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l. INTRODUCTION

The interface between economic theory and applied econometrics
is often one of uneasy compromise, with the pragmatic justification for
many accepted procedures resting on a tenuous theoretical Sase. This
paper examines the surprisingly strong arguments that exist in terms
of economic theory, for the usé of error correction mechanisms in the

specification of short run dynamic adjustment.

A common heresy exists that whilereconoﬁic theory provides
a detailed analysis of comparative static equilibria it can offer no
guidance as to the appropriate specification of dynamic adjustment towards
an equilibrium. Perhaps in consequence it is not uncommon to find
examples where the necessary dynamic specification is achieved by
"tacking” onto an existing equilibfium specification some relatively
ad hoc short run adjustment scheﬁe. The intercession of stochastic
argumenté in this process is confused and critical implications are
frequently ignored in practice, but perhaps more importantly there will
typically be no guarantee that the dynamic specification is consistent
with the prescribed equilibrium. Consistency in this sense requires that
the short run dynamic adjustment be directed by the perceived disequili-
brium and that eventual convergence to the equilibrium position be
ensured. That two separate theoretical arguments, co-exist within the
final specification is the root cause of many.difficulties both

theoretical and empirical.

Concern for this problem is not new; the literature on

adjustment costs in the investment decision (see Lucas [ll], Treadway



fl6] and particularly Gould [6]) raised the issue in a specific appli-
cation and more recently an important series of papers, Hendry and
Anderson [8], Davidson, Hendry, Srba and Yeo [5}, (DHSY) , Hendry [71,
Hendry and Von Ungern Sternberg [9]'(HUS) and Currie [3] have discussed
the general problem. The result has been to emphasise the use of a
particular econometric specification known as an error correction
mechanism that may be constructed so as to achieve both requirements for
the consistency in short run behaviour described above. In this paper
it is shown that a family of error correction mechanisms may be developed
and that the appropriate choice from this set depends on the dynamic
properties of the equilibrium. Further in most of the applications

cited above the development of the error correction specification was
formally derived through the optimization of a cost function in which
particular equilibrium conditions served as a target for the short run
dynamic adjustment. When the equilibrium specification is itself derived
through some dynamic optimization exercise it is a small but theoretically
important step to integrate both aspects within the same dynamic optimiza-
tion problem. A second objective of the paper is to indicate certain
general features of the cost function in such an optimization problem
that ensure that the resulting reaction function incorporates dynamic
adjustment that is consistent with the equilibrium. Moreover by allowing
for random errors in optimizing behaviour the resulting specification
leads to white noise error terms at the point of estimation. Misspecifi-
cation detected through residual autocorrelation may then be traced back

to an inappropriate specification of the cost function.



2. SHORT RUN ADJUSTMENT AND STEADY STATE ERROR

In this section we consider the question of the consistency
of the short run adjustment given a deterministic environment and given
an equilibrium target. In the following section we then remove these
restrictions and apply the general principles developed here to the
specification of the cost function for the "integrated" dynamic

optimization problem.

The fundamental issue of concern is whether it is possible
tec make general statements regarding short run dynamic adjustment
mechanisms that ensure some desired long run position. While we
abstract, for the present, from determining the path of desired values
xt* , we assume that the economic agent is able to recognise deviations
between this state and his current position. The motivating force in
short run adjustment will then be transmitted through some general

dynamic reaction function on the observed disequilibrium. Thus we may

write:

x, = A(L)(xt* - xt) (1)

and
e = X ¥ - x (2)
where A(L) is an arbitary rational polynomial in the lag operator L ,

and et is the error between the current and desired or target position.

We obtain the conventional partial adjustment hypothesis by setting



A(L) = Y/{(l - y) (1l - L)} .

Formally we require that the short run adjustment mechanism
achieve a zero steady state error given the éhosen target. This is a
basic issue in the analysis of dynamic control systems and in this
section we present results on discrete time models that are developed
from corresponding results for continuous time models in the control/
systems analysis literature. To make our meaning clear, by steady state
behaviour we mean behaviour after any transient part of the solution has
died away. Nothing is implied regarding, for example, stationarity or
constancy by the expression "steady state"; it may indeed represent any

dynamic equilibrium path.
Equations (1) and (2) imply that
e = e——— (3)

and we now consider the steady state behaviour of the error for different
assumptions on the dynamic behaviour of the xt* .

The final value theorem of 2z transforms (see R.G.D. Allen
[l]) enables us to consider the value of a time subscripted variable
as t goes to infinity, so that in a linear model, analysis of the
steady state may be separated from that of the transient component.

Using this theorem we may write the steady state error as

. -1
e, = lim (1 -~ z 7) E(z) (4)
z>1l



where E(z) is the =z transform of expression (4) . Thus

. -1, X*(z)
e = lim (1L - z 7) ——~— ’ (5)
ss 21 1+ a(z)

which clearly depends on both the dynamic behaviour of the equilibrium
value xt* and the adjustment mechanisms A(L) . We first consider

the response to different paths for xt* . We assume that xt* has

a constant value, which without loss of generality we take to be zero,

up to some time point again taken to be t = 0 , and thereafter consider

three cases.

(a) static Equilibrium: x * = k, t>0

Then the 2z transform of the equilibrium path may be written

X*(z) = k -

(L -2z )

and the steady state error is given as

k
ess T 1 + lim A(z) (6)
z>1l
(b) Constant Growth: xt* = kt, t >0

In this case

X*(z) = ]
(z - 1)(1 -2 )
e = lim (1 - z_l) fl
Ss z->1 (z = 1)(1 -2z ) (1 + A(z))
- k ' (7)

lim (z - 1) A(z)
z>1



(¢) 'Dynamic' Growth: xt* = %ktz, t >0

In this case

Lkz(z + 1)

X*(z)
(z - 1)3

and so

-1
o = lim (1 - = 3) Lkz(z + 1)
S8 z>1l |[(z - 1)° (1 + A(z))

-~ 1lim bk{z + 1) - k (8)

z>1l | (z - 1)2(1 + A(z)) lim (z - l)zA(z)
z+1

Expressions (6), (7) and (8) provide the required results on steady

state error for three alternative choices for the dynamic characteristics
of the equilibrium path given an arbitrary rational transfer function
A(L) . We now consider specializations of the transfer function, that

is different specifications of the short run adjustment process. Of
particular relevance is the classification of models according to the
number of poles at unity in the denominator polynomial of A(L) .
Particular steady state error properties are then seen to be determined,
for a given equilibrium path, by the particular type of transfer function

or short run adjustment specification.

We consider transfer functions that may be written in the

form



(z - zl)(z - 22) T ¢ zm)

A(z)

]

s
(z -~ 1) (z—pl)(z—pz) (z—pn)

A* (z)

(9)
(z - 1S

i

where p, the non-unity poles are assumed to satisfy Ipif <1,

i = 1 ... n, sothat A*(z) is a stable transfer function.

A model may be said to be of type s if there are s poles at

unity in the transfer function, and if s is non zero, to possess
integral action through s integral effects. Returning to our general
form for the model, expression (1), we can see the following classifica-

tion of typical specifications according to model type.

A(L) (x,* - x.) (10)

TYPE O X, = e N

‘] = * * —

CYPE 1 Ax, = A¥(L) (x} , - x ) (11)
TYPE 2 Azx = A* (L) (x*' - X ) (12)
e t t-2 t-2

The importance of integral action and the number of poles at
unity can be seen immediately by looking at the consequent cancellations
when ( 9) is substituted into expressions (6), (7) and (8) for the
steady state error. This information on the combined effect of
adjustment process and target dynamics is collected in the following
table.

STEADY STATE ERROR

Model Type | Static Equilibrium |Constant Growth | 'Dynamic' Growth
s i =1 i = 2 i = 3
[e) kl @ [
1
o] k2 ©
2 (0] (o] k3

where k £ are finite, (typically) non zero, constants.
l &






(c) (a)

time

FIG. 1

Type 2, Static Equilibrium Type 2, Constant Growth

One interesting case that is not plotted in figure 1 is when
the model is of type one. We separate out this case because it corres-
ponds to the usual error correction mechanism, one example of which is

the following implementation of the partial adjustment hypothesis
X - X = Y(xt* - X ) (13)

The two graphs in figure 2 show the response from this partial adjustment

model to static and constant growth paths
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(a) (b)

X *
X
e =0
ss
X
time ; time
Type 1, Static Target Type 1, Constant Growth
FIG. 2

PARTIAL ADJUSTMENT MODEL

Thus, use of the standard partial adjustment mechanism will
only ensure the achievement of the target level if that level is constant
in steady state. If the target path is constantly growing the partial
adjustment model with lead to a fixed offset and will thus never satisfy
the target level even in steady state. For higher order time paths the
partial adjustment mechanism will diverge from the target path. If the
target path switches between two constant growth paths the partial
adjustment model will follow the switch but will still not converge to
the target in steady state. The actual size of steady state error (when
it is finite) can of course be calculated a priori and for any particular
case is given by expressions (6), (7) and (8). Typically it is directly
related to the steady state level or growth rate and inversely related
to lim A(z) . There is of course no reason why this offset should be

z+1
small.
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As a final comment on the approach taken in this section
it is perhaps appropriate to emphasise the crucial importance of the
choice of the target. Given a particular theory any distinctive
feature of the implied steady state behaviour could serve as a target,
although it is likely that a specification with only a single target
would only.provide a partial characterization of the equilibrium and
hence only partially identify the underlying theory. For instance,
homothetic preferences lead to a unit long run income elasticity in
the consumption function so although this condition could serve as a
target further conditions would be required to distinguish the life
cycle from the permanent income hypothesis. A further problem can
arise when a target is specified in such a way that it does not uniquely
define the type of adjustment model. Again the unit elasticity condi-
tion provides an example since it simply reflects long run proportiona-
lity and this in itself does not uniquely define the adjustment
mechanism. Thus in Figure 3 below (gb* is assumed to be ﬁhe
desired equilibrium position such that C = k*Y and th;s is
clearly consistent with a long run unit elasticity. However so is
the steaﬁy state (%5* defined by C = k+Y towards which an
adjustment path converges. So although the target,if defined in

terms of the unit elasticity, is achieved, the actual equilibrium k*

is never reached.
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LG e]

FIG. 3

3. THE INTEGRATION OF SHORT RUN DYNAMIC ADJUSTMENT AND EQUILIBRIUM BEHAVIOUR

Most econometric relations correspond to the control rule or
reaction function of a nominal decision maker faced with a
dynamic optimization problem, thus consumption expenditure is taken
as a control variable in a ﬁtility optimization exercise. The weights
on the variables in such a control rule would be designed by a control
engineer but are estimated as parameters by the econometrician. One of
the most basic requirements in the design of control mechanisms in
physical systems is the achievement of zero steady state error, and the
reason why many econometric specifications fail to satisfy this basic
requirement can - be traced to a failure in the formulation of the
economic problem. The specification of the cost function in the dynamic
optimization problem plays a crucial role. In particular it seems that

the usual approach to the treatment of behaviour under uncertainty leads
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to decision rules that have a limited capacity for contingent action given
unforeseen events. Fully contingent plans naturally return zero steady
state error so that the design of these decision rules necessarily
involves integral action as discussed in the previous section and they
will then automatically integrate both equilibrium and short run behaviour.
To clarify these points we shall consider alternative approaches to the

development of control rules in economics.

3.1 Cost Functions and Control Rules

Two approaches to the control of physical systems may be found
inthe control literature; classical control techniques that rely heavily
on proportional, integral and derivative (PID) feedback effects based on
the observed output error, and modern control theory that tends to rely
on state variable feedback and also substantially on an optimal control
formulation of the problem. Typically economic theory has relied on the

dynamic optimization or modern control approach but it is certainly not

invalid to formulate PID forms of reaction functions and indeed they provide

considerable insight and may correspond more directly to behaviour under
uncertainty than the usual optimal formulations. We now briefly outline
the relative merits of these two distinct approaches to the cbnstrﬁction of
economic reaction functions, or plans, before showing that the solution

to our problem is gained by recognising the opportunity to combine certain

features of both.

3.1.1 PID reaction functions

The basic form of a PID control rule in continuous time is as

follows,
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- de(t)
x(t) = kPe(t) +k; /S e(t)dt + Ky T3 (14)
where the error e(t) = x*(t) - x(t) , x*(t) is the target or
desired position and kp, ki' kd are the proportional, integral and

derivative feedback gains respectively. Phillips discussed the nature
of PID control rules in the context of stabilization policy in two

classic papers in this journal in 1954 and 1957, [13], [14].

Transforming expression (14) into discrete time we have

£t (15)

x = ke + ki T es T+ k. ¢
p s=0

where 1T is the sampling interval. Lagging one period gives

t-1 e - e
t-1 t-2
= + U ———————————————
xt—l kpet—l ki T e, T + kd ( p ) (16)
s=0
setting T = 1 and subtracting (16) from (15) gives

2
= +
Axt kpA et + kiet de et

‘ 2
= k. * - *
Ax kpA(xt xt) + ki(x & xt) + de (xt xt) (17)

The righthand side of expression (17) may be rearranged as follows;

]

’ 2
(1 - Lix (kp(l - L) +k + k(1= L)) (x* - x)

i

]

2 *
(Uey +dky +dg) = (k) + 2k )T + kL) (X, * = x)

[}

2 %
(ao + alL + uzL )(xt xt)
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S0 (1 - L)xt = A*(L)(xt* - xt) (18)
indicating that the PID controz rule is in fact a model of type 1 and
thus ensures a zero steady state error against static equilibria, but
not against more general dynamic growth paths. If we wish the PID
control rule to be able to account for these higher order growth paths
we must, following the discussion in the previous section, increase the
model type. In terms.of the PID specification this would be equivalent
to adding a further term ofrhigher’order éf integration, i.e. the integral
of the integral, to (14). In many cases behaviour of the transient
component may be affected by the introduction of further integral temms,
indeed there may potentially be a conflict between the attainment of
steady state properties and reasonable (i.e., relatively non-oscillatory)

short run properties in the resulting model (see Phillips [13] p. 297).

We should emphasise that this discussion relates to an
examination of the properties of a PID control rule from the design
point of view. Given the preceding arguments an equivalent PID reaction
function could be considered to represent reasonable economic behaviour
and equation (17) could be put forward for estimation with a stochastic
error term appended. However there is clearly a choice as to whether
the stochastic term should originally enter equation (15) rather than
(17) . Given the transformation from (15) to (17), the stochastic
implications of the two options are clearly not equivalent. This
confusion was one of the objections raised regarding current practice
in the introduction. What is crucial for equation (17) to yield a zero
steady state error in a static equilibrium are the restrictions on the

parameters that lead to a dependent variable appearing in differenced



16.

form with an explanatory, disequilibrium, variable in levels. So
although the direct use of a PID rule for econometric analysis may in
principle deliver the required steady state error properties, there
still remains the question of appropriate stochastic specification.
We now investigate whether the modern or optimal control approach can
return such a restricted specification without the ambiguity in

stochastic specification.

3.1.2 ‘optimal’ reaction functions

Consider the general linear economic model written in state

space form as follows

X = AX + Bu

(19)

where at the risk of some confusion with the previous notation we have
adopted standard control notation, so that x, u and y represent
vectors of state, control and observed output variables respectively,
A, B and C are constant matrices. In the traditional economic
optimization problem we wish to minimise a general cost function J ,

[

J = J {(x'0x + u'Ru)dt ' (20)
o

subject to (19)

The optimal control rule that follows may be written (see [2 ])
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u* R B'Px (21)
This function would correspond, for example to the implied consumption
function in a life cycle model in which a discounted utility stream
represented the cost. Note that the cost function in (20) could equally
be expressed in terms of deviations of the actual state from a desired

state position, in which case the control rule can be written

u* = R YB'(Px + D) (22)

where b is a function of the desired state.

It is important to recoénise the dynamic nature of the state
variables in this analysis. In order to express a general dynamic model in
state space form, the state vector would be defined in such a way that the
dynamics of the original model would be reduced to the first order, as
expressed in equation (19). This necessarily involves increasing the number
of variables in the state vector as higher order derivatives become defined
as new state variables. Two points are then important to bear in mind
in what follows. In the first place, the state vector will,in our case,
only consist of endogenous variables and such derivatives of these variables
as are required in the economic model. State variable feedback decision
rules, such as (21) and (22), expressed as linear functions of this state
vector, will then reflect the effect of defivatives, and implicitly integrals,
of the underlying economic variables only to the extent to which the state
vector is so defined. No further derivative or integral operations arise in
structure of a rule such as (22);R, B and P are constant matrices.
Secondly as it stands most optimal formulations of this sort in economics
rest totally on the determination of equilibrium behaviour and
frequently the associated state vector includes no higher derivative

terms. To the extent then that such 'optimal' equilibrium
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specifications ignore dynamic adjustment we can see that they will
typically lead to models such as (21) or (22), which have no integral

effets and hence, in terms of our previous discussion are of type zero and

so yield non zero steady state error.

A PID control rule for the same problem, but not formulated
as an optimization exercise, could also have been developed and would be
written as

of = kx e+k Sfeat +k_ e (23)
jo i d

where e represents the error between the target and actual output

variable Y, - In most cases of relevance to econometrics the entire

state vector will be observable so that the distinction between state

and output variables vanishes. However apart from this question there

are important differences between the two formulations. In particular

the optimal control rule, as discussed above, will only incorporate propor-
Lional and derivative effects whereas the PID control rulewill,by its constuc—
tion, .also incorporate integral action on the observed oﬁtput error.
Thiskcrucial difference between the two approaches is unaffected by

whether the cost fﬁnction in the optimal problem is framed in temms of

the deviation from the desired path and although in this case the control
rule (22) will be a function of the desired state, through b , no

integral actioh is implied. It may be intuitively obvious, at thié stage,
that the problem with the optimal approach lies in the nature of the state

variables or in other words what are considered to be the appropriate

economic variables in the cost function.

3.1.3 A anthesis

Relatively recent developments suggest that integral action
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may be introduced into an optimal formulation in one of two ways, either
by extending the state vector to include a new state variable that is in
effect the integral of output error, or alternatively by introducing
into the cost function the derivative of control action, see
Kwakernaak and Sivan, Sect. 3-7 (1972) or Anderson and Moore, Chapter

10 (1971). Once these adjustments have been made the optimal control
rule leads to an equivalent PID control rule. So in terms of our
preceding discussion regarding the specification of short run adjustment
we can see two general classes of cost function specification that

will ensure that PID reaction functions and hence error correction

mechanisms represent the optimal response of economic agents.

Typically the partial adjustment model is derived from the

minimisation of the following one period cost function.

) (24)

where the first term represents the cost of the error or disequilibrium
and the second term, the cost of adjusting towards equilibrium. Nickell
(1980) extends this class of cost function to consider minimising, at

time t

©o

- s R 2 N 2
92 R LCHRE . U R C S S N
s=0
- - * — * ]
2A3 (K ipe T Fepgn1) Kiug xt+s—l] (25)

The third term indicates that the loss is attenuated if the decision

variable moves in the same direction as the target variable. , xt* .
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HUS consider a similar loss function to J2 . Since cost functions such
as J2 include terms in the derivative of control action, the resultiﬁg
optimal reaction functions will incorporate inﬁegral action of some
degree. The preceding discussion suggests that introducing as a
separate variable in the cost function the integral of output error
could also lead to a reaction function with integral effects. In many
economic contexts this new state variable would be a stock variable,

such as assets or wealth, corresponding to an equilibrium specification

in the underlying flow variables.

The cost functions (24) and (25) are set up with the sole considera-
tion of determining optimal short run adjustment functions, given an equili-
brium target, although the cost function in the general control problem dis-
cussed in 3.1.2 was quite unrestricted and would represent for instance the
underlying utility function. So by adding terms representing either the
integral of output error or the derivative of control action to cost functions
that at present only lead to eguilibrium relations we may derive through a
single theoretical argument, economic reaction functions that incorporate
both optimal equilibrium behaviour and optimal’short run adjustment

consistent with that equilibrium.

Consider the extended cost function
J = J (x'0x + u'Ru + u'su)ds (26)

and its optimisation subject to (19). We may then define an extended

state vector 2z by
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with an associated state equation

e
g
w
»
o

e
o
O
o
[

The cost function may then be rewritten as

IR [ ) B
J = é (z L3 R}z + u'Su)ds (28)

Solving this optimal control problem leads to, (see [2} or [10]),

‘. .
u le + sz
or
t
u* = [ F.x ds + F_x (29)
o 1 2

which is an ‘optimal' control rule of type one, that incorporates an
integral effect in addition to terms proportional to the state vector,
unlike (21) and (22). Following our discussion of steady state error

in section 2, optimal reaction functions of higher model type could

then be derived by introducing further derivatives of the control variable
or higher integrals of output error into the cost function. This

naturally returns the issue of the specification of the cost function to
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one of economic theory concerning the selection of the appropriate economic
decision variables to be included. 1In particular this discussion
emphasises the crucial importance of including stock variables that

reflect integrals of underlying flow relationships in developing a fully

consistent dynamic economic theory.

3.2 Uncertainty

The preceding optimal rules have been derived in a deterministic
environment and as such have ignored the impact of information flows and
uncertainty on the behaviour of the economic agent through the planning
period. As a consequence the stochastic specification of decision rules,
such as (29), when viewed er post by the econometrician,still remains ad hoc.
To complete this link it is important that we now consider how the
foregoing discussion is influenced by the recognition of uncertainty in
the agents intertemporal planning. A further source of stochastic error
arises, of course,at the model/data interface when the theoretical
reaction function, being only an approximation to reality,is confronted

with the data.

Reaction functions, such as (21) or (22), represent "open loocp™
plans, in that both the functiocnal form and the values of the determining
riéht~hand side variables over the entire planning horizon are assumed
known at the origin of the plan. When the theoretical model becomes
stochastic, thereby introducing uncertainty, it is in general impossible
to derive analytically a closed form expression for the control rule.
However in the L.O.G. formalation employed above (Linear model,

Quadratic cost function and Gaussian disturbances) the

certainty eguivalence result delivers exactly the same
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reaction function, (21), as in the deterministic case. Once again the
functional form of the reaction function is fully determined at the origin
of the plan, but now it is expressed in terms of the expected values of

the uncontrollable exogenous inputs. As time proceeds through the planning
period the actually realised values of these variables are substituted |
into the fixed control rule and hence this feedback of current information
leads to a "closed loop" plan. Such closed loop behaviour tends to
ameliorate the effect of discrepancies that arise between the expected

future states and exogenous inputs and their realised values.

If the economy were linear, as assumed in the models used above,
then imperfect expectations would lead to an additive error in the reaction
function with properties determined by the process used to generate the
future expectations. So that if, for instance, rational expectations had
been employed the errors would be characterised by their conditional
independence of the information set that generated the expectations. From
the point of view of the econometrician attempting to identify the reaction
function by observing the empirical effects of the‘plan ex post, there
would in this case then be none of the ambiguity in stochastic specification
that arose when considering the direct PID model in section 3.1.1.

Examples of this argument are found in HUS [9] and Hendry and Anderson [8]
where "integral inducing” cost functions, such as J2 . of section 3.1;3,

are optimized, leading to parametric restrictions in the reaction function
that may then be rewritten as an error correction mechanism with an

additive error. If the economic environment were non linear then clearly

the impact of stochastic errors would be more complicated and most probably
non additive, even if we assumed the linear model as an approximation.

However employing a Linear-Quadratic-Gaussian framework, with a suitable cost
function returns as an optimal reaction function an error correction mechanism

with additive stochastic errors determined by the expectational errors in the
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plan.

While this is the basic result we require to justify empirical
analysis of error correction mechanisms, the argument that follows makes
an even stronger case for their use in representing behaviour under

uncertainty.

In the foregoing characterization of decision making through
time it was assumed that the agent would not attempt to rederive his
reaction function on the arrival of updated information. Clearly if the
agent responded in this "time inconsistent® manner then the econometrician
would fail to identify a single structurally invariant relationship for
the reaction function and the preceding argument regarding the additive
nature of the stochastic errors would become irrelevant. How the agent
interprets the source of the uncertainty in this problem will crucially
affect the way he responds in formulating his reaction. In the stochastic
control problem described above the undertainty is assumed to be of such
a form that the disturbances follow a normal distribution with a zerxro
mean. Such stochastic disturbances can be distinguished from "one off"
or deterministic disturbances that may occur during the plan. Morxeover
even if a series of such "one off" disturbances were seen, éx post, to obey
some stochastic law there is no reason to believe that the agent would
not respond to each one in isolation, attempting to account for its
particular effect on his plan. Crucially, with regard to our previous
discussion, the optimal reaction functions are not the same in either
case e.g. (22) and (29) . For instance when driving a car that is
hit by a gust of wind it is probably inadvisable to respond given

only the knowledge that in general such wlnd gusts are normally
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distributed around a point of zero effect, particularly if the wind gust
lasted until the end of the plan,which in this case might be earlier than
anticipated. The point is that in economic decision problems where the
environment may be poorly understood, the nature of uncertainty may in
some cases be inadequately represented by such long run notions of
uncertainty that are captured by probalistic laws. What is required is
some contingent plan that describes how to respond to disturbances as
they arise and it is precisely this capacity, through their inclusion

of integral action that has led to the predominance of PID contrcl rules
for physical systems. Notice that (29) could be treated as a stochastic
control rule and hence would represent response to both characterizations
of uncertainty. The integral terms have the effect of responding to the
disturbance in a manner that ensures zero steady state error. Thus a
plan may be derived at the origin of the planning period that is robust
to particular types of future disturbances. Indeed it is precisely the
analysis of section 2 that determines the response of a dynamic reaction
function to the three forms of shock in the desired target position that
may, in fact, have been induced'by such a disturbance. If the agent
employs a contingent plan that is robust to disturbances in this sense we
may once again be assured of a structurally constant reaction function
with additive errors for empirical analysis. It is therefore argued that
there exists a separate justification for error correction mechanisms

in representing contingent behaviour in an uncertain economic environment,
over and above the question of consistency in short run dynamic adjustment.
Notice once again the crucial role played by stock variables in represen-
ting the integral effects, but now with regard to planning under

1/

uncertainty.

l/ The issues raised in this section are discussed in more detail in
Salmon [15]“
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26.

Conclusion

The main objective of this paper has been to clarify the

principles behind error correction mechanisms and to emphasise their

role in the theoretical integration of short run and equilibrium

behaviour.

(1)

(3)

The following are the main points that have emerged.

The notion of model type may be useful in determining the
steady state properties of econometric models, where the model
type essentially specifies the degree of integral action in

an equation. The dynamic behaviour of a target variable
determines the degree of integral action required to ensure
zero steady state error. The appropriate specification of an
error correction mechanism should then vary according to the

behaviour of the target.

When either the integral of error or the derivative of control
action are included in a cost function the resulting optimal
reaction function includes integral action. It is then
straightforward to incorporate within the same dynamic
optimisation problem both the determination of equilibrium
behaviour and short run dynamic adjustment towards that
equilibrium. Thus the common view that dynamic specifications
are simply ad hoc may be challenged since the resulting error
correction mechanisms represent the optimal response of

economic agents.

One basic form of error correction mechanism is the PID rule.



27.

This form of reaction function exists independently,

without requiring any interpretation as the result of an
optimization exercise and may therefore serve when there is '
a poor understanding or even complete absence of an adequate

"optimal" theory.

(4) The presence of integral action in decision rules makes them,
to a degree, robust to disturbances and thus they may reflect
more accurately economic behaviour under uncertainty than

decision rules that do not possess integral action.
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