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SUMMARY

Dynamic models of the relations between economic variables often rest on
theories about how unobservable expectations are formed. In this paper
the "adaptive expectations” and "rational expectations" hypotheses are
compared and contrasted. The main distinctions concern the size of the
information set on which expectations are based, and the optimality or
otherwise of expectations, given that information set. Exﬁectations
that are optimal with respect to the given information may be defined

as rational. With this definition, some bivariate dynamic rational
expectations models are presented, incorporating the appropriate time
series forecasting rules for either a single forecast or an infinite
sum of discounted forecasts. Model identification problems are discussed,

and it is shown how they may be resolved by joint estimation of the

bivariate process.



1. Introduction

Models of the relations between economic variables that are based on
time series data typically include_one or more lagged values of one or more
variables. Such models are variously termed dynamic models, distributed
lag models, transfer function models, and so forth, and for our present
purposes we take the term dynamic models as generic. A common justification
for the presence of lagged variables is that the behavior of economic
agents, which the model attempts to capture, is affected by their expectations
or anticipations of the future value of a relevant variablé; in the absence
of data on agents' expectations, the expectation-formation process is
modelled by assuming that expectations depend on past values of relevant
variables. In this paper we first compare, contrast, and reconcile the
"adaptive expectations" and "'rational expectations" approaches to modelling,
and then consider the specification and validation of some simple dynamic

models based on this reconciliation.

2. Adaptive expectations hypothesis

As a simple example, we assume that an economic agent's behavior
(decision rule) with respect to the variable y depends on the one-step-ahead

forecast of the variable x, and so we write

=a+ Bx +u
Ve B v %

where u is a random disturbance term. For example, a retailer's inventory
level or re-order level depends on anticipated sales. The adaptive expecta-
tions hypothesis is in widespread use in applied econometrics; it is

that x is formed as follows:

~

»

e+l = %o + (1-8) (xt—xt), 0<6 <1,

By repeated substitution we see that this is equivalent to the exponentially

weighted moving average scheme
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A transformation of the original equation ylelds the relation

vy = o(l-8) + B(1-8)x + Oy + v o,
t t t-1 t.

which can be estimated from time-series data on y and x. Since

Vt =u. - Gut_l , maximum-likelihood methods for moving average estimation
are required if'{ut} is a white noise process, although ordinary least
squares can be applied if the disturbance is generated by the first-order
autoregression ut = eut~1 + Et , which seems to be implicitly assumed
very frequently.

When first introduced, the adaptive expectations hypothesis was simply
advanced as a plausible description of expectation formation, in which the
previous expectation is modified in response to observed errors.4 It was
criticised for its apparent ad hoc nature, for example, it appeared not to
rest on any optimising behavior. Subsequently it was shown (Muth,1960) that

the hypothesis does indeed yield optimal forecasts, in the sense of minimum

mean squared error, if x follows an ARIMA(O,1,1) process

For other x-processes adaptive expectations may or may not provide a good
approximation to the optimal forecast. Irrespective of this, time series
analysts have often criticized the resulting regression model for its
overly simple dynamics. In Section 5 we consider the application of an

optimal forecast assumption to more general x-processes.

3. Rational expectations hypothesis

A further criticism of adaptive expectations is that in basing the
forecast purely on the past values of the variable in question, valuable

information provided by other variables with which that variable interacts
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is neglected. In contrast, the rational expectations hypothesis introduced
by Muth (1961) assumes that "expectations, since they are informed predictions
of future events, are essentially the same as the predictions of the
relevant economic theory" and hence depend "specifically on the structure
‘of the relevant system describing the economy." Unfortunately the example
used by Muth has a number of special features that result in the rational
expectations variable obeying an adaptive expectations scheme, and this
may have led to an unjustified over-emphasis on the latter in subsequent
empirical work.

Muth's example is a simple model of the market for a commodity which

cannot be stored: .

demand function d = -8Bp
t t
supply function s = YP © + u
t t t
market-clearing d = s .
t t

e
The market price in period t is denoted p , and pt is the expectation of
t

Pt implied by the model, conditional on information Qt-l available at time

. e
t-1, that is, Pt = E:(Pt'ﬂ Variables are defined as deviations from

t—l)'

equilibrium values, and there is a single random input, ut. Equating

the right-hand sides of the demand and supply functions gives

b

= - _Y. e - ___I; u
and on taking expectations across this equation we obtain

e 1 A
P = = e

writing a for E (u [Qt 1). Assuming that u, follows a random walk this
t t -

forecast is given as
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]

u
t t-1
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"8%4 -YPp
e .
and so the rational expectation P, follows the scheme

e e
= (1-6 + 6 R
P, (-8 » Py 5 8 By

As Muth remarks, the only difference from previous applications of adéptive
expectations is that the "coefficient of adjustment” in the expectations
formula depends on the demand and supply parameters. The equivalence between
rational expectations and adaptive expectations in this example rests on
the presence in the model of but one autocorrelated input variable, which
follows a random walk. Although the attention given to this example may
have sustained interest in the empirical application of adaptive expecta-
tions to a greater extent than was justified, more recently increasing
attention has been de&oted to the rational expectations hypothesis in its
full generality. For discussion of its econometric implications, and
references to earlier literature, see‘Wallis (1980).

A basic framework used in that paper is that of a static simultaneous
equations econometric model, in which unobserved expectations of endogenous
variables are included among the explanatory variables:

e
}}zt + é}:t + -I:?Et = Bt ¢

The vectors y_ and x of'endogenous (output) and exogenous (input) variables

~t t
are observed, while the expectations yéi and random disturbances ut are

not. If the expectations of certain endogenous variables do not appear

in the model, then the corresponding columns of the square matrix A are



identically zero. Assuming that the random disturbances are non-autocor-
related, the rational expectations hypothesis yté = Ii(yt lﬂt l) then

gives

e -1 ~
y = - (E:‘"é) I: X s
~t ~t

where %t = E}(§t{9 It might appear that the rational expectations

t—l)'
hypothesis has simply transferred the problem from forecasting the endogenous
variables to forecasting the exogenous variables, but the key ingredient is
the information about the relevant economic structure contained in the
parameter matrices §, é and I, that is, about the links between endogenous
and exogenous variables. Moreover, the specification of the model indicates
what information is relevant in forming %t ! since these are exogenous
variables, not explained by the model, the rélevant information is
ft—l, ft—Z, ... , assuming that there is not a third group of variables
outside the model and independent of u that nevertheless helps to forecast
x . On substituting the appropriate expression for %t in terms of past
x's into the above expression for z;e , - and substituting this in turn
into the original model; we again obtain a dynamic model. There is no
apparent dynamic element in the original model, such as lags in adjust-
ment, merely the passage of time between the formation of expectations
and the realisation of actual values, but this is sufficient to provide
a dynamic model.

It is well known that a djnamic linear model together with an
ARMA model for the input variables implies the existence of a univariate
ARMA representation for each output variable. For example, the simple
model

= +
y By % Bixep * oy



where ut is white noise, together with the AR(1l) process

X = ¢x + €
t t-1 t

implies that the univariate representation for y is of the form

A A L
where {nt} is another white noise process and 6 is a function of the original
parameters. There then exist two possible approaches to forecasting y :
either we may insert a forecast of x based on its own past into the dynamic
model to obtain a fbrecast of y, or we may forecast y from its own past,
using the implied univariate representation. It can be shown that the
latter, purely extrapolative, forecast of y in general has greater mean
sqﬁared error than the model-based forecast. Likewise, in the rational
expectations model, an alternative extrapolative mechanism exists for
calculating expectations of endogenous variables, which might in simple
cases be of the adaptive expectations form. Again this is less efficient
than the rational expectation, if the model contains at least two random
inputs (exogenous variables or disturbances) having different stochastic
properties. In Muth's example the rational expectation’and.extrapolative
predictor of p coincide because there is only a single input uj if
u is generated by a scheme other than a random walk, the optimal

extrapolative predictor is no longer of the adaptive expectations form.

4, Reconciliation

At first sight, a simple distinction between the models discussed in
the previous two sections might be drawn by assuming that the variable
about which expectations are formed in Section 2 is an exogenous variable,
whereas expectations of endogenous variables enter the model of Section 3.

However we argue that this is a difference of degree rather than a difference



of kind.

As seen in the previous section, the rational expectations hypothesis
makes use of the economic structure to specify how expectations consistent
with that structure are formed, nevertheless the time series forecasting
problem is that of forecasting the exogenous variables. 1In Section 2 the
forecasting problem concerns a single exogenous variable. Thus the
difference is simply between the size of the information set. The rational
expectations hypothesis makes use of the given economic structure and the
data generation process of the exogenous variables to form optimal forecasts
of the endogenous variables, but in the single-equation example of Section
2 the only relevant information on which to base the unobserved expectations
variable is the set éf past values of the variable iﬁself. Nevertheless
we can define expectations that are optimal relative to the available
information set as rationmal. Then in the simple model of Section 2 the
rational expectations hypothesis is that the economic agent knows the data
generation process of the x-variable and uses this information optimally
in constructing minimum mean squared errgr forecasts. This usage accords
with that of Hansen and Sargent (1980), who discuss examples featuring
little economic structural information about the variables whose expecta-
tions enter the model.

In early empirical applications of the rational expectations hypothesis,
it was often contrasted with the adaptive expectations hypothesis, but our
argument is that the appropriate distinction is between optimal and sub-
optimal forecasts, relative to a given information set. In the general
model of Section 3, adaptive expectations or any other purely extrapolative
predictor of the endogenous variables is clearly sub-optimal.  In the
single-equation model of Section 2, with an ARIMA(0,1,1) x-process, we

may describe adaptive expectations as rational. Of course for other



x-processes adaptive expectations are no longer rational, and in the next
section we consider the necessary generalisations and the dynamic models

that result.

5. Models with a single forecast variable

We consider a model of the previous form

y ' a + B % + u
= X
t t+1 £

in which x is generated by the ARMA(p,q) model
$L) x, = O(L) e,
where ¢(L) and ©(L) are polynomials in the lag o@erator L,

= 2 P
L) = 1 - L - - =

it

2 q
1-6 L 62L - SqL

E]

o (L)
obeying the usual stationarity and invertibility conditions. It is

convenient to work with the pure autoregressive representation for xt,

P x - (1 i e(L)~@<L>‘)X e,
p(L) ¢t p(L) /¢t t

since we may then write

6(L) -9(L)

L (O N L VL) = T

so that the minimum mean squared error forecast, given information up

to time t, is .

X - VI E

which generalises the exponentially weighted moving average scheme.
Substitution into the original equation gives
= + ) (L + u
Y, o Bw(L) =, e 0
and on multiplying through by 6(L) we have
(L) y.. = o' T B 6 -9 x + v ,
t ) L t t



giving the dynamic regression equation

= o'+ 6 : -
Y, a 1Y toee +Bii Yeeq + B((ia1 1) x + B(¢2—82) X,y

+ ... + vV .
t

The‘number of x-values entering this equation is max(p,q). If p=q=1, the
model of Section 2 is obtained as ¢1 + 1. A moving average component
in the x-process, that is, q # 0, causes the presence of the lagged dependent
variables and requires moving average estimation methods to be employed,
subject to coefficient restrictions, if u is non-autocorrelated. If the
x-process is a finite autoregression, then a finite distributed lag model
results, which is relatively easy to handle.

The specification of this simple model can be varied in a number
of ways. Different assumptions are possible concerning the time at which
the forecast is calculated and hence the information on‘which it 1is based,
and also concerning the period to which the forecast relates. If the
net effect of variations in these assumptions is to retain a one-step-ahead
forecast in the model (for example by entering §t in the original equation
and assuming that it is based on data available up to time t-1), then
the dynamic relation between y and x is of the same form as above, except
that the x-values are shifted forward or back in time as appropriate (all
x-subscripts are decreased by 1 in the example just given). However if
a forecast further ahead is required, then the way in which the ¢- and
9~ coefficients appear in the regression equation changes.

To illustrate, we amend the original model to

Ve = © + BX + u

and assume that the h-step forecast is based on data available up to time

t. A convenient expression for % is obtained by writing Xith in

t+h

terms of €ith’ Et+h-1» +++» €¢y7 and Xy, Xp1s... - We do this by



L.

writing the infinite moving average representation as

x = 8 . - fwe
t o(L) ¢ t
and defining u(L) as the first h terms of the polynomial E(L):
h-1 3
ww = I E L .
j=0 k|
Then X th is given as
} ~h
Xy = MO E Lo+ {E@ -p@ IL e
= (L) - u()
U(L) €t+h + X ’

L g
so that the optimal h-step forecast is given by the second term on the

right-hand side, namely

A = 8 -u@ o)
t+h Lh 6(L)

X
t

Substituting into the original equation and multiplying through by 6(L)

gives

o)y, = ot +g 2 -hu(m oM 4

L

v
t t

In the resulting dynamic regression equation, we see first that the same
lagged values of the dependent variable appear, with the same coefficients,
irrespective of the value of h. On the right-hand side, the polynomial

. h .
6(L) - u(L)$(L) has leading term Eh L , from the definition of u(L),

h
so divisiomw by L gives the leading term in the distributed lag function

as B Eh X, . The number of x-values entering is max (pth-1,q) - h + 1,
so 1f q is relatively small the values that enter are

X X vesy X i {
£ Feo1 * Xt again irrespective of the value of h. Convenient

expressions for the coefficients of the x's in terms of the 6's and
¢'s are not available in the general case, although an algorithm for

their recursive calculation can be obtained from the relation



E(L)(L) = 8(L).

Attention is concentrated in this paper on dynamic models that arise
from expectations hypotheses, but it is clearly possible for the original
decision rule to contain lagged variables, as a result of costs of adjust-
ment, for example. That is, the relation at the beginning of this secﬁién
might also include terms in X, and xtwl’ say. Little is changed by this,
however, since these terms are simply incorporated with those that result
from the expectation—-formation process. Nevertheless the problem of
disentangling the underlying parameters becomes more difficult as a

number of different sources of dynamics are confounded,

A further generalisation is to include a number of forecasts in the

~
X e+« » S8ay. In practice this is not a common

decision rule, x
on rule, Xt+l’ Y

feature, except for the case in which a discounted sum of expected future
values enters the decision rule, so that forecasts over all horizonms,

calculated as of time t, appear in the model, and an example of this is

presented in Section 7.

6. Model identification

In many empirical applications of dynamic models that rest on expecta-
tions hypotheses, the investigator is content with a dynamic regression
equation that fits the data well according to conventional statistical
criteria, and seldom investigates the underlying parameterisation. However
if the rational expectations hypothesis, as interpreted in Section 4, is
part of the underlyiﬁg theoretical framework, then parameter restrictions
that can be exploited in estimation and testing may arise once a joint

process for x and y is considered.

In general the pérameters of the decision rule, a and B in our example,

cannot be identified unless knowledge of the forecasting rule, based on

11.



knowledge of the x-process, is available. For example, in the simple case

y = o + Bx + u
t t+1 t

with an ARMA(1,1) x-process, the dynamic regression is

= - + + -
Y. a(1-6,) 8 Ve B9, -8 0x + v

and the three regression coefficients cannot yield estimates of the four
parameters. This problem is solved by joint estimation with the time

series model

and now a parameter restriction occurs, that might form the basis of a
specification test. Note that in the simple adaptive expectations model
the dynamic regression equation is of the above form, but the assumption

that ¢1 = 1 identifies the remaining three parameters.

Since the dynamic regression is essentially a reduced form equation,
model identification problems might arise, and in practice data might not
be very informative about the details of.timing relationships. In the
models of the previous section, different forecast horizons produce similar
dynamic regressions, and while joint estimation subject to cross—equation
restrictions may permit some discrimination, a counter example is provided
by an ARIMA (0,1,1) x-process, for then the optimal forecast is the same
for any forecast horizon, so the same dynamic regression is obtained
whatever the value of h.

Failure to separate the parameters of the decision rule from those of
the x-process is a major source of Lucas' (1976) criticism of conventional
econometric policy evaluation exercises. In the present context, a
"conventional exerciée" would comprise the specification and estimation of

a dynamic regression equation from a given sample of data, followed by the

12.
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use of the estimated equation to predict the dependent variable in some
new actual or hypothetical circumstances. If the new circumstances are
represented by a change in the structure of the x-process, the predictions
will clearly be in error, since such a change necessitates a change in

the dynamic regression specification under the rational expectations
hypothesis, To overcome this difficulty separaﬁion\of the decision rule
and its parameters from the optimal forecasting rule for x is needed, as
discussed in the preceding paragraphs. Without this separation the effect
of a required change in the optimal forecasting rule on the dynamic
regression and hence on the predictions of the dependent variable cannot
be perceived. With this separation a prediction exercise proceeds by
inserting the forecasting rule appropriate to the new x-process into the esti-
mated decision rule, and using the resulting dynamic model to éredict in

the usual way.

7. A "present-value'" example

As a final example we consider an economic agent's decision rule that
relates the variable y to the expected present value of future x, with
interest or discount rate p @

-3 j A

yt = o + B jED p xt+j + Ut

and in which x follows an AR(p) process, ¢(L)x = Et . The optimal
: t

9 s oo ’

forecasts X iven data up to time t are functions of x , x
t+j B P £’ Tt-1

Xt—p+l , so the dynamic model relates yt to these p values of x, with
coefficients that are functions of B, p and ¢j. The x-forecasts can be

calculated recursively from the relatioms
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x = + + * 8
T+l ¢ % 2 X * ‘bp Xpoptl
X = ¢ % + ...+ ¢ % + . < §<
e 17kl I R U
& = 4% ;
t+] 4>:l xt+j—1 Foeee ¢pxt+j-p ’ 3>p.

To express the infinite summation of future discounted expectations in terms

of p observed x-values, consider

«© ~ 2 ‘ P b j/\
o I % = (10 p¢p-..-bp) =
i=1 t+] 1 2 P 321 ° Feas
[s <]
3 j+1 j+2 jtp, ~
= I - - - e -
5 (-9 p ¢29 ¢pp ) e+
w0 © A =] k ~ bod kA
A k — Z
=L P X 6. I p x ¢y L p X o 5 ocer "9 S ST
Kt tHe 71 2 t+k-1 2 123 t+k-2 P Kk=p+l p
(o] k ~ A A
B kip-i-l P (xt—!-k R e
Pk P N P
+ Z X - Z W o~ - —— p/\
P T T 018y P Ferel 02k P Ren T T 01 PRy,

The first term is identically zero, énd the remaining terms are equal to
p X +p2(§‘—¢£ )+3A % -
which the forecasting equations give, in terms of observed x-values, as

p-1 p-2

2
8] 'Z (b X, s +p % x P .
j2o P31 Fe-j Pl 0342 Xy + .0 P b Xy

p-1 (p—j k)
= % r o, ¢ X, .
jmo V=1 K t=J

Hence the dynamic model between y and x is given as

8 1 pgl (PEJ k) ;
y, =0 + x + , o]
t ( t o(p) j=o k=1 ¢J+k xt—j + u,



]

-1 p-j
PRLE 4 pk)
¢(p) t j=1 -1 j+k xt—j + u, .
Clearly if p=1 this simply gives a scaling of the current x-variable from
which none of the underlying parameters can be deduced. If p=2 the

joint process is

g
Y o= o+

& 1—¢1p¥¢2p2 (Xt + ¢2 9>Xt_1) + u,

]

¢

X

t + € s

151 T %y T E
which allows recovery of a,B,p,¢l and ¢2. Higher values of p lead to
cross-equation parameter restrictions, since the number of coefficients in

the two equations is 2p+l while the number of basic parameters is p+3,

Note finally that if the dynamic model is simply taken to be a relation

between yt and X |, x

-1’ " xt—p+l’ with no attention paid to its

parameterisation, it is indistinguishable from that resulting from a

t’

decision rule in which y depends on (at least) one x-forecast, of any

forecast horizon.
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