in gecneral taking the
three types of exercise together, since they have certain essential simil-
arities. These similarities become clear in our subsequent discussion of

the experimental desjign aspects of the comparisons.

It is immediately obvious that the statistical £heory needed for a
formal evaluation of various large-scale models, seen as non-nested
hypotheses, is not available. This was noted by Dhrymes et al. (1972),
and although progress has been made, for example by Pesaran and Deaton

(1978) and Davidson and MacKinnon (1980), as yet it remains the case.
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An alternative approach rests on establishing distance measures for
the alternative models from the true probability process: the model
that minimises this distance is then considered to be the best avail-
able, but again this is a relative comparison and an absolute measure
of the "quality" of the chosen model is not provided. These notions
underlie recent developments using information criteria (Akaike, 1974b;
Sawa, 1978) and the method of support (Edwards, 1972), and relieve
objections to the use of significance tests. While these methods are
related to estimation of the predictive distribution, and a formal
equivalence between Akaike's information criterion and Amemiya's pred-
iction criterion can be shown (Amemiya, 1980), extensions from the
regression context to large-scale model validation via forecast compari-

sons are awaited.

It is also clear that the choice of economic structure differs between
models, with a different loss function implicit in each one, as already
noted. The most obvious manifestation is the differing size of models,
which results in certain variables being variously treated as endogenous
or éxogenous, although differences in the classification of variables
can arise for other reasons. The type of policy objective to be considered
clearly influences the level of disaggregation and size of the model. The
main reason for the increasing size of models, the Treasury model of the
U.K. economy having some 500 equations, is the neeé to model the channels
through which various policy instruments affect the economy, and in
practice the number of available instruments is large. The tax system
involves a large number of different rates and allowances, and monetary

and interest rate policy works through many channels. To describe the
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differentiairimpactrof particular measﬁres on particular groups or
sectors of the economy or particular types of expenditure a full account
of these iméacts is reguired. Of course to forecast broad aggregates

a smaller, more aggregated model might suffice. However in forecast
comparisons the fact that the larger model provides information on a
number of matters about which the smaller model has hothing to say is
usually neglected, there being no loss function specified. Ex-post
forecast comparisons clearly given an advantage to models that treat

a variable that is difficult to forecast as exogenous, and this can be
eliminated to some extent by basing the comparison on ex-ante forecasts.
But comparing models augmented by their forecasting rules for exogenous

variables may distort the appraisal of different models that are designed

to serve different ends.

The specification of a particular model may also be influenced by
the statistical method employed, the sample period, the level of temporal
aggregation, any pre-filtering of the data, and an emphasis on one or
another of the alternative representations discussed in the previous section.
The particular objective will lead a model~builder to make a careful
choice under each of these headings, and Cooper's (1972) attempt to
compare various models on a standardised basis by reestimating them mech-
anically on a consistent body of data has been criticised by Howrey et al.

(1874) for its neglect of this ("tender loving") care.

An important feature both in model specification and in elucidation
of the model's properties is the nature of the input characteristics,

given not only by the choice of variables to be treated as exogenous but
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also by their intrinsic behaviour: toéether we term these the Input
topology. This then becomes the distinguishing feature of the three
types of comparison outlined at the beginning of this section. 1In
principle, comparisons across models of forecasts, policy multiplier
paths, or cyclical behaviour in stochastic simulation, provided that
there is no unequal injection of the skill and judgment of the model~
user, yield partial information on essentially the same characteristic

of the models, namely the map of their dynamic properties. The question
is then one of experimental design, since the three exercises differ

only in input topology. Thus a forecast comparison is based on those
inputs that are economically meaningful in the particular forecast
period, a multiplier comparison is typically based on unit impulse or
unit step change inputs, and stochastic simulation comparisons usually
study the response to a white noise, random input. It is potentially
confusing that different conclusiéns about the relative merits of various
models may be drawn from these different excrcises, and there is room

for an analysis that fully explores the dynamic response of alternative
models in an objective manner, the crucial aspect being the design of the

input signal.

The characteristic polynomial IB(L)I ‘determines the dynamic behaviour
of the model, as noted in the previous section. In transfer function
analysis, the positioning of the roots of the characteristic polynomial, or
poles, determines the stability, speed of response and cyclical behaviour
of the system. The eigenvalues of the system provide precisely the same

information. Writing the polynomial lB(z)| as

Jeoo(z = An)

(z - ll)(z - Az)(z - A3



= SIS

where the poles are Al,Az,...,An, the dynamic behaviour of the system

may be seen in the frequency domain to be composed of the product of

terms, each resonant at a particular frequency determined by the position

of the particular pole or eigenvalue. In designing an input signal we

would wish to ensure that the input was “rich enough" in frequency terms

to draw behaviour in the output from each of these poles. A badly designed
inpﬁt will not "excite" all the possible modes of behaviour in a model.

In comparative studies the possibility exist§ that an input signal, apparently
well justified on economic criteria, may excite different modes of behaviour
in different models, or a particular mode of behaviour to a different extent.
Of the three types of comparative exercise, the pure forecast comparison

is potentially the most deficient in this respect. A full frequency response
analysis avoids these difficulties. While multiplier paths generated as

step or impulse response functions provide essentially equivalent information
in the time and frequency domains, in other areas different information is
obtained. For example, it is difficult in time domain analysis to detect
frequency-dependent differences between models such as might arise, during
model-building, from the varying use of seasonally filtered data or

varying emphasis on short-term and medium~term responses.

As the final form or final equations make clear, an input signal may
stimulate the system either via the exogenous variables or via the dist-
urbances, which often have different economic interpretations. However
these relations also show that for dynamic analysis the only distinction
lies in the different lag polynomials applied to the input, which alter
the characteristics of an otherwise standard input, and may resu;t in
the observation of apparently different dynamic responses. For example,

in the classic study by the Adelmans (1959), white noise disturbances
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gengrated cycles at business-cycle frequencies, while white noise
innovations in exogenous variables did not. Moreover, the specificafion
of these lag polynomials is typically based on the sample-period data,
and so may reflect a particular input topology rather than a prior
theoretical view of the dynamics.. However almost no systematic examin-
ation of the nature of the inputs that characterise the model during the
sample period is carried out. Such an examination would provide useful
preliminary information in a model comparison exercise, providing guide-
lines as to possible uses of the model and an indication of the frequency
range over which the model may be more reliable. If no evidence of
cycles is found in the "unforced" behaviour of a system, but cycles are
present in the input topology and these induce cycles in the endogenous

variables, it is important to say why.

A final question is whether the white noise input commonly used in
stochastic simulation, which is potentially exciting at each frequency
of the dynamic response, is the optimal input signal. The recent literature
on the experimental design of dynamic systems (Goodwin and Payne, 1977;
Zarrop, 1980) suggests that it may not be. TIf an optimum is defined as a
maximum of some scalar function of the Fisher information matrix, it
appears that a finite number of discrete frequency components is preferable
to white noise when estimating the parameters of a dynamic regression.
The problem with a white noise input is that it enhances noise at irrelevant
frequencies. A physical analogy suggested to us is that of determining the
resonant frequency of an organ pipe: a sequence of tuning forks, each of
a particular pitch, offers a better prospect of finding the frequency than

white noise forced into the other end of the pipe! Of course this is
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essentiailyran argument aboutﬁeéficiency in estimation, which ﬁay not
necessarily override other advantages of white noise, such as ease of
interpretation. With a white noise input, the transfer function of

the dynamic response ié directly proportional to the output spectrum,
aithough in practice output spectra from different models are not readily
distinguishable from one another - the "typical spectral shape" predominates.
The cross-spectrum yields information about the separate gain and phase shift
components of the frequency response function, again easily calculated and
giving information across the full frequency range if a white noise input

is used. The information on gain and phase may be combined in the Nyquist
diagram, which has proved a useful tool in the physical sciences and might

be fruitfully employed in econometrics. in general, and in model comparisons

in particular.
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5. NONLINEARITY

Most practical econometric models are nonlinear, and in this section
we examine how this affects the various procedures for comparing models,
discussed in the preceding sections in an entirely linear conﬁext. We
first consider statistical consequences of nonlinearity, and then consider

its impact on the forecast comparison exercises discussed in Sections 2-4,

5.1 Statistical implications of nonlinéarity

The nonlinear system may be written in structural form as

Elyyr zp 5 8) =u

-~ ~

where £ is a vector of functions, having as many elements as the vector

Yoo and 8 is a vector of parameters. We assume that this implicitly

defines a single inverse relationship giving the solution

Y = q.(ut, z, i 9),

-~ -~ . -~

valid for relevant z-values, analogous to the reduced form in the linear
case. Typically an explicit analytic solution does not exist, and the
structural equations are solved numerically. The conditional expectation

of the endogenous variables is written

E(yt) = E{g(ut, z

27 O bz, 0

Since the expected value of a nonlinear function of a random variable is
not in general equal to the nonlinear function of the expected value of

the random variable, it is generally the case that
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The right-hand side is termed the determintistic solution. It is the
solution for gt of the equations f(¥t, ft : 9) = 9, but unlike the
linear case it is not equal to the conditional expectation of Xt' which

is what is required in forecasting exercises. However the conditional
expectation can be estimated by stochastic simulation, and a common
measure of the (stochastic) importance of nonlinearity is given by the
deviation of the deterministic solution from the mean of replicated
stochastic simulations. A sizeable discrepanéy may have serious implic-
ations. First, it implies that, to avoid serious biases, policy analysis
should be conducted via stochastic simulation rather than, as is common-
place, deterministic solution, and this considerably increases the comput-
ational burden. Secondly, many estimation methods rest on the use of

the conditional expectations of the endogenous variables, and if these are
not correctly calculated in the nonlinear model the properties of the
estimation method will be adversely affected. Notice that it is only
nonlinearity between the endogenous variables that is our present concern,

and a nonlinear relation between exogenous variables is of no statistical

importance.

Most examinations of the stochastic importance of nonlinearity
carried out as described above have in fact found relatively little
difference between the deterministic solution and the mcan of replicated
stochastic simulations. This has provided some confidence in the exist-
ing practice of deterministic forecasting and a general impression that

nonlinearity is not of major concern. However we argue below that this
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is a dangerous position to take for a number of rcasons.

First, the specification of most models is biased towards linearity
through the statistical techniques used in both estimation and specific-
ation tests. The estimation method used to determince the specification
of most large models is still ordinary least squares. Through its neglect
of the simultaneity problem the OLS estimator also ignores the stochastic
importance of nonlinearity. Moreover the linear-in-parameter constraint
can in fact be a serious restriction when a conditional expectation is
a general nonlinear functior of the parameters and the conditioning variables.
This peint is best seen by viewing the question of model estimation ané
specification as one of optimal signal extraction. 1In this case the
optimal estimate of both functional form and parameters would be
obtained by orthogonal projection on the conditioning variable set. Thus
the conditional expectation of the variable defines both the optimal
functional form and then, perhaps in a separate exercise, the optimal para-
meter estimates. However in practice the functional form is invariably
predetermined and only the parameter values are detcrmined by an orthogonal
projection operation, on the assumption that the functional form is true.
The restriction imposed by ordinary least squares and most other minimum
distance methods in econometrics is that the functional form be a linear
combination of possibly nonlinear functions of the variables. It is
unlikely in general that this linear-in-parameter model will coincide
with the nonlinear expression for the conditional expectation, ?(ft, ?),
although it may perhaps be justified as a linearization via a Taylor
series expansion. Notice that this point is equally applicable to the

nonlinear simultaneous equations estimators such as nonlinear two-stage
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least squares when applied to models where the linear-in-parameter
assumption is maintained. Thus in the present context even though the
models are found through the simulation comparisons to be relatively
linear this does not necessarily imply that the underlying economic

structure %8 linear but it may indicate that the models are biased towards

linearity.

A second reason for believing that this approach to the measurement
of nonlinearity is flawed is provided by Mariano and Brown (1980). 1In
a theoretical examination, through asymptotic expansions for the first two
prediction moments of a nonlinear model, they find that the leading term
in the asymptotic prediction bias in the deterministic solution may be
decomposed into two terms, one due to possible inconsistencies in the
parameter estimates and the other due to the nonlinearity. The leading
term for a stochastic simulation depends only on potentially inconsistent
parameter estimates. Thus from this point of view the neglect of simult-
aneity in a deterministic solution is of the same order of magnitude as
the neglect of the stochastic importance of nonlinearity. A second import~
ant observation that follows from their work is that if inconsistent
parameter estimates are used when comparing deterministic and stochastic
simulations then it is impossible to separate the effects of nonlinearity
from the use of inconsistent parameter estimates. Thus the fact that the
simulation exercises may have found little difference between deterministic
and stochastic simulations may either imply that the stochastic effects
of nonlinearity are weak or, as has usually been the case, that inconsist-
ent parameter estimates have been employed. They also conclude that the
use of nonstochastic simulations in both estimation and validation may lead

the model specification consistently away from the true specification to



one that performs better in terms of deterministic simulations.

Finally we note the results of Fair and Parke (1980). In their
examination of alternative estimators in the context of a nonlinear
model they find that certain policy multipliers that follow from the
use of ordinary least squares deviate from a relatively uniform set of
multipliers obtained from nonlinear simultaneous estimators. As our
preceding discussion would show this could either be due to a neglect
of simultaneity or to a neglect of the stochastic importance of nonlinear-

ity on behalf of the OLS estimator.

In section 3 we discussed a hierarchy of alternative representations
of a structure within the linear framework. When the original structure
is actually nonlinear then it is difficult to exploit these equivalences
in practice, hence the importance in the nonlinear case of our earlier
statement, that a common statistical principle may not give equivalent
results when applied to apparently equivalent mathematical representations
if they impose different restrictions on the statistical method. This not
only applies to our foregoing discussion of the difficulties of estimating
a conditional expectation correctly in a nonlinear model, but becomes
particularly important when we attempt to compare different representations
of what may be the same structure, such as with the forecasts of a structural
econometric model and the forecasts from an ARMA model. In this case the
most obvious distinction is that these comparisons are with a nonlinear
model (although typically examined through deterministic simulation) and a

linear time series model. Thus we are immediately assured that the two

competing representations must be supporting different approximations to
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reality, although it is possible that the linear time series model is
representing'a linearization of some underlying nonlinear time series
representation. Evidence to this effect may already exist given that

the forecast performance of the linear time series representations

tends to decay faster than that from the nonlinear structural models.

Thus the linear ARMA representations are perhaps only locally justified

in reality, because the Jaccbian cf the transformation from the unobserved

disturbances to the observed endogenous variables is not constant in a

nonlinear system.

5.2 Forecast comparisons in the context of nonlinearity

Nonlinearity also invalidates many of the alternative methods of
forecast comparison discussed in section 4. The reason has already been
mentioned: the Jacobian of a nonlinear transformation is not a constant
function throughout the sample. Thus policy multipliers and empirical
spectra are not uniquely defined and eigenvalues do not exist in the
same sense, since they are aspects of a linear algebra. It is surpris-
ing that this fact has bcen so readily disregarded, particularly in
comparisons of policy multiplier paths. Although such exercises still
do provide comparative information their generality is substantially
weakened., Perhaps in an attempt to avoid this problem various linear-
izations have been adopted. The question then is how relevant are these

linearized models to policy analysis and forecast comparisons.

The first type of linearization follows from a retention of only the
first terms in a Taylor series expansion of the nonlinear model around

some point, perhaps the sample mean values of the variables. This could
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of course be generalised to successive linearizations around a number

of points, which would in effect give a number of models, one for each
linearization point. Once linearized the properties of the submodels
could be analysed in exactly the manner discussed in the first part of
this paper. However since the act of linearization has different

effects on the different models it is wvirtually impossible to gain
unambiguous comparisons of the underlying models in this way. A second
form of linearization that has been discussed in the literature (Bowden,
1974; Aoki, 1980) but does not appear to have been applied in practice

is a linearization around a particular form of behaviour or state, rathex
than around a point. This approach suggests that rather than somewhat
arbitrarily choosing a point about which to linearize, a better choice

is to ensure that the resulting set of linearized submodels at least
uniformly coincided with common behaviour, for example, by collecting

all the upswings of a business cycle into one model and all the down-
swings into another. A third type of linearization arises from our
preceding discussion of the conditional expectation of nonlinear models.
By stochastically simulating the nonlinear model and averaging the
results of successive replications we are assured of a data series that
conforms both in the conditional expectations implied by the nonlinear
model and also exactly reflecting the dynamic structure of the model. A
linearization may then be constructed from these data by modelling

this simulation output series using linear time series techniques. Since
the resulting model captures the linear component of the total response
of the nonlinear model we may now directly observe the degree of nonlinearity
by measuring the relative size of the residual in the time series model,
perhaps through R2, an opportunity not directly available in the éreceding

linearizations. Thus this exercise provides a linearization around the
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conditional expectation which could again be analysed using the linear
techniques discussed above and further a qualitative analysis of the
properties of the nonlinear component in the entire residual could also
be made. This approach to separating the linear and nonlinear responses
is well founded mathematically in terms of a Volterra series expansion
(Subba Rao, 1979). If x, and i denote scalar input and output

t

variables related through a nonlinear relation

Yy = f(yt—j' X, _o) for j,2 >0

then, under certain conditions, we may write the relation in the form:

[+ [=2) (o]

y, = & g, (1) x + I X g,(1T1T) x X

t - 5 =
17=0 1 t-T1 110 Tp=0 2 t-T1 t-To

+ higher-order terms.

This is known as a Volterra expansion and the functions 9, corresponding
to higher-order transfer functions are known as the Volterra Kernals.
The linearization we have suggested may then be seen as an attempt to
estimate the linear response through the linear transfer function. and to

allow the study of the higher-order nonlinearities that occur in the

resulting residual.

The following table indicates the practicality of this expansion.
In this case the GDP-Government expenditure link of the Australian NIF7

model has been examined through a white noise input applied to government

expenditure. The observed GDP output is then modelled using linear

techniques at different levels of variance in the white noise input.
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Thus we attempt to measure scale change effects of nonlinearity as con-
sidered by Zellner and Peck (1973). Two points are worth noting, first
the constancy of the linear representation under the increasing scale
of the government expenditure level, and secondly the decreasing R

indicating as we would expect that the nonlinear effect is becoming more

important.

TABLE (1)
Model: Yo = a Y + bO u,
Scale
change
Long Run Time 5
-a (o) a; bo Multiplier Constant R
10 -.542 .739 1.61 1.63 .71
5 -.534 .762 _ 1.59 1.63 .889
2 -.537 .761 1.61 1.64 .897
1 -.529 .764 1.57 1.62 .901
o -.538 .752 l.61 1.63 .904
o -.525 .761 1.55 1.60 .909

The foregoing "statistical" linearization has certain attractions aver
the two preceding mathematically oriented linearizations but is restricted
in that the importance of the numerator polynomials for the exogenous
variables have been ignored. Hence in terms of practical utility for
policy analysis rather than model comparison this approach is limited.
Alternatively, as in the example, we may shock the exogenous variables in the
~nonlinear model directly and whilst this may give some guidance as to the degree

of nonlinearity in particular channels it does not provide a lincarization
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around the conditional expectation. One solution would be to shock
simultaneously both the exogenous channels of interest and the stochastic
terms in the nenlinear equations. The resulting output from the stoch-~
astic simulaticns could then be modelled as a system of linear multi-
input multi-output transfer functions and would again provide a linear-
ization around the conditional expectation. This latter suggestion seems
to provide a number of practical advantages for model comparison, policy

calculations and the systematic study of nenlinearity in the residuals.
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6. STRUCTURAL CHANGE

Different linearizations of a nonlinear model, applicable over
different ranges of behaviour as discussed in the previous section, may
éppear to exhibit structural change whether or not the underlying model
is stable. More generally a model, linear or not, that is characterised
by a particular sample period may appear to break down when the range
of behaviour over which it is expected to ope£ate changes from that
over which it was specified. We have assumed throughout this paper
that there is a unique and stable structure that the model-builder is
attempting first to capture and then to validate through forecast compar-
isons. In the absence of such a stable structure most econometric analysis,
including forecast comparisons, breaks down. A number of attacks have
recently been made on this concept of a stable economic structure, and
they are examined in this section. We consider first the question of
structural change in the absence of rétional expectations, and then the
argument derived from the "Lucas critique" concerning the stability, in
the face of rational expectations, of the "laws of motion" that govern
economic behaviour. Salmon (1980) examines the impact of these arguments

on modelling practice,

We begin by distinguishing two types of struétural shift, namely a
change in-the behavioural basis for economic decisions, and a change in
the institutional structure. Clearly over an historical period changing
opportunity sets alter observed consumption behaviour, however it is
most probable -that this occurs within the framework of a constant structure
of tastes. Again, over time this structure of preferences, defined by

basic tastes, is itself subject to change as completely new econocmic
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environments evolve. However this type of fundamental change in the
economy and consequently tastes will occur over a substantially longer
periéd than our econometric models are covering. Thus we may be assured
in applied econometrics of a fundamental constancy in the parameters that
define the tastes and technology of the observed economic system and hence
in the constancy of the fundamental "laws of motion" of the economy.
However if we now consider how econometric models appear to break down and
fail to predict as the institutional structure in which they are defined
changes, we are at first sight led to question the preceding argument for
constancy. However the reason why we fail to observe constancy is simply
a reflection of the level of approximation to reality of the macro model.
Given our constancy premise, there would exist a meta model defined by the
constant parameters of taste, technology etc. that would also define
uniquely the reaction of the economic agent to any outside stimulus. This
model of course is bound to be highly complicated and well beyond the reach
of the economist given his limited knowledge of economic behaviour and
restricted data sets. So the reason that we observe variation following
an institutional change is that the approximate model has been specified
at a level such as to prevent it from accommodating the change. Alternat-~
ively in estimation based on a particular sample any information that may
previously have been available on behaviour in the new circumstances may
not have been sufficient or persistently exciting to enable the specific-
ation of a more general model to have been detected, or even thought
necessary. Thus structural shift in this sense provides prima facia
evidence of misspecification and an opportunity to use the new inform-

ation to determine a better specification.
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When the autonomous economic structure is supposed to have changed
in the forecast period, compared to the sample specification, then we
may only have been able to accommodate it beforehand if a suitable signal
was present in the estimation period. The fact that we do observe
apparept structural breakdowns does not necessarily imply that the under-
lying structure is not constant. It may however mean that we should
develop new techniques for examining the information within an available

sample (Salmon, 1980).

Let us now turn to the question of the effect of rational expectations
on the preceding arguments. Lucas (1976) criticizes the standard use of
policy simulation to compare the effects of alternative policy rules on
the grounds that the "structure" of econometric models is not invariant
to changes in policy. The models contain behavioural relations derived
from the optimal decision rules of economic agents, based in part on their
expectations of the future movements of relevant variables. Changes in
the nature of these movements are said to cause changes in the optimal
decision rules, hence "any change in policy will systematically alter the
structure of econometric models" (p.4l). Prescott (1977) also supports
the view that the "laws of motion" of the economy cannot be "policy invar-
iant". It is importanf to distinguish in this dgbate the role of a change
in government policy, which really is just a structural shift in the sense
of the preceding discussion, from the presence of rational expectations

in the model.

Consider first a change in government policy that will impinge on
the economic agent's consumption choice. Economic theory postulates that the

consumption decision is based on the optimisation of a utility function,
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the form of which is determined by tastes and other basic motives for
economic behaviour. These basic or instinctive motives could be seen

to determine the functional form and any parameters in thiS'utility
function. The premise of constancy argues that these are intr;nsically
fixed (for ever) by definition of the uniqueness (or more correctly
the existence) of an individual. When the utility funqtion is then
optimised there will be a one-to-one relation, in the sense of structural
constancy, between the utility function and the derived reaction function,
which the econometrician observes in the aggregate as the consumption
function. The situation is exactly that of any other, perhaps exogcnous,
structural change in the economy. To suggest that government policy causes
structural variation in the agent's frue reaction function must imply a
change in, and hence'previous inadequacy of, the utility function of the
econiomic agent. However this effectiveiy denies the existence of such

an agent given the premise of constancy. Once again the reasons why the
econometrician may observe variation are either because the approximate
model is too naive, in that it fails to model appropriately the true
reaction function, or that the signal lacks persistent excitation and thus

fails immediately to identify that particular mode of behaviour.

The Lucas critique can then be seen as a criticism of the commonplace
" confounding of two sources of dynamics: the economic structure, incorpor-
ating decision rules in which expectations appear, and secondly the expect-
ation formation process, which in many cases will reflect the stochastic
structure of exogenous variables. Wallis (1980) argues that these should
be, and can be, kept separate, and has suggested ways of achieving this.

If this is done, the traditional view of econometric policy evaluation
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can be reasserted. What is not traditional is the resulting emphasis on
the modelling of information flows, decision sequences, and the expect-
ation formation process in general. Nevertheless the notion of an
economic structure that results is entirely consistent with preceding

arguments for stability.

ﬁhen we move on to consider expectations about government policy
instruments we must first determine how these obviously varying expect-
ations are formed. If we endogenise govermment behaviour and then use the
model's forecasts as proxies for the expectations we may apparently once
again confront an argument concerning structural variation, since it is
frequently suggested that different political parties have different
basic motives, leading to variation in endogenised government reaction
functions. Notice that this variation should only be observed in the
equations explaining government behaviour and ot elsewhere in the model.
llowever even here it is possible to make a wider case regarding uniformity
in the role and motives of all governments and the population they serve,
although clearly the successful modelling of government behaviour is much
further from our grasp.l.Indeed the basic premiée of constancy may well
not carry over so ieadily in this case given the particular temporal

structure of governmental power.

Thus in conclusion we suggest that the weight of the Lucas critique
bears simply on the suggestion that, to be good approximations to reality,
models should include rational expectation terms. There seems to be
little strength in the argument that the economic environment is not
constant; what may be required however are more informative statistical

techniques to indicate the type of model we may (or may not) have specified.
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7. CONCLUSION

Many of our suggestions and conclusions have been mentioned in passing

in our discussion of theoretical and practical aspects of model validation

and forecast comparisons. Here we restate briefly some points that symposium

participants might find the most controversial.

(1)

(2)

(3)

(4)

(5)

(6)

To evaluate a model in an absolute sense requires the specificétion of

a loss function. In its absence, only relative statements can be made.
Acceptance of the null hypothesis in a post-sample parameter stability
test implies that the degree of misspecification does not differ in

the sample and forecast periods, and not that it is small.

The theoretical equivalence between different representatidns of a given
model may be difficult to realise in practice. Evidence that different
representations have different fcrecast properties is by itself difficult
to interpret.

Most of the methods nf comparison we have discussed are attempts to map
thé dynamic properties of a model. Frequency response analysis, perhaps
using Nyquist plots, appears to have some advantages. The experimental
design of inputs requires further attention, and in the meantime the

use of discrete sinuscidal inputs appears to merit investigation. (In
discussing Howrey (1972), Holt makes a similar suggestion, without any
argument. )

Nonlinearity disrupts many of the techniqﬁes developed for linear models.
Practical models may be seriously biased towards linearity, and the
degree of nonlinearity underestimated. The use of linecarization around
the conditional expectation should be explored.

The "Lucas critique" does not halt the search for constant. economic
structures, nor does it require fundamental change in simulation-philé

osophy, once rational expectations terms have been correctly incorporated

where necessary.
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