Bayesian Learning and the Optimél Investment

Decision of the Firm

Ian Tonks

No. 192

WARWICK ECONOMIC RESEARCH PAPERS

DEPARTMENT OF ECONOMICS

UNIVERSITY OF WARWICK

COVENTRY



Bayesian Learning and the Optimal Investment
Decision of the Firm

Ian Tonks

No. 192

July 1981

I would like to thank Norman Ireland, Paul Weller and Andy Snell for
helpful comments and discussion. Errors remain my own.

This paper is circulated for discussion purposes only and its contents
should be considered preliminary.



Introduction

This paper is about learning. It illustrates how in a two
period allocation'problem with uncertainty in each period, an economic
agent's decisions are influenced by the knowledge that he is able to
learn about the uncertainty. The time periods are linked through the

learning process of the economic agent.

The problem to be analysed is that faced by é firm deciding
whether or not to invest in a new technology or production process, whose
returns are not known with certainty. Because of the two period
environment, the firm is able to experiment with the new process in the
first period, and cbserve the results before making another investment
decision at the beginning of the second. Given the opportunity for
learning, how will this affect the decision of the firm in the first

period?

Arrow (1962) examined the implications of incorporating
learning into an economic growth model. However he imposes the assumption
that there exists a learning time trend. Learning, defined as the
acquisition of knowledge, is the product of experience which is measured
by cumulative gross-investment. It is assumed that the greater the
investment, the greater is the productivity of the new capital goods.
In his model, Arrow is imposing the assumption that increased knowledge
always leads to increased productivity; an example of a typical black
box: knowledge goes in and increased productivity comes out. We redefine
learning as the acquisition of information; with this information a
firm is able to judge which is the most productive of a number of processes,

and then chooses the most productive. We could call this method learning



by sampling rather than learning by doing. Hence, although we may

still observe the fact that increased knowledge or information has led

to increased productivity or the most productive process, this alternative
épproach highlights the decision problem facing the firm: the choice of

technique. We are now looking inside the black box.

By ;ssuming that there is an element of uncertainty in the
environment, represented by a distribution function, whose parameters
are unknown; the definition of learning as the acgquisition of information
means that the learning process can be modelled using the statistical

techniques of Bayesian analysis.

Kohn and Shavell (1974) consider the problem of sequential
decision making. They define the problem when-the'distrihu;ion funct;on
has'kndwn parameters as static. There is no possibilify for learning
in the static case. Any other type of sequential decision problem is
adaptive. Bayesian learning about an unknown parameter of the distribu-

tion is an example of the adaptive case.

In two illuminating articles in 1974, Kihlstrom uses Bayes'
rule to solve the consumer problem of maximising utlility in a gingle
period, when product quality is a random variable with an unknown
distribution. The consumer is allowed to sample before purchasing the
good, and in experiencing the sample gains information about product

quality which enables him to update his subjective distribution function.

Grossman, Kihlstrom and Mirman (1977) provide a more genexal

approach to adaptive sequential decision problems. They explicitly



recognise the two period nature of the problem: sampling occurs in the
first period, before a final decision is made in the second. The solution
is found by dynamic programming, using the technique of backward inductiotmn.
The agent maximises the second period pay-off function; for every

possible realisation of the random, variable from the firét period.

These optimal values are weighted by the probability that are random
variable will take on any particular value. The agent then maximises his
first period pay-off function, which includes an indirect pay-off fungtion

for the second period.

The paper presented here can be regarded as a specific example
of the general framework proposed by Grossman et al. It is related both
in format and teéhnique to a short paper by Cyert, DeGroot and Holt (1978);
however, we shall provide more detailed comparative static results and

also give an explanation of a paradoxical result that they obtain.

The major result of the papers cited above, and rzproduced here,
is that the presence of a learning mechanism and the opportunity for
sampling leads to a higher optimal value of the decision variable in the
first period than otherwise, due to experimentation. This result can be
contrasted with the static two period models of Sandmo (1970) and
Modiglianni and Dréze (1972), where provided certain conditions are
satisfied, the presence of uncertainty in the second period leads to a
lower optimal value of the decision variable in the first period, since

there is no experimentation.



The objective function

The firm has a choice between two production techniques a
and b . Each process yields a return which contributes to the total

profit of the firm, 1 =

I = 1+ 10

The size of the return to each process is a constant mark up
of the quantity of the technique in production, i.e. the price cost
margin is constant, so that the profit function is linear in the quantity
of capital. It is further assumed that the isogquants have fixed coeffi-
cients, so that once the firm decides on the level of capital, the
quantity of labour is determined. This assumption means that the firm

only has the levels of capital as its decision variables.

Let Kz and Ki be the quantities of processes a and b
in production at time t . Process a is termed "o0ld" and process b ,
"new" . The problem facing the firm is to decide upon the proportion of
the two processes to be used in production. The issue is complicated by
the returns to the new process not being known with certainty. A random
variable represents the returns to the new process. This random variable
can be thought to account for the uncertain and unknown nature of the
productivity of the new process, its marginal cost or the price/demand
for the final product. 1In contrast the returns to the old process are
known with certainty. This situation would typically reflect the decision

problem facing a firm deciding whether or not to adopt a new production

technology. This new technology can be envisaged as being divisible into



small units. The returns per unit of the new process are the random

variables. Thus the returns from an investment of Kb units will be

Lo,
m

1/

The random variables éj >0 are independently and identically

distributed. The expected returns can be written E(e)Kb .

The restrictive form of the production technology is to enable
us to identify the impact of learning mechanism in the purchase of new
capital eguipmentw It is an interesting, but different question to ask
what the impact of a new item of capital will have on the amount of labour
employed. We could allow the labour-capital decision to enter the model
by imposing a learﬁing by deing assumption onto the labour force. But to
an extent the effect of new capital on future employment prospects is

encompassed in the random variable, & .

The firm maximises the expected discounted stream of profits
over two periods, with respect to the quantities of the two types of

capital in each period:

1
EV]. = Enl+l+i E]'[2
b
a Kt
where I = K_+ I &,
t t j=1 3

and i is the social rate of discount which is assumed equal to the market

rate of interest. Taking expected values:



a
? = +
EIIt Kt E(€) K:
The objective at the start of the first period is

2
EV. =  max {z S S (Ka+E(e)K2)}

2 @ el s ¥t b
1'%

The form of the profit function means that in a single period problem
K: and Ki are perfect substitutes for each other. An isoprofit line

can be defined ds a locus of combinations of Ki and K: that earn a

specified level of profit, and will be a downward sloping straight line.

In the first period the firm holds subjective beliefs about
its uncertain environment, % , represented by a prior distribution
function. The firm makes a decision (K; , Kﬁ) and consequently observes
the realisation of a sequence of the random variables. It then forms
a likelihood function from this sample of realised values; that is,
the firm asks itself from which particular distribution is it likely
that this observed sample originated. Armed with this experience, the

firm modifies its initial beliefs using Bayes' rule:
Posterior distribution « Prior distribution x Likelihood function.

The firm obtains an updated set of subjective beliefs for use
in the second period, represented by the posterior distribution.
2/
Most importantly, the firm is hypermetropic (long sighted) .

It knows at the outset that this learning process will occur. It is



aware that any decision it makes in the first period may have implications

for the decision problem in the second period.

Assuming away any indivisibilities, the firm is allowed to
purchase quantities of the two processes it desires. If the firm purchases
one unit of the new process, then it will observe the realisation of the
random variable, and not only will it reap the pay—-off from the process,
but it will also draw some inference about the unknown distribution of the
returns on which the likelihood function is based. The larger is the
sample, the more confident is the firm that the likelihood function
describes the true distribution, and a more confident inference on the

form of the unknown distribution can be made.

To solve the maximisation problem, the method of dynamic
programming is used. The maximum value function EVl will have two
parts: expected profits in the first pericd and an indirect profit function

for the second

[ a 1
BV, = max {Kl + E(e)Kbi + [y EV2} (1)

The Uncertainty

Suppose the density function of the random variable, & , is
3/

known to be normal, with unit variance but the value of the mean is
unknown. However the firm holds subjective beliefs about the value of
the mean described by a prior normal distribution. Let the value of
the unknown mean be 2z , and the subjective density of z 1is

N(u where u is the mean and ¢ is the firm's degree of precision

L
OI¢I o

in its expectation of the mean of z being yu The degree of precision

o -



is the inverse of the variance. The more confident is the firm that
Moy is the true mean, so the higher is ¢ ; and the higher is ¢ , the
lower is the variance. The firm installs a certain quantity, KP

t

of the new process, and then observes the total returns from this process.
Of course this is really a single observation, but could be viewed as a
series of observations and the firm can easily compute the average return

per unit of the new technology. Let z be the average return, then

when Ki units of the process are installed

and & , as above, has mean 2z and unit variance. So z will also
be a normal random variable with mean 2z and variance lf , and will
lie in the range (O, ®) . The value taken by z will bé a "sufficient

statistic"” to provide information on the true mean of € , see DeGroot

(1970) .

Thus the firm has some initial belief about the unknown mean

z , given by its prior density function (uo, %) , it then observes a

sample of returns j =1, . . . K: from which it computes the sample

mean z , from which it then forms a likelihood function. Combining

the likelihood function and the prior distribution, we obtain the
posterior distribution of the unknown parameter 2z . The posterior will
be normal, with mean and variance given below.ﬁ/

) uo¢+51<:
z b + Kﬁ



Thus the mean of the posterior distribution, is simply a weighted

average of the initial beliefs p and the sample mean z .

(o]
In the first period, in order to maximise its objective the
firm will use the expectations operator based on the prior distribution
over the unknown parameter 2z . In the final period it will use the
posterior distribution, which is normal with parameters L and 0; .
But looking from the first period, before a decision has yet been made,

the sample is still uncbserved, so z is itself a random variable, which

will need to be integrated out. The marginal distribution of z is

5/

. . 1 =
normal with mean uo_ and variance $-+

1
X

The constraint

To complete the problem suppose that there is a financial
limit on the amount of investment in each period. In order to suppress
the effect of capital accumulation on the model, we shall initially assume
that the rate of depreciation on existing capital stock is one. This
means that both processes need replacing at the end of each period. This
may seem an unreal condition to impose on a model attempting to repfesent
investment decisions; the reason is that we wish to isolate the dynamic
implications of information accumulation between periods, and incorporating

capital accumulation will only disguise the results.

Initially, there will be a limited amount of cash available for



investment in each period. The firm has an investment budget which must

be spent

M = Ki + rl(l; (2)
where r 1is the relative price of the new process. The firm is not
allowed to invest any saved funds in another period; the funds must be
spent in the respective period. This is replaced in the next budget
constraint where the funds availabie can be spread over two periods, and
if any unspent funds from the first period are invested at an interest

rate i then
a a
@+ M-« rK?)] = K+ rK; (3)

The solution to the model

In the final period, there is no future, so there is no profit
to be gained in further information. The firm will either produce using
the old process or the new one. The firm maximises expected profits

in the second period.

(>
BT, = max { [ (K% + 2K)F(z|p= , 02) dz 4)
2 2 2 z z
k2, K2
2" T2
This yields optimal values for K; 5 K; which are substituted back, so

that EH2 becomes an indirect profit function. But these optimal values
depend upon z , which is itself a random variable, when viewed from
the first period. So the firm computes optimal value schedules for every

possible value of z , and then weights the resulting indirect profit

lo.
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functions by the probability of observing a particular z . If the
- 1 1 Y
marginal distribution of 2z is N(po, $-+ _b) 5 where KE is the
K
amount of new capital installed in the firstlperiod, then

o _ 1 _
EV, = é [.max EHZ] f(zluo ) $-+ l)dz (5)

Substituting these results into equation (1) the objective can be written

out in full as:

(= 1 .
_cf) &5+ 2) £ (z]u, ) az
EV = max 1
1 - *
Ki' Kﬁ D * a - -
*E‘i’f [max / (K, + zl(g) £ (z|-)dz]f(z|-)dz
| 0 % KP o J

2" ™2

(6)

Suppose the budget constraint is given by equation (2), then substituting

this into equation (6) we obtain

[ \

(j; v, - rxll’ + lel’) £ (z]-)dz

*)dz

+ 1%5({ [maxg (M, - rK> + zKo) £ (zl'-)dz]f('z'-

L & 2 J

(7

The solution can be found by the method outlined earlier. In the
final period the firm maximises expected profits for all values of z ,

as in equation (4) :
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EH2 = max {M2 - rK2 + u; Kg}
& '
2
d(EHz)
W T
2
M , u¢+xbi
So Kg = —%- if r g by = 9 L
b+ K
= 0 if r > uz
The optimal value of Kg depends upon the realised value of
z . For sufficiently high values of z : Kp = = ; for low values of

o The profit in th

N

production technique chosen.

J

N

iIf rguy

(2]

5

if > -
if r b

The indirect expected

substituting the optimal decisio

2
e second period is determined by the

M M

2 2
—_— = = e——
r V2 r “z
(0] = V2 = M2

profit function can be obtained by

n variables as in equation (5)

b- _*
® M e + Kz
2 2 : = -
v’ = | e 9 1!e (zluo R %- 1;- dz + f M, £(z] -
z* % + KP Kb
1 1
(8)
-
- uo¢ + K? z
where z satisfies r = :
. n K?
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Equation. (8) can be substituted into equation (7) to obtain
a first period objective function in which the only decision variable is
K? , and the effect of K? on the second period indirect profit functiomn

is explicitly recognised

.
EV, = maz {Ml - rKi + uOK? + TIL EV2} (9)
Ky
First order conditions yield:
d(EVI)
Txb—=—r+uo+9 (10)
1
where 8 = === d(EVZ)
1+1i de

1

We wish to show that the opportunity for learning will cause
the firm to purchase more of the new process in the first period than

otherwise. Firstly it is necessary to show that EV, is increasing in

& .

1

Proposition 2 : EV2 is a non-decreasing function of K?

Thus, an increase in investment in the new process in the first
period increases expected profits in the second. This comes about because
the larger is K? : the larger is the sample upon which the sample mean ,
is based. The larger is Ki the more confident is the firm that the

sample mean is the true mean.
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The first order conditions yield the following conditional

demands:

.
Kb*=ﬁ- if r<u, + 6

1 r 0]

M
*

°<Kl;<'r— = T =yt 6 . (11)
' = o if > U +8

1 IR )

P

In a single period model, or if the firm's outlook was myopic
and did not recognise its ability to learn about its uncertéin environment,

M

the condition for kp = ;l would be r £ u

1 o i however the additional

positive term on the right-hand side of equation (11l) means that it is

more likely that the firm will purchase some of the new process.

We can now state Theorem 1 which is the initial reéult'of this

paper.

Theorem 1 : If the objective function is given by equation (7)
% %
and if K? is the value of the decision variable
which maximises the objective in the non-adaptive
* .
case and Kg is the optimal decision rule in the

* *%
adaptive case, then Kﬁ 2 K? 5

This result is the same as that obtained by Grossman et al,

(Theorem 2, p. 538).

]3)* Kb**
The reason that 1 P 1 is that in the adaptive case not
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only does the firm obtain returns from the process, but also gains
information about the distribution of these returns; information which
will be used in the next period. Information and the new process are
complementary. If the firm ignores this complimentarity its expected
profits will be lower.
a (EV2)
From equation (A2) it can be seen that 5 depends upon

114
Kb , so that there is a possibility of an internal solﬁtion. It may well

1
be that it is optimal for the firm to mix the two processes in the first
period, whereas in a myopic model this would not be true. In either

case in the final period when there is no further use for information,

the firm will use either one process or the other.

What is the shape of the EVl function? This is stated as

proposifions 2 and 3.

Proposition 3 The expected profit function EV. 1is convex in K?

1

at low values of Kﬁ and concave at high.values.
Proposition 4 : If u < r then

(i) EV is everywhere a decreasing function of K?

1
.. b*
or (ii) EV1 has a maximiser, Kl in the interval
M
1
(0'?-)
or (iii) EVl is decreasing in Kﬁ at Kﬁ = 0 , but
M
. b _ 1
increasing at Kl = I
or (iv) if s 2 r then EVl is an increasing function
of Kb ‘

1
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These propositions can be illustrated in diagrams:

(iv) (i) + <
EVl L >r Evl Mo 6 <x
N
R
" ul
r r
(ii) (1id)
+ 8 < EV
BV, | Bt BT 1
|
i
l
|
i
o M
1 r r

The most interesting case is where the interior solution is
defined. The optimal policy for the firm in the first period is to mix
the two processes. Whether the model yields an internal or corner
solution depends upon the values of the five parameters: r, M1 : M2 5

H and ¢ .

o]

As we have drawn the diagrams, we have assumed there is only
one point of inflexion, however the second order conditions do not

guarantee this, so there may be multiple peaks and troughs.
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The effect of parameter values on the solution can be illustrated
with reference to changes in the degree of precision. This is stated as

.Proposition 5:

A firm with an objective function defined by equation (7)
will have higher expected profits the more risky is the
initial distribution. Risky being defined as a high

initial variance, which is the inverse of ¢ .

That is, increased variance, increases expected profits. The
more uncertain firms are about their environment, the greater the
expected profits from information. (See Rothschild, 1974a, p. 691).
The effect of a decrease in ¢ , on the diagrams above will be to pivot

the EV1 upwards around the point where K: = O ; since at Kﬁ = 0,

¢ does not enter the expected profit function. Thus we can imagine

a particular situation where < r and for a sufficiently high value

Yo

of ¢ , we would observe diagram (i) . Then as ¢ decreased, the curve
would move upwards into a shape similar to diagram (ii) and finally to

diagram (iii). Of interest is the case wherxe the peak of the EV1 function

is equal to the value of the EV function at K? = 0.

1

et
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The diagram implies that for a small change in ¢ , the
optimal policy for the firm is suddenly to switch from using none of
the new process to Kg* . It is not optimal for the firm to introduce
the new process gradually. If it is worthwhile experimenting with the
new process, the firm should move straight away to the optimal sample

size.

It is interesting to note the difference between an increase
in K? and ¢ on the objective function, EV1 5 EV2 is increasing
in Kﬁ , but decreasing in ¢ ; even though an increase in either parameter

reduces the variance of the random variable in the second period.

Thus, the firm has an initial belief about the expected returns
of the new process, represented by uo and an associated varianée % :
Proposition 5 shows that the higher is the variance the higher is expected
profits, since the greater the initial variance the greater the returns
from information. Kﬁ is the information component, an increase in Ki
reduces the variance of the random variable in the next period, as well

as putting a greater weight on the firm's experience relative to its

initial beliefs.

Further properties of the model

Having stated the initial results, we shall now concern our-
selves with some comparative statics and the implications of changing

the budget constraint. How will changes in the parameters P

Yo
&*
Ml and M2 affect 1 ? The results will be confused by the changing

sign of the second derivative given in Proposition 3. However, we know
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that if K?' exist then the second order conditions hold.

Consider first the effect of a change in the mean on the
demand for process b in the first period. What happens if the expected

return on the new process rises?

*
Proposition 6 : Kﬁ is monotonically non-decreasing in uo 5

Thus, if the expected returns from the new process are higher,
the firm will demand more of the new process because it is a better buy

and further the firm will demand more information about it.

Reference to the first order conditions in equations (10) and
(A3) 4indicate that the effect on K: of an increase in either Ml ar
M2 is obviously positive.

We would hope that a positive price change would have a negative
effect on the optimum demand for new equipment:

*

Proposition 7 : Kﬁ is monotonically non-increasing in r .

Finally} we are concerned with the effect of a change in the
initial degree of precision on the quantity of K? demanded. It turns
out that for high values of ¢ , when the firm is very confident that the

true mean return of the new process is 1u_ , then an increase in ¢

0

*
reduces Kﬁ . When ¢ 1is low, the firm has less confidence in the

*
mean uo being the true mean, then an increase in ¢ increases Ki 5



&

’ *
Proposition 8 : If ¢ 2 El- then Ki is monotonically non-
increasing in ¢ . For some lower value of ¢

the reverse.

Now suppose the constraint changes to equation (3), then equation (8)

can beé rewritten:

© [M-(Ki+r18]).)] uo¢+l<b§

| 1 S
Ev! = [ (1+) £(z)dz
2 z¢ * 1<t; + ¢
-
z — -
+(j) ) [w - o + D)) £()d2 (12)

Then, if we continue with the assumption that the market rate
of interest in the budget equation is the same as the social rate of
discount, the firm faces the following objective function in the first

period.

(- = S
EVl ~ max {K + uoxi + 171 EV2} (13)
k2, x°
1’ 71

where Evé is given .in equation (12). The firm now has two decision
variables in the first period: Ki and K? . It does not have to spend
all of its budget by the end of the first period; in fact the less it

spends the more it will have to invest when it is more certain of the

distribution of returns. It can be shown that in this case the firm will

not invest in the old process in the first period.

Proposition 9 : If the objective function is given by equation (13),

*
then Ki = 0.

20.
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This does not mean that the firm will never invest in the old process,
only that it will not invest in it in the first period: it will not be
optimal to mix the two processes. On the other hand this result does
not mean that the firm will always sample, it may be the case that

Kg* = O . In which case, in the second period the firm will invest its
entire budget in the old process, which is essentially a one period
solution i.e. K;‘ = M . If the firm decides upon the old process,
then it will choose that process for ever, since it can gain no new
information about the returns to the new process, so it will never swop

6/
to the new process.

In a sense time has.become the firm's decision variable;
since we are living in a world of perfect markets and no installation or
replacement costs, the firm is able to experiment with the new process
for as long as is optimal, and then make a decision between the new and

old processeés.

The decision not to insure against a poor run of returns from
experimenting with the new process, by in part investing in the old
process is crucially dependent upon the social discount rate being less
than or equal to the market rate of interest. In a world of imperfect
capital markets the opposite is likely to occur. In which case propostion
9 should be modified.

Proposition 9A : Ki* = 0 , if and only if the social discount rate

i;, is less than or equal to the market rate of

interest i2 5
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It can also be shown that it will never be optimal to spend the entire

budget on the new process in period l.

Proposition 10 : If the objective function is given by equation (13)
*
then KP < L .
1 r

By evaluating the second derivatives, the shape of the EVl

function can again be drawn.

(v) (vi)
EVl

g—

o8
*

R|X

Ty pe———-
%

L2 B E<4

Thus in diagram (vi) when By > r , it will always be optimal
to sample in the first period. Again, in diagram (v), when po <r,

the decision to sample will depend upon the relative values of the

parameters.
Kp M
A myopic firm would choose a value for 1 of either P
. Kp** M
or O as Hy 2 r . Thus if Vo > r the myopic firm chooses 1 T %
" < B
However the adaptive firm chooses 1 < el Thus in this case the

flexibility of the budget constraint means that
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%%k *

l—-‘w!!‘

S
1

This result can be contrasted with Theorem 1 and is similar to the result
obtained by Cyert, DeGroot and Holt. Because the budget constraint does
not have to be exhausted at the end of each period, the firm will never
use all of its budget to sample. However with static distributions there
is no advantage in sampling; whatever the parameter values are at the
beginning of the first period they will be unaltered by the beginning

of the second. So the same decision will be made in each period.

Suppose that in order to encourage the firm to purchase the
new process, as a marketing device, the price in the first period is
less than the price in the second. How will this affect the demand for

the new process?

Proposition 11 : If the objective of the firm is given by eguation
(A6) where rl < r2 , and if My > rl , then for
- Ié)* M
sufficiently high value of 2z , 1 = 7
1

The prospect of an increase in price in the second period,
means that provided the firm believes that the new process does have a
high expected return, then the firm will not bctler learning, but will
spend its entire budget on the new process in the first period. This

conclusion can be contrasted with Proposition 10.

Proposition 12: With different prices for the new process in each
of the periods, the effect of a change in price in

the second period on demand for the new process in
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the first may be either positive or negative.

Whether or not the effect is positive or negative depends upon
whether the process is expected to yieldhigh or low returns relative to

its price.

If hiéh returns are expected so that the firm expects to purchase
the process after sampling, then a rise in the price in the second period
will cause the firm to purchase more of the process in the first period,
since it expects to purchase all of the new process at some stage anyway.
The rise in r, induces intertemporal substitution, the firm purchases

more of the new process in the first period instead of purchasing it

at a higher price in the second.

If low returns are expected, then the firm is unlikely to
purchase the new process at any stage. A rise in price in either of the

periods will consequently have a normal negative effect.
Conclusion

The paper has shown that the firm will purchase not less of
the new process under an adaptive framework than a static one. With
no opportunity for learning, the firm will equate the value of the
marginal product of caéital to its cost. In the specific profit function
considered here, the condition is that if the returns parameter is greater
than the cost the new process should be purchased. If the inequality
is reversed, the old process is best. However the opportunity for learning

increases the value of a unit of capital in the first period, and
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consequently the firm purchases more of the new process. It was shown
in Proposition 10 that a two period budget constraint will alter this
conclusion. The flexibility of the constraint means that the first

period can be defined as the investment in the new process.

The form of our objective function means that the results
are dependent upon the parameters taking specific values. Further
work would enable us to define the range of these parameter values.
One interesting parameter is the degree of confidence ¢ ; as was shown,
when the degree of confidence is high the firm will not bother to sample,
but for a small change in ¢ , the firm will jump from a position of no

sampling to the optimal sample size.

We have also shown, that with a flexible budget constraint, the
firm will never purchase any of the old process in the first period, unless
it is only going to purchase the old process over both periods. This
result crucially depends upon there being perfect capitél markets.
Alternatively the assumption of a flexible budget constraint means that
it is never optimal to use up the entire budget experimenting. However,
different prices for the new process in each of the two periods may

change this conclusion.
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Appendix
. - 1. 1
Proposition 1 Marginal distribution of z n N(uo, E'+ S )
K
1
Proof: See DeGroot (1970), p. 263, Exercise 23.
Proof, Theorem 1 In a single period problem, F.0.C's for maximum
profits are:
d(EHL)
T Ttk
1
M N
1
If r sy, K? T or
q (A1)
r> ¥ Kl1)=Ml
J
X2 dK:_
1 isoprofit line : ;;; = uo
1 ' EI
M budget line : gradient = r < e
1

)

it
b oy

In the adaptive case, c.f. equation (A3) and (12), there is additional

positive texrm 6 , where

o o L T
1+1i GKP

1
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There are now three conditional demand schemes:

M
. )
(i) If r_s My K? .
' b** M1
K 73
M
.. o _ *» 1
(ii) If r = uo but r uo s 0 K: o

*

(iii) If r2up, but r - By 20

* %

<
5

* * %
Thus Kg 2 K? , and it is condition (ii) that ensures the inequality

sign.

Proposition 2, Proof The distribution of the random variable in

equation (8) can be transformed into a standard

normal distribution.

A

Define a new random variable x : - «© & x + @

Q
X = e—
.:.l:.+"..]:.
3
<
“o¢+‘K§‘;‘ Klla% 1
Then = P+ x (=) ¢ —
b+ & © Yoo
} .. i
and x* = (r - po)(¢ + Ki) L ¢ b)

Ky
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Substituting in (8)

*

Kp 5 X
]ﬂﬂmnu+uszMwu

%*%% A
® + ¢

(a2)

x* contains Kb as an argument, but differentiating around an integral

So

Proposition 3, Proof. Differentiate (A3) w.r.t. K

[

dEV2 M2 ¢ 1 I“
—_—E L. : xf(x) d&x > O (Aa3)
dKll) 2 (131’ N (¢K?)]’ x*

using de = - (r uo)(i—d%&' : i,
ax’ £ (6 + )
a?@Ev,) w ! 2
2" _ 2 9 1 1 2 ¢
Then = = e (L) ¢ == (r-u)) o £(x*)
2 4r b % 0
a)) Ky Kkl) (6+K)) K
(6 + 4) o
- xf (x)dx
6+ &) x*
which has a negative and a positive component. When Kp = 0 ; x* +» o

1

and the negative term goes to zero. So, at low values of KP ' EVl is

concave.

1

As K? increases, the function becomes convex. As K? +> o

the positive term disappears. However we are only interested in the

range of K

M

& (o, ;lﬁ and whether the point of inflexion has occurred

1
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before ;i-, will depend upon the parameter values.

Proposition 4, Proof We know from Proposition 2 that 8 > O

dev

(iv) Thus if uo > r , then 6 + Ho > r Sso 1 >0 . For (i)-(iii),
dEV ax> aEv,
u, < r and sign of will depend upon the size of 5
© a’

i.e. will the positive 19 , be sufficient to outweigh the

negative (uo -r) .

(1) If 6 is small, such that uo + 0 < r then bl <0.
dK
1
(iii) If 6 is large, such that when K? = Q0 = 0 = 0, then
dEVl . dev
; < 0 but for high values of KP ;s .+ 8 > r then >0
a> 10 4>
1 1

(ii) However if 6 takes on medium values, such that

dev

At Kp = 0= 6 =0 then L <0 .
1 dkb
1

M. deEv

1
= — < <
At Kﬁ ol uo + 6 r then dxp o.
1

Whichever effect dominates depends upon the parameter values.

Proposition 5, Proof Let an increase in ¢ represent an increase in

the riskiness of the distribution. Differentiating equation (7) w.r.t.

¢ , where EV,_ is given by (A2) :

2
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dEVl 1 dEV2 M2 (K ? + 2¢) K? g 1
T CWmE g e ,{"f""‘”“°
l

Proposition 6, Proof Implicitly differentiate equation (10)

M r - ,
Yo a4 (EV,) ' z (K;+9) X,
b.2
d(Kl)

Proposition 7, Proof

Proposition 8, Proof

ax?

Implicitly differentiate equation (10) using

equation (A3)

M -]
1 2 4 1 [1
T T N = [ xf(x)ax
W+ 2 b s ¥’ ;, £2 ¥

+EGN) (2 = u) (8 + KD) %]
1

Implicitly differentiate equation (10) using (A3)

2
1 d (EV2)

D
as

b, 2
d(Kl)

2
a”(Ev,)

1+4i dK: dé
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d2 (EV-\) Mq 1 l?‘i - 2¢ ‘m A
where —"_—{:—.= =S = o . 7 x’f((x) ax

abag )T e |6+ &% .

- i—b(r - u) P& + 20) +E0x%)
1

K a®(ev,)

Thus if 5 < ¢ then 1 <0
ax ag

Proposition 9, Proof Rewriting equation (AR2) using (3)

]
[ x*
o 1 1,
EV, = (1+i) [M-(Ka + rl(b)] = [ [u+> JExrax + f £ (x) ax
2 1 1 )]]r 2.0 ¢ Kb+¢)l:
(a5)
F.0.C
dEV; N K? : .
—==1-= [u +( ]f(x)dx-ff(x)dx
dKl x* (Kb+¢) -0

But for values of x in the range (x¥*, +)

Kb b
r <yt (—l-)
(Kp + ¢)
-] x*
and [ fxiax + [ f(oax = 1
x* -
dEV]'_ a
So <0 = K =0
ax

Proposition 10, Proof Differentiate (13) w.r.t. K: , using (A5) and note




Kb’:

400

{w [u + (——) (Kb+¢)

]f(x)dx = uo

aev!' M -(x"‘l‘ + r]?i) o
bl - 5 . ,,j X£ (x) dx
ax? . (x§+¢) (¢x’°)
fx*[ Kb %
+ (u -x) + (—) ]f(x)dx
- “’ (xb+¢)"
But for values of x in the range (-«, x¥)
4 xb”
r > o + (——) -
xb+¢)
soat ¥ = 3
1 r
4aEv i Ix* [ K}i g
_ = 0+ L.+ () —r]<o
a® 2 (o} ) (Kb+¢)l’
1 1
b* M
K <7

Proposition 11, Proof

Rewriting equations (13) and (A5)

® M-r 1K§ 13; :
EVi = max uoKT + f = [u +( ]f(x)dx
o x* T2 (¢+1<b )
1

x*
+] - e fGoax

where x* =

"
54
(r, - uo)(¢+1§’> (xb)

1
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b
dev" r M-r K.
1 [ 1] 11 ¢
=l1-—=|p_ + . j’ x£ (x) dx
dK]i r, 1’0 2r, (K11’+¢)%' (¢Kb)1:
b
x*
1 1 X .
+r [— !u +(—) ——P——'} ~l] f(x)ax (A7)
1, lr, 1o (¢+K€)%
fx* K: 5 %
As x* > o ; [1|+(—) ] f(x)dx » p_ .
e o ¢ (¢ + K?_)l! (o]
dEV]'_'
Then (A7) can be written dxp = My - T, >0
1
1
Proposition 12, Proof Implicitly differentiate (A7):
a@Evm  r M-z K> o
d—Kb-—l—?—zl-uo- él'Kbq, Kb”I xf (x) dx
ldr2 r, 2r2 ( l+¢) (¢K.)
" rl]ﬁ . 2 uo . L 2 *
T Kb (Kb) £ (x*)
2 ( l+¢) 1
rl Ix*[ K: : X
Sl TORE  Cruny T ] f(x)ax (A8)
r, . Lo ¢ (K§+¢)H
Divide (A7) by z, and substitute into (A8) .
2 "
d (Evl) _- uo r, X* M- rlxi 2 uo ¢
——— = T - [ foax - — . A b) £ (x*)
aar, 2 T2 e 2 (K2+4)

x*
Let ] fxax = F(x)

-0



Then if 4y > r

and u > r

if

and u < r

But if r, >y >r. then

F A

A

o
2]

uﬁ1r§%r

AV
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Notes:

1/ Random variables are denoted by a superséript n~t  ahove the symbol.

2/  More correctly the firm is far-sighted.

3/ The variance could also be unknown, see DeGroot (1970) p. 169, but
this would only complicate the problem. The variance is thus
assumed constant with the mean being the only unknown parameter.

4/ For deviation of posterior mean and variance see DeGroot p. 167.

5/ See Proposition 1 in Appendix.

6/ Cf£. Rothschild (1974b) p. 191

"If the machine whose pay-off probability is known is ever played,
it will be played forever more."
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