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SUMMARY

The paper presents a general solution method for rational expect-
ations models that can be represented by systems of deterministic
first order linear differential equations with constant coefficients.
It is the continuous time adaptation of the method of Blanchard and
Kahn. To obtain a unique solution there must be as many linearly
independent boundary conditions as there are linearly independent
state variables. Three slightly different versions of a well-known
small open economy macroeconomic model were used to illustrate three
fairly general ways of specifying the required boundary conditions.
The first represents the standard case in which the number of stable
characteristic roots equals the number of predetermined variables.
The second represents the case where the number of stable roots
exceeds the number of predetermined variables but equals the number
of predetermined variables plus the number of "backward-loocking" but
non-predetermined variables whose discontinuities are linear functions
of the discontinuities in the forward-looking variables. The third
represents the case where the number of unstable roots is less than
the number of forward-looking state variables. For the last case,
boundary conditions are suggested that involve linear restrictions

on the values of the state variables at a future date.

The method of this paper permits the numerical soluticn of
models with large numbers of state variables. Any combination of
anticipated or unanticipated, current or future and permanent or

transitory shocks can be analysed.



SADDLEPOINT PROBLEMS IN CONTINUOUS TIME RATIONAL EXPECTATIONS MODELS:

A GENERAL METHOD AND SOME MACROECONOMIC EXAMPLES.

INTRODUCTION

This paper studies the solution of a class of rational expect-
ations models that can be represented by systems of deterministic
first order linear differential equations with constant coefficients.
This class includes virtually all deterministic continuous time
rational expectations models in the macroeconomic and open economy
macroeconomic literature such as Sargent and Wallace (1973), Dornbusch
(1976), Wilson (1979), Krugman (1979), Dornbusch and Fischer (1980)
and Buiter and Miller (198la,b). The method handles systems with
state vectors of any dimension, n. As long as the forcing variables
or exogenous variables do not "explode too fast", any combination of
anticipated or unanticipated, current or future and permanent or
transitory shocks can be analysed. Wilson's (1979) analysis of antici-
pated future shocks in systems where n=2 and Dixit's (1980) method for
handling unanticipated current permanent shocks are special cases of

the general method developed in this paper.

When the number of predetermined or backward-looking variables

(nl) equals the number of stable roots of the characteristic equation
of the homogenogs system and the number of non-predetermined, forward-
looking or "jump" variables (n~nl) equals the number of unstable roots,
there is a natural way of specifying the n linearly independent
boundary conditions that are required for a unique solution. This case
is considered in Section 2. ny boundary conditions take the familiar
form of initial conditions for the predetermined variables. The

remaining n--nl boundary conditions are obtained from the terminal or
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transversality condition that the system should be "convergent". More
precisely, i1f the particular solution of the system of equations
exists and remains bounded for all time then the general solution of
the system should remain bounded for all time. This transversality
condition constrains the initial values of the n-n, non-predetermined
variables to lie on the stable manifold; the influence of the n-n

unstable characteristic roots is neutralized‘(l)(z)

1

If the system has "too many" unstable roots, i.e. if there are
fewer stable roots than predetermined variables, no convergent
solution exist for arbitrary initial values of the predetermined
variables and the methods of this paper cannot be utilized. The case
when there are more stable roots than predetermined variables is con-
sidered in Section 3. The transversality condition that the solution
be convergent now no longer suffices to ensure a unique solution.

Two examples are given in which economically sensible additional
linear boundary conditions can be provided to guaranﬁee uniqueness,
One involves "backward-looking" variables that are nevertheless not
predetermined. The other involves forward-looking variables
"associated with" stable characteristic roots. Formally, all these
mddels can be viewed as linear two-point boundary value problems with
linear boundary conditions. The mathematical conditions for unique-
ness are straightforward. The problem lies in the economic motivation
of the boundary conditions. In ad-hoc macromodels this motivation can

never be fully satisfactory.



(2)

(la)

(1b)

A continuous time version of the method of Blanchard and Kahn

The method presented in this Section is a straightforward con-
tinuous time adaptation of the solution method Zocr linear difference
models with rational expectations presented in Blanchard and Kahn

(1980) and Blanchard (1980).

Consider the discrete time model of equations (la) and (b)

- - | -
%) (£+h) -x (t) allhxl(t)+a12hx2(t)+a13[E(xl(t+h)lI(t)) xl(t)]

al4[E(x2(t+h) I(t))-xz(t)]+61hz(t)

hx, (t)+o,, [E(x ) (e+h) [T(£)) -x <t>]

E(x <t+h)11(t))-x2(t)=a2 23|

5 hxl(t)+a2

1 2

+62hz(t)

Xl(t) is the n, vector of predetermined variables, xz(t) the n-n,
vector of non-predetermined Qariables (nénl). z(t) is the k vector of
exogenous or forcing variables. E is the mathematical expectation
operator and I(t) the information set at the beginning of period t,
conditioning the expectations formed in period t. ho is the length
of the unit period. The predetermined variables xl(t+h) are functions
only of variables known at time t, i.e. E(x(t+h)]I(t))Ex(t+h), regard-
less of the realization of the variables in I(t+h) (see Blanchard and
Kahn (1980, pl305). The non—pre@etermined variables x2(t+h) can be a

function of any variable in I(t+h). I(t) includes all current and

past values of Xl' x2 and z as well as the true structure of the model



(la")

(1b")

(2a)

(2b)

(2¢)

(2d)

(2e)

(2£)

(29)

(3a)

given in (la,b). It may include exogenous variables other than the

"market fundamentals" (Flood and Garber (1980))(3) and future values

of the exogenous variables; I(t+h) 2I(t).

The system (la,b) can be represented by the more compact but
equivalent system (la',b'), provided the relevant matrix inverses in

(2a=-g) exist

hxz(t)+B hz (t)

12

xl(t+h)—xl(t)=Allhxl(t)+A 1

ELXZ(t+h)lI(t)]—xz(t)=A21hxl(t)+A hx, (t) +B, hz (t)

22 2

where

=0 -
All au(I (113) (

A =Q({I-a

12 13

Bo1%1 %038

BrnT095%%038 )

B.= (I-u )—1(5

1 13 g,

17%14%2

B,=B, t0,4B;

Q =[1—<1-a

)-la -1
13 14a23]
Dividing (la') and (lb') by h and taking the limit as h-+o yields:

jixl(t):All

X, (t)+A
dt 1

12xz(t)+Blz(t)
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and, since xz(t,t)=x2(t),

(3b)  3x,(s,t) =A21xl(t)+A22x2(t)+Bzz(t)
as ls=t

Where for any variable y we use the notation &(s,t)sE(y(s)}I(t)),

dy®zeim [y(t+h) -y ()] and 3y(s,t) =eim [¥(t+h,t)-y(t,t)
dt  hoo h 3s s=t hoo | h

h>o h>o

To solve (3a,b) we return to (la') and (lb'), take expectations con-

ditional on I(t), divide by h and take the limit as h»o. This gives

< ! = % X N
(4a) éi_l(s,t) Allxl(s,t)! +A12x2(s,t) +B. 2 (s,t)
s s=t |s=t s=t "1 _
s=t
A _ A . s o ,
(4b) B x,(s,t) Alel(s,t)! +A22x2(s,t>! Byz(s,t)|
ds s=t |s=t | s=t s=t
We make the following assumptions:
(al) vy(s,t)zy(s) sst
For s<t this means "perfect hindsight". For s=t it is the assumption

of "weak consistency" made e.g. in Turnovsky and Burmeister (1977).

(A2) z(s,t) is a piecewise continuous function of s and t and z(s,t) is
of exponential order for all t and for all s2t, i.e. for all t and
for all s>t there exist constant matrices C and a, C>o such that

P~ at . . .
|z(s,t)ESCe . This assumption rules out explosive growth of the

expectation of future values of z, held at time t.
Note that since for the predetermined variables

E[xl(t+h)!I(t)} Exl(t+h), we have in continuous time:



(5)

(6)

s=t

dx, (t)=2im [x, (t+h)-x_ (£} ]=2im E[x (t+h)-x. (t) |[I(t)]z 2 x. (s,t)

=X 1 1 1 1 =X

at ho —— | o - 3s
h>o h>o

The actual and the anticipated instantaneous rates of change of the

predetermined variables coincide; equivalently:

Ax (s,t)

ot 1

=%im {iE(xl(t+h) | T (t+h)) -E(x, (t+h) |1(t»}= )
s=t h2o
h
h>o

This is not in general true for the non-predetermined variables.

Indeed we have

dx (t)="im [x (t+h)-x (t)|=2im |E(x, (t+h) [I(t+h))-E(x, (£) |I(t))
- 1 . 1 1 1 1
dt 00 h h-o h

h>o h>o

=¢im |E(x, (t+h)] 2(0) )-E(x, (0) |T(0))
1 1

h-o h

h>o *~

+2im |E (xi (t+h) |I(t+h))-E (xi (t+h) [1(t))

h+o

h>o *~ h
_3x. (s, 0)]  + 3% (s,t)

ds © |s=t ot * s=t i=1,2.

For X, the instantaneous rate at which expectations are revised,

isz(s,t) will not be equal to zero at those instants at which
9t s=t,

"news" arrives. x2 will therefore not in general be a continuous

function of time: 2(s,t)t may well be unbounded at those

3x
at |s=t
instants that new information becomes available. Assumption A2 is

convenient but perhaps too restrictive. Given A2, 3 will be a



(7

(8a)

(8b)

(8c¢)

continuous function of time. There are, however, quite reasonable
models in which the instantaneous rate of change of X, can become
unbounded because the value of z becomes unbounded at some point in
time. Examples are Buiter and Miller (198la,b). One of the pre-
determined state variables in their models is the real stock of money
palances: £(t)Zm(t)-p(t). m(t) and p(t) are the natural logarithms
of the nominal money stock and the price level, respectively. In
these "Keynesian" models p(t) is constrained to be a continuous
function of time. Therefore, discrete discontinuous changes in the
level of the nominal money stock at t=to (which would occur e.g. if
m(t) were a step function with a step at t=to) imply a discrete, dis-
continuous change in Q(tf’at t=to; the instantaneous rates of change

of m(t) and % (t) are unbounded at t=to.
We can summarize (4a,b) compactly as follows:

=A x(s,t) | + B z(s,t)
s=t s=t s=t

3x(s,t)
ds




(9

(A3)

(1loa)

(10b)

(10c)

We assume that A can be diagonalized by a similarity transform-
ation as in (9). Necessary and sufficient for this is that A have n
linearly independent eigenvectors. A sufficient condition is that A

have n distinct characteristic roots.
-1 -
A=VAV or V lAV=1\

V is the nxn matrix whose columns are the right-eigenvectors of A.
A is the diagonal matrix whose diagonal elements are the characteristic

roots of A. A central assumption of this section is

A has n, characteristic roots with negative real parts (stable roots)
and n-n, characteristic roots with positive real parts (unstable

roots) .

We now partition V,Vnl and A conformably, as follows:

V=iV Yo
Va1 Va2
1 -1 -1
vl T
-1 -1
W ), WTh
A=[n o
A
°

Al is the nyxn diagonal matrix whose diagonal elements are the

stable roots of A and A2 the (n-nl)x(n—nl) diagonal matrix whose

diagonal elements are the unstable roots of A. We also define



(11) p=V’lx or x=Vp.

-1
Partitioning p conformably with Vv,V and x we get

(12a)

or

(12p) [x, {vll VlZ} P,

Py is an n, vector and P, an n-n, vector. Using (9) and (1ll), we

1 1

can transform (7) into

- ~ -1 .
(13) 3 p(s,t) =Ap (s, t) +V "Bz(s,t)

9s s=t s=t s=t

or
~ ~ -1 ~

(ld4a) 9] l(s,t) Alpl(s,t) +[(v )llBl+(v )lzaz]z(s,t)

ds is=t s=t s=t
(146) 35 (s,6)|  =Ap_(s,t) +[(v‘l) B+ s la(s,0)

Ts ° gt 272 st 21°1 225 )=t

The forward-looking solution for éz(s,t) as a function of s, holding

t constant is

o«

A.s. A (s-T)
~ L2 2 -1 -1 1A
pz(s,t;«e Kz—je [(V )21B1+(V )ZzBZJZ(T,t)dT
s

K2 is an n-n, vector of arbitrary constants. For s=t this becomes

~

A2t
(15) p2(t,t)=e K

A (t-1)
2 -1 -1 -
[(V ) Bl+(V )22Bz}z(r,t)dr

o
Z‘Je 21
t



(16)

(17)

(17')

lo.

Given assumption A2, the integral on the r.h.s. of (15) exists. (15)
will only converge, however, if K2=O. Imposing this transversality

condition, (15) becomes

T A, (t-1T)
éz(t,t)=—Je 2 {(v L

t

-1
Bl+(V )22B2

21 ]Z(T.t)dT

The weak consistency assumption (Al) implies that

~ -l -1
pz(t,t)=p2(t). From (l2a) we know that pzw(v )lel+(v )22x2
Therefore, provided (V_l)22 has an inverse
-1 -17 A (e=T)
-1 -1 -1 2 -1
xz(t)——[(v )22] (v )lel(t)—[(v )22] Je t(v )218l

t
+(V_l) B 2(1 t)dr
2272 !

Equivalently, using (12b) we find that, provided V. . has an inverse,

11

-1 1

%=1 V1] *0*[V22 Vo [V11] Vi)e,- Since

-1
-1 -1 , . .
V22*v21ﬂvll] Vlz—[(v )22} {(provided the inverse exists), (17)

can also be written as

-1 a1, 7T AT -1
xz(t)zvzl{vu] Xl(t)_[(v )22 {e [(V ) B vV )2252]
t
z(t,t)dt.

The similarity between equation (17) or (17') and Blanchard and
Kahn's equation (3) is immediately apparent. Here, as there, the

current value of the non-predetermined variables depends on the
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current value of the predetermined variables and on current antici-

pations of all future values of the exogenous variables.

To find the solution for xl(t) we substitute (17) into (3a).

This yields

-1 -1, -1
(18) é%.xl(t)—{All-Alz[(V )22} (v )21}xl(t)+Blz(t)

A (t~T) ,

-1 -1 2 -1 -1 ~
fe [(v ) ,qB (Y )ZzBZ}Z(T.t)dT
£

From (9), (10a,b,c) and (8b) we find that

_ -1 -1
(19a) A =V A (V) 1+ A (V)
and
(19b) A, .=V, A (VD). +V. A (VD)
12 11t 127V12%2 22

-1 L] -1 -1 -1 -1
Therefore All-Alz[(V )22} (v )21=vllAl[(V )1~V )lz[gv )22]

(V-l)211éV11A1EV11]—1

Equation (18) therefore becomes

A _(t-1)
(200 4 x, (£)=v 2

—lx (t)+B.z(t)-A (V‘l) -
= ] 1 1 12 22

t

A
11 l[vll

-1 -1 ~ '
[(v ) 51 BtV )2232]Z(T.t)dr
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We choose the backward-looking solution for the predetermined

variables xl(t). Therefore

t
Altr --1.

(21) = (t)= / K+
2wV ge TV TR fvlle

-0

(t-s) 1-1

Al
) 22J

[vll]'l{slz(s)-Alz[(v‘l

(5)

[Mplemm -1 .
Je | [(V )21B1+(V )2232]Z(T,S)dT}dS
s

Kl is an n, vector of arbitrary constants. We solve for this by

using an initial condition for xl(t) at t=to, e.qg.

(22) xl(to)=xl(to)
The solution for xl(t) is then found to be

t
A (t-to) -1- J Al(t—s)

~ -1
(23) x (£)=v e [Vu] X (£ )+|V, e [Vu] B z(s)ds

1

[vll] ~1A12 [(V‘l) 22] ‘lJeAz | [(V_i) 2Bt V) 2232}

é(r,s)drds

or, using (19b)

A, (e-t )
o

] o -1-
(23") = (©)=v e [vll] %) (t )+

t
Al(t—s)
1

-1
Vlle [vll] Blz(s)ds
to

o

A, (t-s) A2(s~r)
je

-1
1 -1 -1 -1
S\ A w )12[“’ )221 *["u] 2PLeY;

t S

-1 -1 ~
[(v ) 1BtV )2232] z(1,s)dtds



(24)

(24")

13.

The similarity between (23) or (23') and Blanchard and Kahn's final
form solution for xl(t) in their equation (4) is again immediately
apparent. The value of the predetermined variables in period t
depends on the initial condition X, (t ). The influence of the
initial conditions vanishes as t-+« since AI contains only the stable
roots of A. The solution depends also on the actual values of the
exogenous variables between time to and t. Finally it depends on all
expectations, formed at any instant s between time to and t, of all

values of the exogenous variables beyond s.

Dixit's formula

Consider the special case when the anticipated future values of
z are all constant, i.e. z(r,t)=§, th. Equation (17) then

simplifies to

1

)2252]2

1 17t o 717 e -
xz(t)=~{&' )22} (v )2lxl(t)—[(v )22] n, [(v ), BV

Let §2 and il be the steady state values of x,, respectively x

corresponding to z. A little manipulation then shows that

lf

- s -1 -
xz(t)—x2=~[(v )22} (V. 7) 5 (%) (B)-x))

or, using (17')

- 4=1 -
xz(t)—x2~V21[VllJ (%, (£) =X ).

These are the formulae obtained by Dixit (1980) for calculating the
effect on the non-predetermined variables of previously unanticipated,

immediate, permanent changes in the exogenous variables.



(25a)

(25b)

(25¢)

(25d)

(25e)

(255)

(259)

(25h)

14.

An Examgle

An example of the kind of model that fits the formal structure
of this Section is the following generalization of a model by

Dornbusch (1976). (See Buiter and Miller (198la, 198l1b) and Wilson

(1979).

m-p =Ky -~ Ax k, A > o0
y = - ‘Y(r__é_ﬁ(s't) )+‘ 6(9“9) Yo 6 > 0

s | s=t

p = aw + (l-a)e ogaxsl
dp = ¢y + m ¢ > o

dt
dels,t) =r - r*

9s s=t

= ng

dt

m is the nominal money stock, p the domestic price level, y real out-
put, r the domestic nominal interest rate, e the exchange rate
(domestic currency price of foreign currency) w the money wage, n the
underlying or "core" rate of inflation, r* the world interest rate.
All variables except, r, r* and m are in logs.

Equation (25a) is the

LM curve, equation (25b) the IS curve. The price of domestic output

is a mark-up on unit labour costs and unit import costs
(equation (25c¢)).

The foreign currency price of

imports is assumed constant. Through choice of units its logarithm



(26)
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equals zero. The augmented wage Phillips curve is given by equation
(25d) . The international interest differential is assumed to equal
the expected rate of exchange depreciation (equation 25e). The

underlying or core rate of inflation equals the right-hand side time

derivative of the money stock:

+ - ,
dm (t)=lim Ei?:%?' The money wage rate is treated as predetermined
dt >t ‘
>t

and is a continuous function of time, unlike the exchange rate. A
convenient choice of state variables is £ = m - w which is a measure
of real liquidity and ¢ £ e - w which is a measure of competitive—
ness. c¢ is a forward-locking jump-variable because of e. & is pre-
determined. Except at those instants that m makes a discrete jump,

it is a continuous function of time. We assume jim(t) to be constant

in what follows so that §§?§2f=u-
dt dt

The state-space representation of the model is given in (26).

fda2(e) fbay  da(As-y(1-0)) 2(e)]
i t B 1
. ~ay (Ap=k) =)
dc(s,t) L1 ad (pA-k) + a - 1] |c(t)]
] s=t

Fﬁyk@. -pAy (1-a) u

T ek - A

A X+ y(k=9X) L (t) ]

A necessary and sufficient condition for a stationary equili-
brium of (26) (corresponding to constant values of the exogenous

variables) to be a saddle-point (i.e. for the state matrix to have one
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stable and one unstable characteristic root) is ay(A¢-k) - X < o .
The interpreation of this condition is that, at a given level of
competitiveness, an exogenous increase in aggregate demand raises ouyt-

put. The "saddlepath" for this model is upward-sloping in c-% space.

We can apply the methods of this section to the model of

equation (26). Note that X, = £, X, =¢ and z = [é&]. The A and B

matrices are given in (26). An initial condition is given for £(t)
at t = to. A graphical illustration of the effect of an unanticipated
increase in the world interrest rate r* is given in Figure 1. The

for t < t .
o

economy is assumed to be in steady-state equilibrium at El

The new steady-state equilibrium corresponding to the higher value of

r*, which has a higher value of ¢ and a lower value of % is at Ez. At

t =t a previously unanticipated increase in r* becomes part of the
o ‘

private agents' information sets. If the increase in r* occurs

immediately (at t=to) the level of competitiveness jumps immediately

to E With £ predetermined this jump places it on the unique con-

12°

vergent trajectory S'S' through E After the initial "jump deprec-

5
iation", the real exchange rate gradually appreciates along S'S' to

E An anticipated future increase in r* at t. > tO causes an

27 1
immediate jump depreciation to Eiz. This jump has to satisfy the

condition that it places the system on that unstable trajectory (UU

in Figure 1), drawn with reference to E_, which will take it to the

1

unique convergent trajectory S'S' trhough E_ at t = t that is at

2 1’

the moment that the foreign interest rate assumes its new higher value.
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Figure 1
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(3) The case of "too many" stable roots

(3a) '"Backward-looking" but non-predetermined state variables

Consider the case where the matrix A has nl stable roots and

n—nl unstable roots, but where there are only nl'<nl predetermined

variables. We first analyse the case where it is possible to identify,

on economic grounds, nl state variables xl for which we choose a

backward-looking

backward-looking solution as in (21). Of these nl
variables, nl' are predetermined and will be denoted xl'. The remain-
ing nl—nl' are non-predetermined and are denoted xl". Thus
= '
(27) X =1%
*1

Assume that at t=to the following set of linear restrictions applies:
" ' =
(28) lel (to)+F2xl (to)+F3x2(to) £

i — ! — [ : - [ Nl .
Fl is an (nl nl )x(nl nl ) matrix, F2 an (nl nl )xnl matrix, F3 an

- ¥ — : - ]
(n nl )x(n nl) matrix and f an nl nl vector.

Provided Fl is invertible (i.e. provided (28) represents nl-nl'
independent boundary conditions) a ungiue convergent solution exists

to the system (29a,b) with boundary conditions (30a,b)

(29a) d x.'(t) X, 't)
a’t- 1 1
= All + Alzxz(t)+Blz(t)
4a X (t) xl (t)
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2xz(t)+B22(t)

(29b) 3 x,(s,t) =2, [x @] +a,

s s=t 21
xl (t)

(30a) xl'(to)=xl (to)‘

% (t )+F. Tf.
2 o

1

, . -1 -1
(30b) X (to)——F F. X (to) Fl FB

The solutioh is given by equations (30a,b) and

A (t-1)
-1, 4-1, -1 -1, 4-1f M2 -1
= ' - B
17 x,(t) [(v >22] V), [x ) [(V )22} J(e [(v )51yt
"(t) t
*1
wh__B.]2(r,t)dr
22 z]z ’
r t
(31)  [x,'(t) A, (t-t ) x, ' (t) A, (t-s)
1 _ 1 o 1171 "o 1
1 *1 o t
- = o]
i A, (t-s) -1 -1 4-1 p. -1 [ Ay(s-n) -1
-fvlle (A, Y22] *[V14] Vlez]Je [V 1By
t S
(o]
—l ~
(v )zsz]Z(T,S)deS

An example of a model that fits this format is found Buiter and Miller
(1981b). It is obtained by making a fairly minor alteration to the
model of equations (25a-h). The equation for the core rate of

inflation (25f) is replaced by

£ (t-s)
(25£") m{t) = n f e dp(s)ds n>o
- dt

This defines n as a backward-looking weighted average of current and

past inflation rates with exponentially declining weights. We continue
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to treat w and m (and therefore 2) as predetermined and continuous
functions of time. Differentiating (25f') yields the familiar

adaptive process

{£9E") dm = n(d p-m
dt dt
From (25f') one can see that while 7 is backward~looking, it
will not be a continuous function of time if p can make discontinuous
jumps. From equation (25c) one can see that p will jump discontinously
whenever e jumps discontinuously, if a < 1. 7 can indeed be described
as a "dependent" jump variable as it will jump if and only if p

jumps. From (25f') or (25f") we derive:
(32)  m(t) = 7wt ) + n(p(t)-p(t))

where m(t ) = lim 7(T) and similarly for p(t ).
=t
T<t

The state-space representation of the model of equations

(25 a,b,c,d,e,f", g and h) is:

[ae(t) 1 pay A+ayk Yo (A6-y (1-a)) o (t)
dt '
(33) dam(t) =4 N(1-a(1+y$)) nA(Ll+a(l+ye)) nlad(y(l-a)-add)-(1-0a) (1-a(1-8k))]||x (t)
dt !
. _ 1 A ad (pA-k) - (1-
3&(s,t) )=(1-a) Cdle®
L9s s=t|
4 -dry(1l-a) u

8™ o n(i-a) vk | 2% (1)

0 A+y(k=92)
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where A = ay($r-k) - A <o

For plausible values of the parameters of\the model, the state
matrix A of (33) will have two stable (complex conjugate) roots and
one unstable root (see Buiter and Miller (1981b)). Yet there is only
one predetermined variable, &. We do, however, have three linearly
independent boundary conditions which guarantee a unique solution for

the model. First note that (32) can be written as

Tle) = m(eD) + n(l-a) (c(B)=c(t 1)) + nlw(t)-w(t)

Since w(t) is a continuous function of time the last term vanishes and
(34)  w(t) = m(t ) + n(l-a) (c(t)-c(t))

Using the notation of equations (27-31), xl‘=£, xl"=w and x2=c.

Thus, starﬁing the system off at t=t0 one proceeds as follows.
R(to) is given by past history at E(to), say. Unless there is news
at tO (i.e. unless I(to)#I(tO_)), n(to) will be equal to the
historically given value v(to~). If there is "news" at to' n(to) is
determined using equations (30a), (30b) and (17) evaluated at t=to.
Equation (34) is of the format of (28) or (30b). c(to—) is found by
using (30a,b) evalued at t;tO- and (17) evaluated at t=to-. From tO
onwards, we treat 7(t as predetermined until further "news"arrives ,
in which case (34) again becomes relevant. In the model of equation
(33), an unanticipated permanent reduction in u leads to an immediate
"jump" appreciation of the real exchange rate, c, and a jump reduction

in core inflation, w.
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(3b) Forward-looking state variables associated with stable characteristic
roots

Another small modification to the model of equations (25a-~h) per-
mits us to illustrate the class of models to be characterized and
analysed in this subsection. The equation for the core rate of
inflation (25f) is replaced by:

(25£"') T = 3p(s,t)]
9s |s=t
This can be interpreted as perfect foresight or rational expectations

in the labour market. We no longer treat the money wage rate as a

continuous function of time. Both ¢ and & now are "jump" variables.

The state-space representation of the model of equation (25a-h)

with (25f"') is

(35) t‘_._“t) 1 -1 [(1-0) (1-a(1+y$) +adk) +ad¢r] | |
de | Yoo A (1-a(1+Y$)) | ] He)
3 cls,t) ! -¢ad
ds !sztj ° 1-0(1+Y9) ] ¢ ()
1 A(l-0(1+Y9)) +Ady+ky(1-a) ‘{
. (1-a(l+yd)) ! H
oy *
© 1-a (1+y9) r (o)

J

¥

Note that the model has become recursive. The behaviour of ¢ is
completely independent of the behaviour of £ except for such inter-

dependence as may be introduced via the boundary conditions. The two
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-1
characteristic roots of the A matrix in (34) are A and  -¢aé
1-a(1l+Y9)

The sign of the latter is the sign of-Q-a(l+y¢)). To interpret this
condition we add a demand shock term d on the right-hand side of the

IS equation (25b). A little manipulation then yields

- _y(1l-a) * a(l-a)s (1-a)
Yy = 1-0(1l+vd) ror 1-a(l+yvd) €T 1-a(1l+yv9) d

For osga<l, l—@(l+y¢) must be positive for an exogenous increase in
demand to raise output at a given level of competitiveness. We
assume this condition is satisfied. It implies that the character-
istic root governing ¢ is negative. Thus even though we have initial
conditions for neither e nor w (or neither ¢ nor %) there is one
unstable and one stable root. Figure 2 depicts the responge of ¢ and
£ to an unanticipated permanent increase in r*. Thed =o locus could
d
be downward-sloping, but nothing essential hinges on Ehat. With both
¢ and £ free to jump in response to "news", the condition that c and g
remain bounded for bounded values of the exogenous variables y and r*
no longer suffices to select a unique solution trajectory. Consider
an immediate unanticipated increase in r* at tztc. The new long run

equilibrium is E The initial position at t; is assumed to be El'

5
Any jump in £ and c which places the system anywhere on S'S' at t=tO
satisfies the equations of motion and guarantees convergence to E2.
A plausible further restriction might be that thé behaviour of this
system with its two "forward-looking" variables should not be depend-
ent on an "irrelevant" past. With the increase in r* occurring at

to' when it is first anticipated, this would mean that the system

jumps immediately to E2, the new long-run equilibrium. If a
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previously unanticipated increase in r* is expected to occur at

tl>to, any jump in ¢ and that places the system on a divergent

solution trajectory, drawn with reference to El' which will take it at
t=tl to S§'S', the convergent path through EZ' satisfies the equations

of motion and converges to E Three such divergent paths, UU, U'U’

2"
" " : 3 L] " s

and U"U" are drawn in Figure 2. El2' E 12 and E 12 are possible

positions of ¢ and ¢ at to' By analogy with the argument for the

case of the immediate increase in r*, a case can be made for restrict-

ing the solution to an initial jump to E on UU', from where the

12

system will arrive at E_ when r* is actually increased, i.e. at t=t

2 1

(See tinford (1979).

Figure 2
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The proposed boundary conditions therefore take the form:

-1
- -1 _[(1-a) (1-a (1+y¢) +adk) +adpX
(%)) A X (1-a (1+79)
(3) -
c(tl)_ © 1-a(1+Y¢)
Xri A{l-0(1+Y$)) +A¢py+ky (1~a)
A(l-a(l+yd))
0 S ) .
1o (1+vd)

his class of boundary value problem can be solved using the method of

adjoints.
The method of adjoints i

We consider the model of equations (3a,b) over a time interval
t ststl during which the information set does not change, i.e.

o}

I(t)=I, tostStl. Over this interval, therefore, Jixz(s,t) =
ds : s=t

iiﬁz(t) and equations (3a,b) or (7) can be written as:
dt

(37)  dx(t)=Ax(t)+Bz(t). t stst
dt

We now consider the two-point boundary value problem of equations (37)

and (38)
(38) Mx(t )+Nx(t_ )=r
[e] .1

Equation (38) gives n linear restrictions on the value of the state

vector at two distinct dates.
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Let M = {uji} , N = {vji} and r = (pl ; oeeey pj , ...pn)T (3)
i, 3 =1, 2, ..., n.
We can therefore rewrite (38) as (38')
n n .
(38" iiluji x.(to) + iilvji xi(tl) = pj =1, 2, eeer 1 .

.th ,
Xx. now denotes the i elements of x, i=1, 2, ..., n.
i

Consider the adjoint system to (37).

(39) d s(t)= - AT s(t)
dt

We integrate the adjoint equations backward from t = t , once for

1
each xi(tl) in (38 '), using as the terminal boundary conditions
(3)

(40) Si (tl) = V,. i, =1, 2, ..., n .

J1

sij)(tl) is the ith component at t = tl for the jth backward integration
of the adjoint equation. Thus, if v§ denotes the transpose of the jth
row of N in equation (38), we have the solution
o7
(t-—tl)A

e vj i=1, 2, ..., n.

i

(41) s ()

Setting t

tO in (41) we obtain s(j)(to).

The fundamental identity for the method of adjoints is (see Roberts and

Shipman [1972, pp. 17-22]):

NE) D (4) 10 (4
(42 I sij () x;(6) - 2sVx ey = [ 2 s;77(t) bz(t)at
i=1 i=1 1 o t, i=l

i=1, 2, ..., n .

bi is the ith row of the matrix B .
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Substituting for S(])(tl) from (40) into (42) and using (38') yields

n
p. - X

5 tl n (3)
D ey ey = ¢t s3 bzvae
J i=1 °© Lo T = * =

S,
1

™Mo

”ji xi(to)

i=1l

=1, 2, «eop n .

or

n
)
(43) i {“ji + s

n ()

I s.3(t) b.z(t)at
. 1 1 1
i=1 =

t
e) ] X (k) =6y - {

i=1, 2, ..., n

Equation (43) constitutes a set of n equations in the n unknowns
xi(to), i=1, 2..., n. If they are linearly independent they will
yield a unique solution for x(to). Given the value of the entire
state vector at t = to, equation (37) can be solved as a standard

initial value problem. Its solution would be

t
x(t)=eA(t—to)x(t )+‘{eA(t_S)Bz(s)ds, t gtsgt
o) o) 1

t

o}

However, in practical (i.e. numerical) applications, the true
value of x at tzto can only be approximated. Since A will in general
possess unstable characteristic roots, any error in the calculation
of x(to) will be compounded as time passes. If there are unstable
roots, it is therefore computationally superior, having calculated
X(to) using the method of adjoints, to use the solution method of
equations (17) or (17') and (23) or (23'). Note that z (T,s)=z(t,to)

=z (s) for tossst when we apply this method. If the information set

1

changes at t=t_, we resolve the two-point boundary value problem.

1

Equation (36) can be seen to be the special case of equation (38) with

=0.
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CONCLUSION

The paper presents a general solution method for rational expect-
ations models that can be represented by systems of deterministic
first order linear differential equations with constant coefficients.
It is the continuous time adaptation of the method of Blanchard and
Kahn. To obtain a unique solution there must be as many linearly
independent boundary conditions as there are linearly independent
state variables. Three slightly different versions of a well-known
small open economy macroeconomic model were used to illustrate three
fairly general ways of specifying the required boundary conditions.
The first represents the standard case in which the number of stable
characteristic roots equals the number of predetermined variables.

The second represents the case where the number of stable roots
exceeds the number of predetermined variables but equals the number

of predetermined variables plus the number of "backward-looking" but
non-predetermined variables whose discontinuities are linear functions
of the discontinuities in the forward-looking variables. The third
represents the case where the number of unstable roots is less than
the number of forward-looking state variables. For the last case,
boundary conditions are suggested that involve linear restrictions

on the values of the state variables at a future date.

The method of this paper permits the numerical solution of
models with large numbers of state variables. Any combination of
anticipated or unanticipated, current or future and permanent or

transitory shocks can be analysed.
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FOOTNOTES

(1) See Brock (1975) for a model in which these transversality conditions
are derived from explicit optimizing behaviour by an infinite-ljived
consumer. The non-predetermined variables there have the interpret-
ation of co-state variables in a dynamic optimization problem.

(2) The non-predetermined variables frequently are asset prices deter-
mined in efficient asset markets. Implicit arbitrage conditions
rule out anticipated future jumps in these asset prices. Thus,
except at those instants at which new information arrives, the non-
predetermined variables are continuous functions of time. See Calvo
(1977) .
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We do not however, for reasons of space, consider solutions in which

"extraneous" information plays a role.

. . c . Lo -
The exponential matrix e where C is an nxm matrix is defined by

e Z L C . When C is a diagonal matrix
k=0 '
Ll ecl
. O . c o}
C= . ¢ - Sy
oci then e = e * .
T o . c
.. n
c e |
L Il_ nd
v A [v 17 At
Using e 1 l[ 11 =V 1 v -1
11° [ 11]

dr

For any matrix §, denotes the (complex conjugate)

transpose of Q.



