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determined schemes are considered because of their overwhelming popularity.
An unbiased and optimal (in the sense of minimum forecast error
variance) extrapolative predictor is also described and used in the
analysis because it provides a useful benchmark as the 'best' extra-
polative proxy available. Section 4 examines the implications for
estimation of using these three extrapolative proxies in the context

of a simple two equation macro model due to Wallis (1980) and section

5 extends the model to include dynamics. The simple two equation model
used bears a very close resemblance to the two main equations of the
condensed St. Louis model described by Anderson and this, with its
linearity and simplicity make it an ideal structure in which to house
the analysis. Section 6 gives some numerical comparisons of multiplier
error using the method under feasible values for the parameters.
Section 7 discusses further problems that arise using the algorithm

for policy analysis even when a set of consistent estimates is used.
Focus here is on the seriousness of ignoring mistakes during

simulation by substituting actual outcomes for expectations and on
problems raised by Lucas' critique of policy evaluation (Lucas. 1876 ).

Section 8 provides a summary and conclusion.



2. Outline of the Fair-Anderson method

In their two influential papers Anderson (1979) and Fair (1979)
undertake dynamic deterministic ex post policy simulations on the Fair
(1976) and St. Louis models with a general aim of deriving dynamic
policy muitipliers. The method is easily exposited in the context of
the following simple two equation model explaining a price level and

nominal income

(2.1) p. = om +u

Il

e
(2.2) vy Bmt +Yp. tu,,
where superscript 'e' denotes on expectation formed at time t-~1 and
pt ' Yt' mt and ult and Uy, are the price level, nominal income,
money supply and structural disturbances respectively (all variables
in natural logs). The model is incomplete without an assumption about
expectation formation and until the R.E. revolution macro models such
as this were typically estimated incorporating extrapolative schemes
such as

n

(2.3) pt = .Z Si Pt—i
i=1

The R.E. of prices (pt*) however is defined as
* =
P, E(p,|2,_;)

where Qt—l is an information set containing the model ((1.1) and (1.2)



in this case) and all variables up to time t-1 and so

(2.4) p* = afi

where a hat denotes an optimal (minimum forecast error variance)

extrapolative prediction.

The R.E. compares starkly with any extrapolative scheme such
as (2.3) since it involves optimal prediction of the exogenous variables
(in this case, the money supply) and the form of this predictor will

obviously depend on the exogenous variable process.

Having obtained estimates of the structural parameters of
(2.1) and (2.2) by incorporating (2.3) and imposing an arbitrary
restriction on the 6's (such as that they sum to one) to identify
Yy one might proceed to a simulation exercise. This would normally
involve setting all structural errors at their means of zero (for
deterministic simlation) and numerically solving (2.1) to (2.3) under
different money supply settings with a general aim of deriving policy

multipliers such as

3pi o ayi . 1/
om, om. 23 -

Our simulated values would thus satisfy

1/ Obviously in our linear example the multipliers are independent
of initial conditions. This is not so in nonlinear models where

ap,

multipliers, such as 555 are calculated.

3 yo, . e .



; s _ s
(2.5) pt amt
s s n s s n s
(2.6) Y. = bmt + ciilﬁipt‘i = bmt + caiil 61 me_y

where superscript 's' denotes a simulated value. Numerical values for
multipliers are easily calculated by comparing the time paths of
endogenous variables (given the same initial conditions) under different
money supply settings ( often , focus is on the effect of a 'blip' or

a shock in the exogenous variables, in our case money supply, at time t ).

To repeat the exercise under a 'maintained hypothesis of
R.E.'s' Anderson and Fair suggest simulating under the expectations

scheme

(2.7) P = P

in place of (2.3) so as to make 'expectations consistent with the
predictions of the model'. Justification of thié comes from the fact
"that R.E.'s differ from actual values only by a stochastic error con-
sisting of current structural disturbances via the reduced form and
current innovations in the exogenous variables. In our example the

error in the R.E. is

- * == -+ — = U
Py = Py om + uy, - ofl, 1t &

where et is one step ahead prediction error of the money supply. 1In

deterministic simulations however the model is solved with structural

disturbances set at their expected values of zero so that imposing



(2.7) it is claimed provides approximate rationality. For example in

our model such 'consistent' expectations are given as
s s
(2.8) P = pt = amt

as an approximation to the R.E. in (2.4). Using (2.2) and (2.8) the

substitution for income is then
(2.9) v = (b + ca)mts

If the hypothesis of R.E.'s is maintained from the beginning, comparable
forms for price and income are obtained by solving (2.1), (2.2) and

(2.4) to give

(2.10) P om, + u

]

it

(2.11) Y (B + Ya)ﬁt-fyuet + u

2t

By comparing (2.8) and (2.9) with (2.10) and (2.11) ignoring differences
due both to structural disturbances and money supply innovations ((2.8)
and (2.9) do, in fairness, describe a deterministic simulation) we see Y
that the essential distinction rests on the estimates a , b and c .-_
Making expectations consistent with the predictions of the model as in
(2.8) and (2.9) is not imposing R.E.'s because the structural parameter
estimates used therein were obtained under a different expectations
hypothesis, in our example the ad hoc scheme in (2.3). The main force

of this paper is to show that under a maintained hypothesis of R.E.'s,

estimation incorporating an ad hoc expectations scheme will lead to a

1/ In his paper Fair replaces a term structure equation incorporating a
simple extrapolative expectations scheme with an efficient markets R.E.
condition. Whilst 2SLS estimates in other equations remain consistent
the choice of instruments used in the first stage for these is no

longer optimal.



biased and inconsistent set of structural parameters. These biases
cannot be overcome by then simulating under a maintained hypothesis

of R.E.'s in the manner described above.



3. Extrapolative proxies in common use

Of the extrapolative proxies typically used in macro modelling
we may distinguish those of finite order from those of infinite order.
Infinite schemes obviously require a restriction on the lag structure
for implementation and the exponentially declining lag of adaptive
expectations provides a classic example. Finite schemes may or may not
be further restricted; an Almon lag would have the lag weights following
a polynomial in the lag operator whereas the scheme in (2.3) allows the
data to determine the weights up to the imposed truncation point (n) .
We consider estimation incorporating each scheme in turn in the context
of the income equation (2.2) above. Using the finite but otherwise
anrestricted scheme of (2.3) we would substitute (2.3) into (2.2) and

estimate freely by 0.L.S.
n
(3.1) yt=bm+c26.p + u

The restriction that the §'s sum to one would be imposed
afterwards to identify ¢ . The maximum lag n may be chosen
'sufficiently' large to capture the bulk of the distributed lag, leaving
the error largely free of autocorrelation although it has often been
set equal to one giving a simple légged variable proxy. The advantage
of this procedure lies in allowing the data to determine the form
of the distributed lag where cues from the underlying theory are weak.
Its weakness lies in the arbitrary restriction required to identify the
structural parameter. 1In dynamic models further such restrictions are

required.



Among all extrapolative schemes available those of the

Almon lag and‘adaptive expectations stand out through frequency of use.

Using the former would mean estimating

n
Yo = bmt + ¢ .Z §(i) P_; + ug
i=1
h ‘ § (1) ~K+K'+K12+ K i™
where i) = K, 11 5 <. o KR

with additional ‘'degrees of freedom' requirement that n be greater
than m + 1 (m is commonly set equal to two giving a quadratic form)

and this is achieved using restricted least squares methods,

Invoking adaptive expectations gives

= d-98)
(3.2) Yy, = bm +c {(l - (SL)]pt-l g

where L is the lag operator.

A Koyck transform is often applied to give

(3.3) Y bmt - bémt_ + c(l-—é)pt_l + Gyt_l + (1-8L)u

1 t

and this is typically estimated by nonlinear least squares methods
incorporating the relevant nonlinear parameter restrictions but

approximating the induced first order M.A. error term with an



1o0.

1/

autoregressive error scheme.

The next three sections describe the implications for
estimates derived using these proxies when expectations are really
rational. In any linéar dynamic simultaneous model which includes
exogenous variables so generated there always exists a univariate represen-
tation for each endogenous variable (Prothero and Wallis , 1975 ) from
which may be obtained a predictor that is unbiased and which has
minimum one-step-ahead forecast error variance among the class of
purely extrapolative predictors. This optimal extrapolative predictor
(henceforth 0.E.P.) is to our knowledge, never purposefully used in
nonrational models although it may by chance coincide with an ad hoc
scheme (we consider an example in the next section). It nevertheless
provides a useful benchmark in the analysis because, like an R.E., it
is a conditional expectation, but it differs from the R.E. by being
conditioned on a smaller information set namely the past values of

the variable itself and as a result it is less efficient than the R.E.

1/ A programme by Osborne recently written would incorporate the M.A.
and so provides an exact ML estimation procedure.
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4. Estimation using these proxies under a maintained hypothesis of

rationality

Consider the following static two equation model explaining

first differences in nominal income and the price level;

e
(4.1) p, = 812 Y + Op + U,

»

(4.2) Yo = By Pt Y9 *u,

where pt ' Yo and g, are first differences of a price level, nominal
income and real government expenditure respectively. (All variables

are in natural logarithms). This has reduced form

e
(4.3) p, = Hll p, + le g, + Vie
(4.4) = 0, po+1 + v
: Ye 5 Top Pt Iy 9 t vy,
where Hll = a/A, le = YBlZ/A ’ H2l = a621/A , H22 = y/A ,
A = 1 - 612621 and the reduced form errors (vjt) are linear
combinations of the structural errors (ujt) . Eguations (4.1) and

(4.2) very closely resemble a static form of equations 11 and 12 in
Anderson's paper (op. cit.), the two main equations of his 'condensed
version' of the St. Louis model (Anderson has money supply in place of
the price level in (4.2)). Expected price changes enter (4.1) to
represent the effect on prices of a wage bargain made for the current
period but based on previous information and the income term represents

aggregate demand pressures. Because labour costs only form a fraction
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of total costs, then given a mark up rule for pricing (augmented by
demand pressures) the elasticity o is less than unity. Making 821
unity in (4.2) gives real income changes as a function of changes in
govermnment expenditure and so the model is clearly Keynesian in its

structure.

To write (4.3) and (4.4) in terms of observables we require
an assumption for expectations. Under a rational expectations regime

the reduced form of the model is
.3 Pe = T-om, %t T2 9%* Vi
(4.6) Yo = Tom. Gt T 9 * Vo

Finally we require a process for government expenditure to obtain the
predictor §t of the current value. Under the general ARMA (p, q)

representation
¢(L)gt = e(L)et

where ¢(L) and 6(L) have leading coefficients of one, the predictor

for gt is given by

_ -1 e
8 = T [l G(L)}gt—l

and on substitution of this in (4.5) and (4.6) and multiplication

- throughout by 6(L) we have the final equations



13.

Hll HlZ

1 -1

pHo@-gm]g, | + BT g, + 8LV,
11

(4.7) G(L)pt =

M, I
(4.8) 8Ly, = EZ%—ﬁlZ'L‘l[e(L)—¢(L)]gt;1 + B(LI,,g, + O(L)V,,
11

(4.7) and (4.8) express P, and Yo in terms of g own lagged values and
the current and (max p, gq) lagged values of Iy - Note also that these

final form equations have an M.A. error of order g .
Under the maintained hypothesis of R.E.'s (4.7) and (4.8)
represent the data generation process and we now turn to consider

estimation of the II's by incorporating an ad hoc proxy of some sort.

. Consider first employing the finite scheme in (2.3)

n
(4.9) Pe T P T %Py toPppfe oA
n
(4.10) Yt = Pog; iil 6ipt~'i + p229t+22t
n
(with I éi = 1 imposed to identify the pil) .
i=1

Note that if n is greater than one (4.2) is overidentified and so
(4.9) and (4.10) are jointly restricted and in such a situation ZSLS

is normally used. Since 2SLS is dealt with in the next section we
shall consider using O.L.S. here to obtain estimates of the reduced
form coefficients. (Multipliers are after all direct functions of
these and not the structural coefficients). By comparison with (4.7)
and (4.8) we see that estimates based on (4.9) and (4.10) are seriously
inconsistent. Even if n > g so that the correct number of lagged

values of P, enter (4.9) omitted variables (lagged values of = which
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enter as a result of optimal prediction associated with R.E.'s) causes
inconsistency and this is aggrevated by ignoring the M.A. error.l/
(4.10) excludes lagged values of gt and g  lagged values of the
dependent variable and also has an unrecognised M.A. error. Asymptotic
values for the estimates in this general case are hard to derive and
probably wholly uninformative. For n = 1 , however (lagged variable
proxy) the calculation is tractable and asymptotic values for the
pij‘s in this case are derived in Appendix A.

In section 6 some numerical results on these parameter (and

multiplier) biases are discussed.

Using an adapﬁiva expectations hypothesis in the reduced

form (4.3) and (4.4) means that the following system will be estimated:

]

(4.11) p- [Qll(l—6)+6]pt_l * P9, P89, g+ (-8L)z

1

(4.12) Y p21(l-6)pt_l + 6yt_l + Pyo9, pzzégt_l + (l-—GL)z2t

If p=q=1 in (4.7) and (4.8) and if there are no estimation
restrictions imposed, then the estimates éf the coefficients of all the
variables in (4.11) and (4.12) will be consistent estimates of their
counterparts ih (4.7) and (4.8). However when these coefficient estimates
are 'unscrambled' using the restrictions in (4.7) and (4.8) the

strucfural parameters will be wrongly identified. If either p or q

is greatér than one or if the restrictions in (4.11) and (4.12) are

1/ A careful data miner may diagnose and attempt to correct autocorrelation
so  induced by imposing an autoregressive error (normally to first
order). Even so, an AR ecrror has an infinite number of autocovariances
and can only approximate the finite number of the M.A.(q) errors.
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imposed for estimation (this is rarely done) then all estimates are

inconsistent.

It might be tempting to assert at this stage that the nearer
the extrapolative proxy used is to the O.E.P. implied by the data
generation process then the less inconsistent the estimates so obtained.
This is not necessarily the case because  the O0.E.P. itself still

provides inconsistent estimates as we now show.

Consider the 0.E.P. for pt derived from (4.7) (full

derivation is given in Appendix B).
NS § R ¢ )
(4.13) p, = L [l ]pt—l

where Q(L) is of order K = max(p, g) , has leading coefficient of one
and has coefficients which are functions of all the parameters involved

in the model and the g-process.

Now using the identity

A

+ = = * 4 +
Pe v ug SR SR T8 vV,
(where He is the one step ahead forecast error of the 0.E.P.)
or more explicitly

* = A
(4.14) pt =P, +



16.

and substituting ﬁtinto(4.3) and (4.4) we obtain

(4.15) Py = M0 + o9 *+ 235y
(4.16) Ye = THpBp + 1550, + Lo
where the error terms are given by
Sie = TypMe T MypThofe — vy H vy B 102)

then applying least squares to (4.15) and (4.16) gives inconsistent

estimates since the ¢ are correlated with the exogenous regressand

jt
g, through both the presence of ¢ _ and of U ((B7) in Appendix B shows
ut to be correlated with all past €'s and v's). In general the one
step ahead eror f a purely extrapolative predictor is correlated with

“all the exogenous variables in the model and use of any such predictor

1/

in place of the R.E. will always lead to inconsistent estimates.

5
b

To take a specific example consider the ARIMA(O, 1, 1)

process for = (obtained by setting p=g =1 and ¢ = 1)
(1 ~ L)gt = (1 - eL)et

so that the forecast @t is given by the adaptive expectations scheme

1/ Such a warning was first signalled by Nelson (1975).
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o (1-8)
9 = T - om) Je-1

The final equations (4.7) and (4.8) now become

MM, '
(4.21) P, = O, + JT":‘ﬁIi(l’e’ " Oy lae gy * e, + Asemvy
(4.22)  y. =6y, . + C21712 ;g - o lo. 4 1g + a-enyv
- t t-1 1 - nll 22]7t-1 227%¢ 2t

and the 0.E.P. (4.13) now becomes

A =1~2
(4.23) Py 1 - oL Pt-1

Note that (4.23) also coincides with an adaptive expectations
scheme; of course it is always possible that an ad hoc proxy will coincide
with the O.E.P. Using a series from the O.E.P. as a proxy for the R.E.
in this case is tantamount to estimating (4.11) and (4.12) (with Q in
place of § ’there) subject to the within and cross equation restrictions
that the ratio of the coefficient on gt to that on gt—l in both
equations be equal to -Q , the coefficient of the M.A. error. A glance
'at (4.21) and (4.22) shows this restriction to be false and so inconsistent
estimates result. Again, analytical expressions for asymptotic values
of the estimates are uninformative but some numerical results on these

are discussed in section 6.

To reiterate then even if the extrapolative proxy used

coincides with the 0.E.P. inconsistent estimates still result.

It must be noted at this stage that whilst parameter estimates
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from the reduced form of (4.3) and (4.4) will be inconsistent when the
O.E.P. proxy is used the multipliers Bpt/éﬁt and Gyt/éét which are the
responses of P, and yt to that part of a change in 9. that is
predictable at t-1 will be correct asymptotically. This however is
a peculiarity arising from the fact that in our simple model there is
only one sourcé of assymptotic bias namely the correlation between g
and the augmented errors in (4.15) and (4.16) (the % ), - When there
is more than one source of bias, that is when the model involves 2 or
more predetermined or exogenous variables, then nothing in general may
be said about the asymptotic bias in thése multipliers. The intuition

for this result is weak but a proof is made in Appendix A.
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5. A dynamic extension

To make our simple model more general consider the dynamic

extension
-1 8 o 0 P(L) e u 0
12| |Pe Py 1t
Bo1 LY o v o Yeo1 Yot 0

where (L) is of order r and has leading coefficient of '“¢1; The
dynamics in the first equation of (5.1) mimic those in Anderson's

condensed model equation referred to above.

The second equation in (5.1) is now overidentified and
structural estimates may be obtained through the reduced form if we

incorporate the r+l cross equation restrictions

Pari T

P11 T
where the II's are the reduced form coefficients as above and the
p2i’ pli are the reduced form coefficients on yt—l-i in the second
and first equation, respectively. This requires computationally expensive
FIML estimation and when confronted with this problem the modeller

1/

almost invariably resorts to 2SLS structural estimation. We now consider

then 2SLS estimation of (5.1) incorporating an ad hoc scheme for

expectations under a maintained hypothesis of R.E.'s.

The maintained structure under the general ARMA (p, q) process

for g may now be written as

1/ Although over identification is a major reason for the use of 2SLS,
nonlinearity also leads to its use in a 'nonlinear 2SLS procedure’
(e.g. see Fair, 1976 ).
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all
B} 12 -1, _ew] o, b
(5.2) P = Byo¥e t1om F [l G(L)}gt-l -1 Ye-1 Ve
11 11

A simple transformation of (5.2) yields a representation in

terms of a finite number of right hand side variables.

_ -1 (LW (L)
(5.4) e(L)pt = BlZYt + {L [G(L) 1] + —1—:—311} Yeoq
all
12 _-1
* 5L few - em]ey + 8@,
11
P is now in terms of gq own lagged values and max(p,q) and qr

t
lagged values of gt and Yy respectively.

Employing the scheme in (2.3) we would estimate by O.L.S.

n
(5.5) p, = blzyt + aiil 6ipt-i + S(L)Yt—l + Z,
(5.6) Y, = blet tcg tz,

~

where denotes a prediction from an unrestricted reduced form
regression (the first stage of 25LS). The first thing to note is that
the set of instruments used in the first stage would be incomplete as
simple comparison of (5.3) and (5.4) with (5.5) and (5.6) shows. If
the degrees of the lag polyrnomials in (5.4) are large (greater than one,
say) then all estimates are likely to be very inefficient. Secondly

the estimates in (5.5) will be inconsistent due to omitted variables

and failure to take account of the M.A. error process of (5.4). Those
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in (5.6) will however be consistent. If we invoked adaptive expectations
we would estimate (5.6) and

(5.7 p, = b + [a-&)+slp, | + [s(m) (1-61)-b 8]y, + (A-SL)z

t 1 Z?t
Even if the restrictions in (5.7) were not imposed, it will always exclude
variables (at least one lagged value of gt) and ignore the M.A. error
in (5.4) and so will provide inconsistent estimates. 1In addition when
the estimates are 'unscrambled' using the restrictions in (5.7) the
structural parameters will be wrongly identified. Again estimates of
(5.6) will be consistent but inefficient, the degree of efficiency
depending on the 'completeness' of the set of instruments used (the
included predetermined and exogenous variables). Finally we may note
that if the O.E.P. for this model is used (the O.E.P. in this case
is complicated and so its derivation is neglected to Appendix B) then

we would estimate (5.6) and

(5.8) P b ¥+ ab + STy, _; + 2z,
Our instruments for the first stage are now ﬁt v 9y and r past
values of yt and these provide our ?t and ﬁt . Note however that

substitution of an 0.E.P. for the R.E. using (4.14) augments the error

term in (5.2) by

1 - ]
L1 T Vi (where L,
8

in place of Hll ).

has the same form as e in (4.16) but with
21
This error as noted earlier includes € and u making it correlated
with all current and past values of g so now not only is the

regressor 9 correlated with the error in (5.8) but so is ?t .



22.

In fact because g is also correlated with the reduced form error (seen

clearly if the reduced form is written in terms of ﬁt' (i=L to r)

Ye-1-3
and gt) then O.L.S. gives inconsistent and biased reduced form
predictions for ?t and ﬁt for the second stage of 2SLS. Again then
all estimates are likely to be highly inefficient and those in (5.8)
will be inconsistent. Obviously the above results carry over to LIML
and 3SLS estimation although both are rarely used. In general then
using 2SLS results in inconsistency of the estimates in the equation(s)

containing expectations. Other estimates although consistent, are

likely to be highly inefficient.
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6. Some numerical illustrations

The previous analysis has shown that following the Fair-Anderson
method will yield asymptotically biased estimates and in general these will
give rise to biased multipliers. However, analytical expressiors for these
biases in terms 6f the model's coeffiéients are generally uninformative about
their direction and magnitude even in the simplest of models. This section
then, provides some numericaiuillustrations, deriving multipliers using
estimates based on ad hoc expectations mechanisms under alternative
settings for the model's parameters. In particular we consider estimation
of the static model in section 4 and its dynamic counterpart in section 5
(this laﬁter hés the degree of (L) set eqﬁal to zero) incoxporating, in
turn, lagged variable and O.E.P. proxies for the R.E. Two types of multi-
plier for each variable are reported for the static model; the Ma's, repre-

senting the current response to anticipated changes in gt which are given as

P 6Pt nlz
e A
t 11
Sy nm I
y t 12721
and Ma = = + I
‘ th 1 - Hll 22

and the Mu's, the current responses to unanticipated changes in gt r given as

Sp
t=H

P —
5€t 12

Mu =

e _
éet 22

and Mu

These are also reported for the d?namic model (they have the same analytical
form as in the static model) and in addition to these the current responses
to unanticipated and anticipated changes in 91 are tabulated. (These
latter are obviously zero in the static model).

A glance at Table 6.1 (which shows the results for the static
model) shows that although reduced form parameters obtained using an O.E.P.
proxy are seriously inconsistent(biaseé of up to 200% are reported and some

estimates are wrongly signed), the Ma's are consistent and this as
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noted earlier and as is proved in the Appendix is a peculiarity specific
to our simple model. The ﬁu's however show serious bias and
occasionally the wrong sign. fﬁr example in set (b), a value for
muP is given as =-0.436 for the lagged variéble proxy and -~0.264 for
the O.E.P. when its actual value is 0.7. Note that the 0.E.P. proxy
provides slightly better estimates in most cases although the advantage

over its lagged variable counterpart is often marginal.

The impact multipliers for the dynamic model reported in
Table 6.2 show similar order of magnitude biases to their counterparts
in the static model with the Ma's no longer being consistent. The
'one lag’ §ynamic multipliers , 6yt/6§t—1’ 6pt/6§t_l ' éyt/éet_l
and Spt/éet_l are the most seriously biased out of all
the multipliers reported,most of them having the wrong sign. In fact
this result emerged fairly consistently f;om the sets of
parameter values that we used (only a small sample of our numerical
results are presented in this paper). However, there seems to be no firm
qualitative conclusions on signs or magnitudes of biases arising from
the use of the two proxies except perhaps that use of an O.E.P. is
marginally better than the simple lagged variable proxy. This supports
our contention that results from numerical experiments using the Fair-
Anderson method are likely to be arbitrary and uninformative about

policy responses from a rational model.

Finally we must note that we have discussed large sample
( as ymptotic) properties only. In small samples the results may be even
worse since in 2SLS the linear combinationsyof instruments used in the

first stage although valid for equations not containing expectations



ters are poorly correlated with the endogenous variables and so will

give rise to highly inefficient estimates.

25,
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Table 6.1

0.L.S. estimates from (4.3) and (4.4) obtained using ad hoc proxies for

the R.E.
Parameter/Multiplier Actual value Lagged Variable Proxy O.E.P. Proxy
(a) a 1.000 0.470 1.076
Byy 0.666 -0.685 0.178
B,y 0.500 0.500 0.498
Y 0.400 0.400 0.391
I, 1.500 0.350 1.094
m, 0.400 -0.204 0.076
T, 0.750 0.175 0.545
T, 0.600 0.298 0.429
Ma¥ 0.000 0.243 0.003
MaP -0.800 -0.313 -0.813
Mu? 0.600 0.298 0.429
MuP 0.400 -0.204 0.076
g process :~ (1-1) 9, = (l-O.SIDet
(b) a : 1.000 0.853 1.023
By 1.000 1.000 1.000
Bro 0.500 -1.658 -0.640
Y 0.700 0.699 0.680
I, 2.000 0.321 0.624
1, 0.700 -0.436 -0.264
T, 2.000 0.321 0.624
T, 1.400 0.263 0.4123
MaY 0.000 0.060 -0.026
Ma® -0.700 -0.640 -0.700
MuY 1.400 0.263 0.412
Mu® 0.700 -0.436 -0.264

g process :~ (1-1) 9, = (1-0.3L)et

Disturbance specification for all experiments:-

_ . _ 2
cov(ul,uz) = 0 and var(ul) = yar (u2) = cs
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Table 6.2

28LS estimates from (5.1) (with the degree of V(L) set egqual to zero)

obtained using ad hoc proxies for the R.E.
Parameter/Multiplier Actual Value Lagged Variable Proxy O.E.P. Proxy

(a) a 1.000 0.258 0.043
312 '0.400 0.112 0.031

B,y 1.000 1.005 1.000

Y 0.800 0.801 0.800

" 0.300 -0.877 : -0.734

M, 1.666 0.290 0.044

n, 0.533 0.101 0.026

oy 0.500 ~ -0.988 -0.757

M, 1.666 0.448 | 0.080

I, 1.333 0.902 0.828

o, 0.500 -1.008 -0.764

Ma¥ 0.000  0.966 | 0.830

Ma® . -0.800 | 0.142 0.027

MuY 1.666 0.902 0.828

MuP 0.533 , 0.101 - 0.026
MaD¥ = o, Ma’  0.000 -0.974 : -0.634
MaDP = pl,Map -0.400 -0.140 -0.020
Mup? = 0, Mu? 0.833 -0.909 -0.633
mup® = o Mu®  0.266 -0.099 -0.020

g process :- (1-0.8L) 9. = €,
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Table 6.2 (contd)
Parameter/Multiplier Actual Value Lagged Variable Proxy O.E.P. Proxy

(b) a 1.000 0.128 0.281
Byy 0.666 ~ -0.166 -0.074
B,y 0.500 ~ 0.500 0.500
" 0.400 0.400 0. 400
v 0.600 -0.266 -1.401
m, 1.500 ~ 0.118 0.271
m, 0.400 -0.060 -0.028
N 10.900 -2.083 -1.351
M, 0.750 0.091 0.142

- 0.600 0.360 0.380
oy 0.450 -1.090 -0.671
Ma¥ ~ 0.000 0.354 0.375
MaP ~ -0.400 -0.068 , 0.038
Mu¥ 0.600 0.360 0.380
Mu® 0.400 ~0.060 -0.028
Map¥ -0.160 -0.386 -0.252
MaD® -0.360 0.142 ' -0.051
MuDY 0.270 -0.392 . -0.255
MuD® 0.360 0.125 0.038

g process :- (l-o.BL)gt =

m
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7. Further properties of the method -

The preceeding sections show that to impose R.E.'s during
simulation ‘requires a set of parameter estimates obtained under the same
maintained hypothesis, and thie set obtained using an ad hoc expectations
hypothesis is inédequate. This section exposes further properties of
the method assuming that a set of parameter estimates has been obtained

under the correct hypothesis of R.E.'s.

7.1 Properties associated with Lucas' critique

. Because .an R.E. differs from the actual outcome only by an
innovation uncorrelated with the 'past' as contained in the information
set then substitution of the actual value for the R.E. will ensure
immunity from the structural variation noted by Lucas (1976), since no

varying parameters associated with optimal prediction enter the simulation.

To make this clear recall the model as in (3.5) and (3.6)

e
(3.5) p, = nll P + le gt’+ Vie

i
=
+
<

) : e
(3.6) Y 21 P ¥ 15 9 + Vo

and recall that under R.E.'s

i I
e _ . o 12 o _ 12 - @)
(7.1) P, py 1-I e -1, . o)) 91
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Substitution of (7.1) into (3.5) and (3.6) gives a reduced
form in terms of observables which includes the parameters of the
g-process (the ¢'s and the 6's ). Changes in the latter bring about
changes in this reduced form and these must be accounted for when such
changes are simulated. ‘Making expectations consistent with the pre-

dictions of the model we would simulate ( in deterministic simulation)

il
S 12 s
(7.2) p, = — g
t 1 Hll t
i il
s 21 12 s
{(7.3) Y, = T 9.
t 1 Hll t

and changes in the g-process do not raise a problem during simulation.
In effect then the method keeps separate the parameters of the g-process
from those of the economic structure (a distinction drawn by Wallis,

1980 ) allowing policy simulation to proceed in the traditional fashion.

" fhis feature of the method combined with the removal of the need to

solve the model to obtain an expression for the R.E. form its most

attractive properties.

7.2 Properties associated with deterministic simulation

The substitution of an actual outcome for expecﬁations in
deterministic simulations, in which structural errors are set to zero,
to obtain a 'mean path solution' for the endogenous’variables is an
approximation when the actual exogenous outcomes and not their expected values
are uséd.(ln dynamic models both the mean solution and the expected
values are conditional on the initial values). In effect, this makes

current shocks in the exogenous processes enter expectations and become
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perfectly anticipated. It is claimed that this oversight is unimportant.
However, much attention in current economics focusses on the effects

of shocks in exogenous processes on the short run behaviour of real
variables, (such shocks together with structural disturbances forming the
mistakes in R.W.'s.) For example Lucas (1976) discusses the effects of
increasing the one step ahead error variance (decreasing the 'predictability')
of stochastic policy rules, money supply in his case, and an open loop
low '‘noise' money supply rule is recommended by Sargent and Wallace
(1975) to stabilise output because it is easily predictable. However,
the neglect of unpredictable elements in exogenous processes can be
overcome by building predictors for them using multivariate time series
methods and this can provide mean paths for the exogenous variables
(conditioned on information at the first period of simulation) for

deterministic simulations.

7.3 Stochastic simulation and problems associated with perfect foresight

in neutrality models

Even were this undertaken there are certain classes of

models for which mean paths obtained from deterministic simulations, are
very uninteresting and uninformative from a policy analysis point of

view. For such models structural disturbances must be added to all the
equations and actual exogenous variable values (as opposed to predicted
or mean values) used i.e. stochastic simulation must be undertaken. In
this situation setting outcomes equal to expectations is imposing not
R.E.'s but perfect foresight since outcomes include all current stochastic

disturbances.
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One class of models that requires stochastic simulation and
for which the imposition of perfect foresight instead of R.E.'s has
very serio&g consequences is the so called neutrality class of Lucas
(1972) and Sargent and Wallace (1975). Broadly speaking these models
are built to give a steady state in which the level of real output is
independent of the money supply. Typically they have as a central
feature a Lucas supply function determining output, and a quantity
theory equation or a demand for money equation determining the price
level. The former has real output deviating from a natural level only
through the effect of current and past errors in predicting the price
level. If expectations are rational these errors are unpredictable
and consist of innovations in the exogenous variables and in the
structure, both being uncorrelated with past events contained in the
information set. In effect then mistakes in expectations consisting
of these innovations drive a trade cycle, and if they are ignored by
invoking perfect'foresight then output will not deviate from its natural
level for the period of simulation. As an illustration consider the

simple neutrality model

m
n
(7.4) y, =Yy + ¥ vy, (p_, -PF_ ) +tu
t jeo 1 t-i t-i 1t
(7.5) pt = V + mt - yt + u2t

where yn is a natural level of output. The reduced form is

n -1 o
y o+ (1+YO) b
i=0

- +
Yilep g + Uy Ty Iy

[

(7.6) Yy

m
n -1
VEam -y - (1) iioYi(Et—i+uzt~i By i P e

(7.7 P

1]
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Because this substitution is exact, traditional policy evaluation may
proceed and in this particular example the question of the optimal money
supply rule to adopt to stabilise output may be resolved. This would
normally be undertaken using a quadratic loss minimisation algorithm
which would minimise an objective (say)

K

Q = I (y - Y, ..%)
i=1 t+i t+i

2

where yt+i* is the desired or target level for income at t + i ,
subject to the economic model above. The algorithm would iterate on

money supply paths until a minimum value for Q was achieved.
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8. Summary and Conclusion

Reading the abstract to Anderson's paper (op. cit. p. 67) we
may be led to believe that the paper provides a method for deriving
policy multipliers from an existing non rational model when expectations
are rational. The main purpose of this paper, however, has been to show
that multipliers derived using the Fair-Anderson methodology are likely
to be seriously biased and so rational policy responses may not be
extracted from non rational models. In numerical experiments using
simple macromodels asymptotic multiplier biases of up to 200% are
reported, with no consistent qualitative results on sign or magnitude
emerging. This gives quantitative support to our claim that numerical

values of policy responses so derived are likely to be arbitrary.

The simulation concept itself however is very useful provided
that a consistent set of estimates is used and provided that 'mistakes’
in expectations are reintroduced into the simulation procedure, where
stochastic simulation is required. This latter point is especially
relevant for policy analysis in "neutrality" models where deterministic

simulation is uninformative.

Finally the most attractive feature of the algorithm is that
it allows policy evaluation to proceed in a traditional manner because
making expectations consistent with the predictions of a macro
model (one which is consistently estimated of course) has the effect of
separating the economic structure from the "structure" of the exogenous
processes and thus removes the source of structural variation referred

to by Lucas, namely these processes themselves.



Appendix A

Expressions for asymptotic estimates from (4.9) and (4.10) with (n

Using the fact that

* = - -
Py Pe = 108 = Vie
we may write (4.3) and (4.4) as
(A1) Py = Ky + T g, =K + vy
(a2) Yo = Ky +Tpy)g, = Ko + Vo
where | Kj Hjlan/(l - Hll) . O.,L.S. estimation of (4.9) and
(4.10), (n = 1) gives
P c o (1) -o_(l)o
plim | Y] = _i_ 99 PP gp " gp|
g o -0 (o 1
P pp gp gp ) pp( )
(A3)
P g o (1) -0 _(l)o
plim | 2| = i_ 99 YP gp gyl |
_ o o =0 (Lo (1)
"2 Pp gy YP( ) ap
where A = 0 o© - (o (l))2 and ¢ denotes a data
gdg pp gp
moment., Thus, for example
3 T a7
o (1) = 1lim(T) Ipp, .0 1lim(T) I p.g, -
PP Tosoo 1 tt~-1 gp Toreo 1 t7t

Al

L.
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' Agggndix B

Derivation of the O.E.P for the static and dynamic models.

Substituting

S B(L)VE
e T @ t

in (Al) and multiplying thrdugh by ¢ (L) gives
(B1) ¢(L)Pt = [(Kl + le) o(L) - Kl¢(L)J € * ¢(L)vit

The right-hand side of (Bl) has a MA representatioh in terms of a single

innovation #t (Granger and Morris, 1976),
(B2) ¢ (L) P, = Q(L)ut '

where Q(L), of order max (p,q), has leading coefficient of one, and the
remaining coefficients and the variance of U are obtained by canonical
factorisation of the autocovariance function of the right-hand side

of (Bl).

The one-step ahead predictor then comes directly from (B2) as

sl [1- e
(B3) p, =L [ oM } P

Derivation for the dynamic model in (5.1) is similar though more complicated.

A form for Py and Ye in terms of gt and yt__1 is
, oy (L)
(B4) py = (Ky +1;5) g + T, Ye1 T M1t Vie

(KQ‘*'HZZ) o+ VZt_f,Kzat_
(r - pl(L)K3L) t Q- pl(L)KBL)

(B5) Y, =



B2

I

where K, = _21

.. S— L 1 ylynomial
3 nll(l_nll) and pl (L) is the reduced form lag polyn

on Yt—l in the equation for pt from (5.1).

Lagging (B5) one period, substituting this in (B4) substituting for gt
throughout as above and multiplying through by laq polynomial terms gives

an ARMA ( (¥ + 1) p, m) representation.
(1- .:'il(L)K3L‘) ¢ (Lip, = QD(L) e

where QD has leading coefficient of one and is of order m = [(r+1)max(p.q)] .

To show that the error in the univariate representation is correlated with
all predetermined and exogenous variables in our static model rewrite (B2)

as

S ¢ )
e T 0@ Fe

Now substituting from (Bl) for 1 gives

1

B6) n o=om L | +M.) 6@ -k @ | e, +omw temwv
t 1 ¥ T2 5 fe PRI 1t

Expanding Q(L)”l‘ gives the representation in terms of past €'s and v's as

«© -]
(B7) w, = (M., e +V, )+ (Lo e . +In v -i)
t : :12 t it 4=1 1 t-1 i=1 i1t
The first term in brackets is simply the error in the R.E. The

second term is the source of correlation of g with all past values of

p and y (through the v's and ='s), and g (through the e's).
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APPENDIX C

Proof of the consistency of Mg and Mi from (4.15) and (4.16)

Agymptotic biases in the pij from (4.15) and (4.16) are given as

B [¢) -0 0 -0 (o) .
(c1) L T N - gb _ 1 |™%p%"%

A
B -
gp

|
>

(e} (2} . ' .
2 qCJ Uﬁﬁcgcj

where A = o o,
g9 Bp
We need to prove

2
- (o and where B is the inconsistency in p.. .
Ogp’ 15 Y IR Pyy

i P il + B
(c2) MaP = 22 o pyp 22 . 12 12
=0, =pyy =M, Bn
Im,.I P..P (I,,+B,.) (I, .+B_.)
y 21711 R 21711 21 21 11 711
and (C3) Ma® = I + ———== = plim(p. + ~————==) = 1__+B__+ — —~
22; 1 Hll 22 1 pll 22 722 1 Hll Bll

Rearranging we see that (C2) is satisfied if

We know from (Cl) that

B AA
cay 2 - "R i, 5.
Bil opg

Taking moments from (Al) gives

M2 opg
l—Hll

(C5) opp =



Now noting that 5 =p -4 and that § is uncorrelated with u by

construction so that
(c6) opp = opp

then (C5) and (C6) give.the result

B an =T
12 _-opp . _12
€N 5 % Gopg 1-T,, Q.E.D.

11

Proof of (C3) is more difficult requiring two extra conditions on the

biases, which are given by the consistency of the ILS estimates of

821 and Y. These conditions are
I p I,. + B
B
- I{.'21 _ 21
11 11
Myp ~Tpof P, P
- 22 122, PPy

(I 43, ,5) My +Byy)

T *%n
Using (Cl) and (C7) gives
B B I
" 22 12 12
(Cl0) g=—=5— ="717
21 11 . 11

After rearranging (C3) and then substitutiﬁg in this from (C8) and (C10)

we can see that we need to rrove

B
22
(C11) E*-'(l~ nll) +

11 11
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This is most easily verified by using (C8) and (C10) to get

B

22 T Tyl
R =
11 11

which on mﬁltiplicatioﬁ throughcut by l-—Hll/IIll ~gives (Cli) for the proof.
Note that if the zero element ir the vector in the middle of Cl was replaced
by a term representing a second source of correlation with ;j {this could
be provided for example by use ¢f a lagged variable proxy which, unlike

ﬁ ’ is correlated with the augmentéd errors) then the biases are weighted
combinations of the two covariances with the Cj and nothing in general

may be said about the form of the biases purely in relation to the reduced
form parameters ( the II's ) and hence, the multipliers. Similarly

in the n-regressor case, there will be only one zero elément in the vector
of covariances between'ﬁﬁe cj and the regressors and again the biaées

will be weighted combinations of these covariances and will not in general
satisfy the consistency conditions in (C2) and (C3). The numerical results
for our dynamic model show biases in all multipliers and this bears witness

to the latter point for the 3 regressor case.
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