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I : Introduction

Models estimated from censored samples are now familiar in the
econometrics literature. For many cases Least Squares approximations
to the Maximum Likelihood estimators are nowwell established. This
paper is concerned with a more general problem; that of estimating an
equation on the basis of data in which the dependent variably is only
observed to fall in a certain range on a continuous scale, its actual
value remaining unobserved. The data arealso censored in the usual
sense in that both end ranges are assumed to be open-ended. A number
of Least Squares approximations to the Maximum Likelihood estimator are
derived and compared. The results of Greene (1981) on the asymptotic
bias of OLS are extended to this case. The guestion of information loss

as a result of the grouping is also considered.

The latent structure of the model to be considered is assumed to

be given by

where yi is the unobserved dependent variable, X, and ? are both

-~

J x 1 vectors, the former being regxessors and the

latter unknown parameters. The u, are assumed to be independent

identically normally distributed random variables with zero mean and

. 2
variance O .and to be independent of x The conditional distribution

“ic
of the unobserved dependent ‘variable is given by

2 .
yi]ximN(xi'B,o) i =1,...,N.

~ ~



The observed information concerning the dependent variable is that it
falls into a certain range of the real line. The real line is divided
into K ranges, the k-th being given by (Ak—l' Ak]. It is further
allowed (although this need not be the case) that these X ranges
exhaust the real line. Thus AO = - and AK = +», j,e. the first
and K-th ranges are "open-ended". The observed information concerning
the dependent variable is which of these K ranges it falls into,

i.e. an indicator variable k

. 1is observed for each i(lskisK).

Thié type of problem is encounterxed in the analysis of certain
variables on a number of data sets. The one which prompted the investi-
gation on which this paper is based is the earnings variable in the
National Training Survey,. (See Manpower Services Commission (1978) for
details.) This survey,with its detailed employment, occupational and
training histories,is fast becoming a major source for U.K. economists
and its use will no doubt increase in the future as it becomes even
more widely available. Simple techniques for the analysis of its
earnings variable are thus urgently needed. The earnings variable in
the Oxford Mobility Survey is also grouped in a similar way and the
analysis of a number of variables in the General Household Survey (see
Office of Population Censuses and Surveys (1978) for details) give
rise to this type of problem. In particulér housing expenses, the

;

length of time with the present employer and duvation of unemployment are

all grouped in that survey.

Analysis of these large survey data sets is usually undetaken
on one of the commonly available general statistical packages. The sample
sizes involved severely restrict the range of software that is available.
The National Training Survey, for example, contains approximately 54,000

observations,



When Maximum Likelihood or other iterative routines are available on these
packages the sample size restrictions are usually such as to rule out their use
with these data sets. Even when not so ruled out or when special

programs are available the cost can often be prohibitive. Thus fast

and easy one- or two-step Least Squares techniques are very useful in

this work. This paper provides and illustrates such techniques

for the problem under consideration. Further, since it might be thought

that the usefulness of these variables is severely limited by the

grouping, the paper seeks to investigate the extent of information loss

as a result of the grouping in the context of the use to which the

variable is to be put.

Ad-hoc Least Squares estimation might involve assignment of
observations in any given group the midpoint (possibly after transforma-
tion of the variable), with the open-ended groups being
assigned values on some even more ad-hoc basis. However such methods
do not in general result in consistent estimates. Consistent estimates

would be obtained by assigning each observation its conditional expectation,

£(z,_) - £(2,)-
Bly /A <v s BpeX) =%, B+o F(z,) - F(Z,_)

k-1

where Zk = (Ak - fi ?)/c (£ 1is the standard normal density function
and F 1is its cumulative distribution. Hence the requisite estimation
of the conditional expectations requires estimates of B and o.
However, as will be seen in the next section this approach provides a

convergent maximum likelihood algorithm and hence possibilities for

least sguares approximations.



The remainder of this paper is laid out as follows. Section
II defines the Maximum Likelihood estimates of the parameters in the
model under consideration and demonstrates an algorithm based on least
Squares that will attain these Maximum Likelihood estimates and
converge monotonically. Section III dervies a "moment" estimator for
the normal regressors case, extending the recent work of Olsen (1980)
and Greene (1981). Section IV then considers a number of Least Squares
approximations involving the moment estimator in conjunction with early
termination of the convergent algorithm. These Least Squares approxim-
ations and the full Maximum Likelihood are then illustrated and compared
in Section V by the estimation of earnings equations using NTS data.
In addition the extent of information loss as a consequence of the
grouping is examined by comparing earnings equations based on GHS data
grouped for the purpose with those estimated from the original data.
In Section VI the results of a number of simulation experiments on these
methods are presented in an attempt to assess the sensitivity of the
estimators to the properties of the sample data and the underlying model.

Section VII presents some conclusions.



II : Maximum Likelihood Estimation

The log likelihood function of the problem outlined in the

previous section is given by

K - x!B 4 = X!B
logL = I z log F(Ak ~l") - F(Ak L 5 adey R
k=1 iek

We omit the 1 subscripts and further simplify the notation

in an obvious way to give

K
logL = L L log(F, - F D B
k=1 iek k k-1

The first-order partials with respect to the parameters are given by:

3log L %13 [fke1 ™ % ~
g —ZUF—F =1, ... ,J
j i kK~ k-1
dlog L _ , 1 [Zk—lfk—l - Zkka
) = =
° i ° P = Fra

where in simplified notation compatible with that used above

Ak—x!B
Zk = (———5—253) ’ fk = f(Zk) and f is the p.d.f. of the standard

Hence the maximum likelihood estimates are defined by the set

of equations



A number of different algorithms may be used to cbtain these Maximum

Likelihood estimates. This section concentrates on the derivation

of one that requires only OLS at each iteration.

The conditional means of the unobserved yi are given by

' £ - £
2 ' k-1 k
m = E: yilki; B/ c_] = x, 8+ o[gr'———-]

(All expectations in this section are also conditional on x although

i’
it is omitted from the notation for the sake of simplicity).

Hence the first J of the first-order.conditions can be written as

A ag Lo o :
inij(Efyilki; §, o] - % g) = 0 j =1, ..., 3
or as
- ' = =
)3(xij m, xi:.| X3 ?) 0 3 1, ..., J



or in terms of obviously defined matrices and vectors as

3
2= Y
|
L
X
L™ >
]
@]

Hence given estimates of the conditional expectations, an estimate of

the B-vector is given by:

= x'xntx

~ -~

L= Y

LT >

Turning our attention to the final first-order condition, this can be
2
rearranged to give an estimate of o in terms of the "residual"-sum-of-

squares from this least-squares regression as follows.

The conditional expectation of yi is given by

£z, ) - 2,£(2)

z
k_
1 1 : ] P 52
~1 .

F(Zk) - F{(

E(yflki; B, 0%) = 02[ -
k-1

f(Zk_l) - f(zk)]
)

* 200y 9)[F(zk) = F(Z

k-1

and so the conditional variances of the yi are given by

2
E(yilki: 8, o%) - [E(yilki: 8, 09)]

2
_ 2{[zk-1f(zk—1) - Zkf(zk)] [f(zk-l) B f(Zk)] }
= 0 - +1

F(Z) - F(z,_) F(z,) - F(z,_)

= oV, , say.

Hence the final first-order condition can be written as

~ ~

2 ~ ~ A~
(0" v, +(m, - x’ 8)2 - 02) = 0
i i i I



Thus given estimates of the conditional expectations and hence the B-vector

2 . ]
an estimate of @ is given by :

~ A /\2
o> = Tim -xl 8
ai ~1 o~
where 4 = IL(1 - Vi)
i

b

2
{[f(zk—l) - £ ] ) [Zk-l(zk—l) 3 Zkf(zk)]}

F(2Z,) - F(z, _,) F(z,) - F(z,_;)

-

Hence the likelihood conditions can be solved by iterating between ?

and (él 02) .

Since d can clearly be expressed in terms of conditional
expectations of sufficient statistics for the Y, r this iterative
method for solving the likelihood conditions can be seen to be an
application of the EM Algorithm discussed by Dempster et al. (1977).
Hence convergence is guaranteed, and the likelihood is increased at

each iteration.

The main advantage of the method, over for example Newton-
Raphson, liesin ité simplicity. It is purely a series of OLS estimations.
In addition,since the cross-product matrix X'X does not change from one
iteration to the next, only one matrix inversion, or equivalent, is required,
in contrast to Newton-Raphson where evaluation and inversion of the

matrix of second derivatives is required at each iteration.

The Maximum Likelihood estimates are consistent and

asymptotically efficient and asymptotic standard errors can be obtained



by inverting the matrix of second derivatives after convergence has

been attained. The second derivatives of the log-likelihood function

are given by

2
0’log 1 _ L. o {Zk-lfk—l ~ A [fk—l fk} }
BBj BBh G2 ; i3 in Fk - Fk—l Fk - Fk—l

2 22 ¢ Z2f £ - f
Slog L _ 1 . { kol k-l "k k k-1 T ko
SBj lo] 02 ;13 Fk - F -1 Fk - Fk—

[Zk—lfk—l Zkfk][fk—l i} fk]}
kTP IR oK

2 22 £ - g3¢ Z_f -z ¢
8109 L 1 z{ k-1k-1 ~ %k *k 2[ k-1"k-1 ~ “k k]

307 of il B T Fy Fx ~ Py
2
_ [Zk—lfk—l 3 Zkfk] }
Tk 7 Fre1

The second derivatives are then given by

8210g I {M M2}
a ] a - .« . -
83 Bh 02 ; 13 7ih {71 o)

éﬁgg_;&__l_z}( {M " MM}
BBj 90 02 ;i3 2 (o] 1o

3210g L

802 o]

|
lH
[N
H o~
=
W
|
™
=
'_l
[
=
N
\Y___/
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Since i Xij Mo = 0(j = 1, . .., 3d and i Ml = O at the
maximum of the likelihood function, +he middle terms in these last two

can be omitted when they are being evaluated at the Maximum Likelihood

solution. Hence estimated asymptotic variances and covariances are given by

inverting the (J + 1) x (J + 1) matrix defined by

1 "2 - .
th = = L xl:J ih {MO - Ml} i, h = 1, e s J
o i
Q = ;—-Z X {A ¢ & } j =1 J
s ~ - - r . . -y
jJ+1 02 i ij 10 2
S S (o R
Q1341 = 2 F {Ml M3}
o i

where “'s 1indicate evaluation at the Maximum Likelihood estimates.
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ITI : A Jowent Fstimator for the Normal Regressors Case

"Moment" estimators have been proposed recently for both the
truncated regression model (Olsen (1980)) and the Tobit model (Green
(1981)). This section derives such an estimator for the grouped depen-
dent variable model. It is consistent in the case when the
regressors are normelly distributed. In passing, the results of
Greene (1981) on the asymptotic bias of OLS are extended to the grouped

dependent variable model.

The latent structure of the model under consideration is

rewritten as

.= + x! + i = cen
' o X3 Y u, (i 1, /N)
where xi now excludes the constant term. It is assumed that x,.

-~

is normally distributed. Thus

v H 02 c!
1. Y Y =Xy ,
[\ N 14 7 (l=l’-ocn¢’N)
WX, U o] z
I,l X XY xx /|

Estimation of this equation by one Least Squares step would involve
assigning a value for the “dependent variable" for all observations in a
given group. Let the assigned values be % (k =1,...,K) and let g

be the "dependent variable" defined in this way. Thus

9p T g If A <y, SAa (k=1,...,K( =1,...,N8 .



1z,

The OLS regression of g on x produces the following estimates:
c = gt g
~ ~XX .Xg
a = g-x'c
2
s = g - 8! ¢
g9 ~Xg .
where S , § and S are the appropriate sample moments, which
XX xg gg

tend in niobability to their vopulation equiQalents.

To examine the inconsistency in the OLS estimates, some moments

of the observed random variables must first be derived.

K
Elg) = I qP@ <y Sa)
k=1
K ’ - -
= I g T Bl T Y
- e o - F o] *
k=1 Y y
K - u A -y
E(gD) = 1 ar {F BTl ] L TS } .
k=1 Oy oy



K
E(xg) = z qu(xlg = qk)P(g = qk)
- k=1 -
K < <
T GExA ) <y S mIPRy ) <y S Ay,

The conditional expectation hexe is given by

2 <
He ¥ (fxy/Oy){E(YIAk-l <Y S A) - “y}

Blxla ) <y = Ay

4 g f(Bk_l) - f(Bk)
= Wt F(B.) - F(B. )
~X o0 k k-1
- u
where B = LX\

whilst P(A _, <y = a) = F(B) - F(B__,).
Thus
K
E(fg) = kil G {EX(F(Bk) - F(B_)) + (gxyloy)(f(Bk_l) - f(Bk))} .

Given these moments, the probability limits of the OLS estimates can be

found as follows

13.



plim ?xg = cov(ffg)

= E(x9) - uxE(g)

K 0]
= 1 q = {f’(Bk_l) - f(Bk)}
k=1
X 1
= 0 > q, — {f(B ) - £(B )}
- k
~ k=1 k oy k-1
Pllm §Xx = §:'XX
and Yy = Z-l o .
- ~XX XY
Thus
lim ¢ = plim (ST s )
p c p S 59
K 1
= Z kil qk E;- {f(Bk_l) - f(Bk)} #'! ; 1n general,

Thus all the OLS slope coefficient estimates are incconsistent by the same

proportion.

Turning to a,

plima = E(g) - u; plim ¢
K K 1
= I q {F(B )=F(B )} -y I @ q = {f(B ) - £(B )}
k - -
k=1 k k-1 . k oy k-1 k
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P
-~

1
I q ——-{f(B 41 - £(B )} .
k=1 k cy k-1 k

it
LI e B

q {F(Bk) - F(B__ )} + (o-p )
k=1 K k-1 y

At this point it is convenient to define the following scalars

K
A= I g {F(B ) - F(B, _ )}
k=1 X k k-1
Ko
vV = 1§ g {F(B ) - F(B )}
k=1 K k k-1
K 1
6 = 21 qk e {f(Bk_l) - f(Bk)}.
k=¢ Y

Note that the unknown parameters invelved in each case are uy and oy.

Then

plim

[ e}
]
<
[av)

and

plim

sl
1

A+ (a-p ) 6.
( uy

Finally turning to s ’

plim Sgg = Var(g)
= ¥ -2

and

plim ?x = gxy 8.



Thus

plim §° = ¥ - 2% - 66’ plim c
2 2
= P - A" -8
Txy I
2 .2 22

I
<
I
>
|
@
ko)

where p2 is the multiple correlation between y and x.

~

2 02
Given that o = 1 - =
O'/
Y
22 2 2
o p = g =0 .
Thus
. 2 2 2, 2 2
plim s~ = ¢ - A" -8 (oy -0 # o2 , in general.

Clearly the OLS estimates are in general inconsistent. However given

consistent estimates of uy, Gy consistent estimates of vy, a and

02 can easily be derived from them using the following simple adjustments.

Define

>
>

HIEE

it

\(')
3

>
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~ ~

and oy, themselves

where A, ¢, 6 are A, Y, 6 evaluated at yu

- A

° 2
consistent estimates of uy and oy. Then vy, a, o© are consistent

2 .
estimates of vy, a, o respectively. Thus for any relevant choice of

qk(k =1,...,K) consistent estimation of (v, d, 02) requirés only

consistent estimation of uy and Gy in addition to the OLS estimates.



IV : Least Squares Approximations

Maxirmum Likelihood estimation of the model under consideration
can be extremely expensive on computer time, particularly when large
samples are involved. Hence convenient Least Squares approximations
to the full Maximum Likelihood solutions are desirable. A consistent
estimate needing only simple adjustments to any OLS estimates was
presented in Section III. However the result demonstrated there, on
which the estimator is based, that the OLS slope estimates are all
inconsistent by the same proportion, assumes normally distributed
regressors. In the absence of such normality the fact that the moment
estiﬁator adjusts all the slope coefficient estimates by the same
proportion is likely to be a weakness, since the proportional inconsistencies

will not in general be equal.

The monotonic convergence property of the algorithm outlined
in Section II means that Least Squares approximations to the full Maximum
Likelihool solutions can also be obtained simply by early termination of this
algorithm, However this places great emphasis on the starting point of the
algorithm, particularly if only one or two iterations are then performed

to give the approximation.

Hence im both cases a combination of the methods from Sections
IT and III will be beneficial. An interation of the monotonically
convergent algorithm will improve on the moment estimator (in the sense of
increasing the value of the likelihood) and is likely to be particularly
useful when the required adjustments to the OLS slope coefficients are
not proportional. On the other hand the moment estimator can provide the

necessary starting values for the iterative method,



The moment estimator adjustments can be applied to the OLS
estimates of an equation based on any appropriate (qk; k=1,...,K).
The adjustment factors require only consistent estimates of uy and

o_.
Yy

The 9 could be chosen in a number of ad Loc ways. Any set

of values satisfying

A1 <9 <B  (k=1,...,K

would suffice. However dgiven consistent estimates of uy and Uy
a more systematic choice of the Q. can be made based on conditional

expectations of the marginal distribution. These are given by

(0}
£(z) ) - £2)
) < < = + o
Eygla <y, $3) = 4oy Fz0) - £2°
14 k-1
where Zg = (Ak - uy)/oy. Consistent estimates of these conditional

expectations can be obtained and used for the qk,

. . (=22 - f(zo)
y ¥ F(ZE - F(ZO )

k =1,...,K)

A

where Zg = (Ak - ;y)/;y' OLS estimation of ? using these qk is
then equivalent to one iteration of the algorithm described in Section II
except that the my are evaluated on the basis of consistent estimates
of the parameters of the marginal distribution rather than those of the
conditional distribution, the latter not being available at this stage

of the procedure.

19,
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The adjustment factors for the moment estimator described in
Section III are applied direct to the OLS estimates. Hence the OLS
estimate of o should be used rather than the iterative estimate
using d derived in Section II. If however the initial iteration
estimates are to be used on their own, or with additional iterations
without the moment adjustments then the adjustment (using d) of

Section IT should be made.

This moment estimator is extremely conyenient and simple to
construct and is consistent in the case of normal regressors.
However a weakness with the initial OLS estimates is that the information
contained in the explanatory variables for any given observétibn is not
utilised in the construction of the estimated conditional expectations.
This is inevitable since no estimate of B is available at that stage.
For this reason one iteration of the Maximum Likelihood algorithm of

Section II may produce considerable improvements in the approximation to

the Maximum Likelihood estimates.

Hence the proposed two-step approximation involves applying one
iteration of the Maximum Likelihood algorithm to the moment estimator
based on the initial iteration described above. The my in this second
iteration can be evaluated on the basis of the parameters of the condit-
ional distribution as described in Section II. This estimator will be
referred to as the "two?step estimator" and is compared with the Maximum
Likelihood estimator and a number of alternative approximations in the

next section.



21,

The required consistent estimates of the parameters of the
marginal distribution, uy and Oy' can be obtained by fitting a
normal distribution to the sample distribution of the partially observed
dependent variable. One simple and convenient way of doirg this,

a Least Squares variant of the graphical method of

Aitchison and Brown (1966); is as follows. TIf Ck is the sample cumulative
frequency, i.e. the proportion of the sample with values of the dependent variable
less than Ak’ then the distribution is fitted by regressing F_l(ck)

on Ak' This provides consistent estimates of uy and cy. Other

methods could be substituted.
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V_: An Illustration - The Estimation of Earnings' Equations

This section illustrates the methods presented above
in the context of the estimation of earnings equations. In the first
illustration the "two-step estimator" and some of the others outlined
in the previous section together with two ad hoc Ieast Scuares estimators
are compared both with one another and with the full Maximum Likelihood
estimates on a typical earnings equation. The data source is the
Mational Training Survey (NTS) conducted on béhalf of the Manpower
Services Commission in late 1975. (For details see Manpower Services
Commission (1978)). The sample used here is restricted té fuil—time
manual male employees in manufacturing, giving a sample size of 5352,
The dependent variable is the logarithm of weekly earnings and the explan-
atory variables are as listed at the foot of Table 1. The NTS earnings
variable is in ten groups each of width £10. The open-ended groups are

<€£25 and >£105,

The first ad hoc method used for comparison involves allocating
to all individuals in a given group the mean of the logarithm of weekly
earnings of the commarable sampleof male workers in that range in the
1975 General Household Survey (see Office of Population Censuses and
Surveys (1978) for details), The second ad hoc method used involves
allocating arithmetic midpoints to the internal groups and arbitfarily
taking £15 p.w. for the open-ended group with weekly earnings <£25 and

£130 p.w. for the group at the other end with weekly earnings >£105.

The results of this comparative exercise are presented in Table 1.

Table 1(a) presents the results for the initial iteration estimator and



Comnarison of Approximations with Maximum Likelihood Estimates.

Standard errors are given in parentheses,

Table 1 (b) ;
—

l-step estimators wicn roment adjustment

Table 1 :
Table 1(a) : l-step estimators without moment adjustment,
I . | !
;Method Haximum initial iterat— % Jiff-|1st ad hoc method % dif- ]2nd ad hoc method|s differ—
! Likelihood ion only erence {see text) ferene (see text) lence from
1 from MI from Ml ML
i
Const. 3.0720 ({.0795) 3.1078  (.0977) 1.2 2.9074 (.1058) -5.4 2.9895 (,0913) -2,7 E
b L0239 (.0014) .0226 (.0017) -5.3 .0348 (.0019) 45.6 .0289  (.0016) 21.2 !
xz -.00045 (.00002) | -.00042 (.00003) | ~5.0 |[-.00063 (.00003) 41.9 -.00054 (.00003) 19.7 |
s L0252 (.0047) .0242 {.0058) -4,2 L0250 (.,0063) -0.8 L0253 (.0054) 0.2 j
F L0543 (.0089) .0524  (,0109) -3.5 L0491 (.0118) -9.6 L0531 (.0102) -2.4 |
A .0214 (.0085) L0212 (.0104) -0.8 .0038 (.0113) -82.3 .0143 (,0097) -33.2 |
M 1024 (.0125) .0985  (.0153) -3.8 .1256 (.0l66) 22,7 .1149 {.,0143) 12.3
SW -.1235 (.,0162) -.1161 (.0199) -6.0 [-.1613 (.,0216) 30.7 |=-.1410 (.0186) 14.2
R .1244  (.0095) L1211 (.0117) -2.6 .1285 (.0126) 3.3 .1283 (.0109) 3.2
T .0796 (,0085) .0768 (.0105) -3.4 .10l6 (.0113) 27.8 L0910 (.0098) 14.4
U .1C54 (.0086) L0999  (.0106) -5.3 1261 (.0115) 19.6 -1157  (.0099) 9.7
a .2601 .2622 . 3490 { .3003
log L -8966.2 -8969.6 -9384.5 ~9078.5
R2 . 364 .362 .335 357
t ] +
mean
absolute
percen- 3.7 26,3 12.1
tage
differ-
ence
from ML
1
Variables: X = Experience, S = Age completed full-time education, F = Any further education since initial finishing,
A = Taken apprenticeship, M = married, SW = secondary worker, R = job involwes respensibility for the work
of others, T = Training need to get a job of this type, U = Member of Trade Union.
Sample: Male manual workers in manufacturing. Sample size = 5352

| Method EMaximum initi i ’
: | Maximy initial iterat- |g diff-’lst d h i ’
{ Likelihood | ion + moment erence ‘+ mo;entogd?i:€06 ; aif- ]2nd ad hoc methog|y dlffer_
i e T jterence i+ opent ag- -
’ | adjustment ol u adjust. ence from
T—~ ’f | om I ment trom M1 {ment
J i
| ;Oﬂsc. 3.3;53 §.07i5; 3.0743 (.0794) 0.1 3.0027 (,0885) -2.3 3.0450 (.0827) 0.9
. .0014 .0236 . - . . . ”
X2 3 (.0014) 1.0 .0316 (,0016) 32.3 .0273  (,0014) 14.4
: —.82?‘215 E-g}ajgf) ‘.8(215)‘314 ((.2?;)2) 0.7 ~.00058 (.00003) 28.9 =.00051 (.,00003) 13.1
s . . . . 0.1 | .0227 (.0053) | -9.9 | .op39 ( .
F .0543  (.0089) 0548 (.0089) 0.9 0447 ¢ . ) o S
, . . . . -0099) | -17.8 | .0501 (.c092 -
2 .0214 ' (.0085) 0222 (,0085) | 3.7 : " co08) oo
: C . . . . .0034  (,0095) ~-83.9 0Ol35 {( 8
u .1024  (.0125) 1030 (.0125) | o.6 1 : : orsy | e
“ . . . .1141 (.0139) 11.5 1085
SW } =.1235 (.0162) -.1214 (,0162) 1.7 ; : o) oS
. . . ~-1. -.1466 (,0180) 18.8 -.1332
R .1244  (.0095) 1266 (.0095) 1.8 . . Pl ae
. . . -1167 (.0105) -6.1 1212
T .0796 (.0085) 0803 (.0085) 0.9 ) . (oo e
. . . . 0924 (,0095) 16.1 086!
u -1054  (.0086) | .1044 (.co086) | - . 1092 ( ocoe) e
’ )! 1.0 .1146  (,0096) 8.7 .1092  (.0090) 3.6
[s .2601 2601 29
. .2907
log L -8966, 2 - ose
° 8966.4 -9084.6 -8988,7
[ji .364 .364 .350 363
mean ‘
absolute
percen- .
tage 1.1 21.5
differ~ >
ence

from ML

i
'




24

Table 1(c): 2-~step estimators without moment adjustment
! )
Method Maximum Two consecuicive % diff- | Ist ad hoc method F diff- 2nd ad hoc method {8 diff-
Likelihood iterations erence + ¢ne iteration erence + one iteration erence
i | aestimator from ML from ML from ML
Const. | 3.0720 (,0795) 3.0748 (0.794) 0.1 3.0331 (.0830) -1.3 3.0536 (.0811) -0.6
X .C239  (.00l4) .0238  (.0014) ~0.5 0259  (.0014) 8.6 .0248 (.0014) 3.9
5
X~ -.00045 {.00002) —.00045 (.00002) ~0.4" ~.00048 (.C0003) 7.9 =-.00046 (.00002) 3.6
S L0252 (.0047) L0252 (,0047) ~0.3 L0255 {,0049) 1.0 .0254  (.0048) 0.5
F L0543  (.0089) .0542  (.0089) -0.2 0547 (.0093) 0.6 .0546 {.,0090) 0.4
A .0214 (.0085) 0214 (.00:5) C.3 .0186  (,0089) -13.2 L0202 (.0086) -5.4
M .1024  (.0125) .1021  (.0125) -0.2 .1064 (.0130) 4.0 1044 (.,0127) 2.0
SW -.1235 (.0162) -.1228 (.0l62) ~0.6 -.1308 (.0169) 5.9 =-.1268 (.0165) 2.7
R 1244 (L,095) 1242 (,0095) -0.1 .1261  (.0099) 1.4 L1252 (.0097) 0.7
T .079¢  (.0085) 70734  (.0085) -0.2 .083%9  (.0089) 5.4 .0816 (.0087) 2.6
u -1054  (.0086) .1050 (.0086) -0.4 .1106 (.0090) 4.9 .1078 (.0088) 2.3
a .2601 ’ .2601 .2723 . 2656
Log L -8966.2 ! ~8966.2 -8981.4 -8969.5
R .364 | .364 .364 . 364
H
mean
absolute
percen~
tage 0.3 4.9 2.2
differ-
’ ence
from ML
Table 1(d): 2-step estimators with moment adjustment.
l _ o
Maximum Proposed 2-step % diff- lst ad hoc % diff- 2nd ad hoc % diff-
Method Likelihood estimator erenca method + both erence method + both erence
from ML | from ML from 1L
Const. 3.0720 (.0795) 3.0725 (.0794) 0.02 3.0529  (.0810) -0.6 3.0644 (.0800) ~0.2
L0239 (,0014) L0239 (,0014) -0.1 0250 (.0014) 4.7 .0244  (.0014) 2.0
X2 -.00045 (.00002) -.00045 (.0C002) -0.1 -.00C47 {,00002) 4.3 ~.0004€ (.C0C02) 1.8
5 L0252 (,0047) .0252  (.0047) -0.02 .0253  (.,0048) 0.2 L0252 (.0048) 0.01
F .0543 (.0089) .0544  (,0089) 0.04 .0541  (.0090) -0.4 0542  (.0089) -0.2
A 0214 (,0085) .0214  (.0085) c.3 L0195  (,0086) -8.9 .0206 (.0085) -3.7
M .1024  (,0125) .1024 (,0125) 0.02 1043 (.0127) 1.9 .1032  (.0126} C.8
o -.1235 (.0162) =.1232 (.0162) -0.2 -.1277 (.0165) 3.4 -.1252 (.0163) 1.4
R .1244  (.0095) -1245  (.0095) 0.1 .1248 (.0097) 0.3 L1245 (.0095) o.1
T .0796 (.0085) .0796  (.0085) 0.01 .0818 (.0087) 2.8 .0805 (.0086) 1.2
u -1054 {.0086) .1053  (.0086) -0.1 .1080 (.0088) 2.4 1064  (.0087) 1.0
a L2601 . 2600 .2654 .2621
Log L -8966.2 ~8966,2 -8969.9 -8966.8
r? .364 .364 .364 .364
mean
absolute
percent—
age dif- C.1 2.7 1.1
ference
from ML 1 i
i
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the two ad hoc methods. The moment estimators corresponding to each
of these three are presented in Table 1(b). The results of applying
one Maximum Likelihood iteration direct to each of the three are
presented in Table 1(c) and Table 1(d) contains the results of applying
this iteration to the three moment estimators. Hence the first of the
three presented in Table 1(d) is the proposed "two-step estimator".

In addition the fully iterated Maximum Likelihood estimates are given
in each of the sub-tables for purposes of comparison. The percentage
differences in the coefficient estimates from the corresponding Maximum

Likelihood estimates are also presented for each of the estimators.

The single iteration on the basis of the estimated marginal
distribution is clearly superior, in the sense of giving a better
approximation to the Maximum Likelihood estimates, to both of the ad
hoc methods. The mean absolute percentage difference in the coefficient
estimates from the Maximum Likelihood estimates is 3.7% compared with
26.3%-and 12.1% for the two ad hoc methods. The coefficient on which
both ad hoc methods fall down most badly is that on the variable A,
which has the lowest asymptotic t-ratio of those in the equation, This
is obviously a serious drawback to the use of such ad lLoc estimators.
The single iteration estimator also provides a superior estimate of o
(differing from the Maximum Likelihood estimate by less than 1% compared
with 34% and 15% for the two ad hoc methods) and attains a likelihood
value much closer to the maximum (differing from the maximum by 3 as

compared with 418 and 112).
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Comparing the moment estimators in Table 1l(b) with the
corresponding columns of l{a} there is a clear improvement in all three
cases, despite the non-normality of the regressors. However the estimators
based on the two ad hoc starts are still poor. The relative improvement
in the percentage difference from M.L. is greatest for the moment estimator
based on adjusting the single iteration estimator. The mean absolute
percentage difference is now only 1.1%. In addition the estimate of o
differs by less than 0.l1% and the log likelihood ig only 0.2 away from its
maximum. It would seem that in the non-normal regressors case the

effectiveness of the moment adjustments is dependent on the initial choice

of the qk.

The improvement that resuits from an iteration of the Maximum
Likelihood algorithm (Table 1l(c)) is greater in each case than that
from the moment adjustments. This is particularly true for the two
based on ad hoc starts. These estimates are now reasonable approxima-
tions, but still considerably inferior to the estimator based on the
iteration start. That gives a mean absolute percentage difference from
the Maximum Likelihood coefficient estimates of 0.3% and an estimate of
0 equal to 4 decimal places and is within 0.1 of the maximum of the log-

likelihood function.

Finally interspersing the two iterations with the moment estim-
ator adjustments to give the "two-step estimator" proposed in Section IV
(Table 1Ad)) gives a yet further improvement. The mean absolute percen-
tage difference from the Maximum Likelihood coefficient estimates is now
less than 0.1% and for no single coefficient does it exceed O0,3%, Thus

in this illustration the proposed "two-step estimator" provides highly



satisfactory approximations to the Maximum Likelf{hood estimates. Whilst

the convergence cf the algorithm of Section II is monotqnic, the improve-
ments in estimates are much smaller in all cases for the remaining iter-

ations. (Six to eight iterations. are required for convergence when the

-5
largest parameter estimate change permitted is 10 7.)

The second illustration of this section examines the
consequences of such grouping again in the context of the estimation of
earnings equations, Data from the General Household Survey are utilised
to compare the Maximum Likelihood estimates on artificially grouped data
(using the NTS grouping) with the estimates from using the original
(ungrouped) data. The dependent variable is again the logarithm of
weekly earnings and the explanatory variables are as listed at the foot

of Table 2,

The results are presented in Table 2 and it can be seen that
there is fairly close agreement between the Maximum Likelihood estimates
and OLS estimates using the original ungrouped data. The mean absolute
difference between the two is .0072. Since the dependent variable isk'
the logarithm of weekly earnings this represents about three-quarters of
a percentage point in the differential. The mean absqluteygercentage
difference between the two sets of estimates is 5.7%. The correlation
between the‘complete earnings data and the final Maximum Likelihood
estimates of the conditional expectations is .9682, while the correlation
between the predictions from the two sets of estimates (now not
conditional on k in the case of the Maximum Likelihood estimates) is
.9996. The consequences of grouping do not appear to be too severe in

this case.
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TABLE 2 : Comparison Using GHS Data Grouped and Ungrouped
briginal Data Grouped Data Difference Percentage
(Ungrouped) (M.L. Coeff. & Difference
(0.L.S. Coeff. & asym. st. error)
t. error)

Const. R.8360 2.8840 .0480 1.7
X1 .1345 (.0086) .1269 {.0086) -.0076 ~-5.7
X2 .0437  (.0050) L0435  (.0047Y ~-.0002 -0.5
X3 .0125 (.0021) .0113 (.0020) -.0012 -9.1
X4 - .0020 (.0021) -.0017 (.0020) .0003 14.4
X5 - . 0040 (.0022) -.0044 (.0021) -.0004 ~10.2
X6 .0147 (.0027) ~-.0146 {.0026) .0001 0.6
Sle .1615 (.0133) .1521 (.0126) -.0094 -5.9
s17 .2479 (.0211) .2295 (.0200) -.0184 =7.4
s18 .2992 (.0267) .2655 (.0255) -.0337 -11.3
S19+ | .4358 - (.0167) .4076  (.0159) -.0282 -6.5
Fl .1334 (.0171) .1335 (.0162) .0001 0.1
F2 . | .0754 (.0153) .0786 (.0145) .0032 4.2
F3 .0351 (.0172) .0388 (.0162) .0037 10.4
F4 .0486  (.0234) .0508  (.0221) .0022 4.5
ILL }.0596 (.0108) -.0582 (.0102) .0014 2.3
MAR .1560 (.0134) .1501 (.0126) -.0059 -3.8
COL t.1699 (.0319) -.1759 (.0301) -.0060 -3.5

OLS o .3203 -

pr. o | .3197 .2950 -7.7

Log L }-2668.8 -9771.6

R? .3560 .3840

[Distri-

bution

of y:

IMean [3.9910 3.9855

S.D. .3985 .3663

Variables: X1 to X6 = Linear spline on years of experience (X1 and X2

are of width 5 years the remainder 10 years), S16 to S19+ = Age on completion
of full-time education, F1 to F4 = Father's occupation was (1) non-manual

(2) skilled manual (3) semi-skilled manual (4) farmer or similar (base

group, is unskilled manual), ILL = Has long-standing illness or disability
MAR = Married, COL = Non-white.

Full-time males 5338 .

Sample:

Standard errors in parentheses.

Sample size =
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VI: Sensitivity to Sample Properties - A Simulation Exercise

In order to ascertain how dependent are the favourable results
of the previous section on the particular samples involved a number of
Monte Carlo experiments were conducted. Among the features to which
the estimators might be expected to be sensitive are nori-normality, and
particularly skewness, in the underlying distribution, the proportion
of observations in the open-ended groups (the degree of censoring), the
multiple correlation and the extent of assymmetry in the grouping (relative
to the underlying distribution of vy ).

The underlying model used in all the experiment is ¢iven by

i F B x,. + u, (i =1,...,N)

The grouping was performed with ten groups (K = 10) and A = k
k=1,...,9). Hence the centre of the grouping is at 5.0. The
characteristics of the experiments conducted are given in Table 3.

In all cases samples of 1000 were generated, this being regarded as a
typical medium-sized sample for the type of work and data sets that tbe
estimation methods are likely to be employed upon. The values of Xy
were generated throughout from a standard normal distribution. The
distribﬁtions generating X, and u were standardised in each
experiment to have zero mean and prescribed variances (denoted 02 and

2

2 . . . ;
o respectively) . 50 replications were performed for each experimernt.

Ir the base experiment (experiment 1) x, is generated by a

standard normal and u by a normal distribution with o = 2, Hence

the multiple correlation equals .5.
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The resultant marginal distribution of y is normal and has variance 4.
a (and hence uy) is taken to be 5 making the grouping symmetric about
K, and generating on average approximately 2%% of the observations in each

b4
of the open-ended groups.

The estimators are then examined in different situations by

. 2 2
varying o, 0d,,

(and hence vy). 92 and the proportion of observations in the open-

and the distributions used to generate X, and u

ended groups can be varied by altering 02 and 03' Varying a
results in assymmetry in the structure of the grouping (relative to the
underlying distribution of vy). Using different distributions to
generate X, allows examination of the effects of non-normality in the
marginal distribution of y on the estimators under consideration.
Finally if distributions other than the normal are used to generate u
the conditional distribution of y will also be non-normal and the

\ql

Maximum Likelihood estimator itself may no longer be consistent.

Experiments 2 and 3 vary 02 and 02. In experiment 2 02

2 2
- is reduced to 0.2 and 02 raised to 2.8. This reduces p2 to .3
while keeping the average size of the open-ended groups the same.
2
Experiment 3 increases @ to 3 and 02 to 4. This restores p2 to

2

-5 (as in experiment 1) and increases the average size of the open-ended

groups to about 8% each .

In experiment 4, o and hence uy is taken to be 3 causing
the grouping to become assymmetric relative to uy. This results in
about 16% of the observations falling in the left-hand open-ended group

with only one in a thousand on average in the right-hand one. Experiments



5 and 6 use two convenient skewed distributions to generate Xpe In
experiment 5 X, is generated by the chi-square distribution with 2
degrees of freedom (coefficient of skewness = 2.,0). While in experiment

6 X,

parameter 1.0 (coefficient of skewness = 6.2). In each case the distri-

is generated by the lognormal distribution with median 0.5 and shape

bution is standardised to give mean and variance equal to that in
experiment 1. Finally experiments 7 and 8 use these same two distrib-
utions to generate non-normal disturbances. In thiscase the values
are standardised to have a mean of zero and a  variance of 2 ag

in experiment 1.

The NAG function GOSDDF was used to generate normal pseudo-
random variables. (See Numerical Algorithms Group (i981) for details).
Xz(d) variates were generated by summing d squared standard normal
pseudo-random numbers from GO5DDF, and the lognormal variates were

generated as

L, = m.exp(s.Ni)

where m is the median, s the shape parameter and Ni a standard
normal speudo-random number from GOSDDF. Each sample was initialised

from the real-time clock.

Results for the eight experiments are given for five estimators

in Tables 4 to 6. The five estimators are:
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Table 3: Characteristics of Ex-erinents

Bxperi- Distribution 2 Distribution 2 2 mean ni2an
* o o Moo= o p . ;
nent of Xy 2 of u Y proportion prorortion

<A 7 e
1 Nermal 1 Normal 2 5 .5 023 023
2 Normal 0.2 Normal 2.8 5 .3 023 023
3 Nomal 3 Normal 4 5 .5 079 Cc73
4 ) Normal 1 Noxrmal 2 3 .5 157 001
5 K22 1 Normal 2 5 5 .018 029

Lognormal =
5 z N . .015 .02
5 (r=.5,5=1.0) 1 Normal 2 5 5 5}
2
7 Normal 1 x (2) 2 5 .5 010 L0368
8 tlormal 1 Lognormal 2 5 .5 .006 .o
m=.5,5=1,0) '

Notes: . X generated by N(OQ,1) distribution in all experiments.

. -Sample size = 1000 in all experiments.
50 replications performed for each experiment.

1
2
3
4., In experiments 5 and 6 distribution of X, is standardised to have mean zero and variance 1.
5
6

In éxperiments 7 and 8 distribution «f u is standardised to have mean zero and variance 2.
Xy and u have mean zero in all experiments.

Table 4: Mean Biases

Initial Initial Two The Fully
Iteration Iteration Iterations "Two-step Iterated CLS on
Only + Moment Estimator" Maximum Ungrouped
Adjustments Likelihood Data
Experiment 1:
‘_X‘D‘Bl—— ~.0315 -.0068 -.0080 -.0067 ~.0068 -.0030
Bo -.0213 .0037 .0019 .0032 .0032 .0038
4 .0233 0087 0069 .0067 .0066 .0082 4
Experiment 2:
81 -.0305 -.0058 -.0066 -.0056 -.0057 -.0048
8o -.0029 .0225 .0214 .0224 .0223 .0172
[4 .0042 -.0020 -.0043 -.0043 -.0045 .0011
Experiment 3: '
By -.0308 .0027 -.0009 .0018 .0015 .0044
B2 ~.0271 . 0065 .0028 .0055 .0051 . .0051
a .0222 -. 0079 ~-.0102 -.0102 -.0110 -.0033
Experiment 4: : .
- By -.0477 .0014 -.0037 .0014 0012 .0016
Boy -.0474 .0017 -.0032 .0019 0017 .0020
g .0351 .0033 .0013 . 0008 .0003 -.0002
Experiment 5:
By -.0289 -.0040 -.0027 -.0012 ~.0002 ~.0003
B2 -.0538 ~.0296 ~.0067 -.0037 . 0016 .0029
[ .0147 -.0002 -.0018 -.0020 -.0012 .0022
Experiment 6: :
Bl -.0430 -.0l80 -.0166 -.0151 -.0127 -.0100
Bs -.1758 -.1542 -.0674 -.0608 .0070 . 0097
o3 .0208 .0080 -.0048 -.0052 -.0059 -.0027
Experiment 7: .
B1 ~.0354 -.0101 -.0106 ~-.0091 -.0093 .0012
B, -.0414 -.0162 +.0161 -.0146 -.0148 -.0049
g -.0733 -.0902 -.1002 -.100S -.1015 -.0066
Experiment 8:
By ~.0383 -.0109 -.0126 -.0106 -.0l108 .0072
82 -.0399 -.0125 -.0142 -,0122 =.0124 -.0019
[ ! -,2912 -.3144 . -.3256 -.3262 -.3271 . 0016




Table 5: Mean Bias to Standard Deviation Ratios
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Initial Initial Two The Fully
Iteration Iteration Iterations "Two-step Iterated OLS on
Only + Moment Estimator” Maximum Ungrouped
Adjustments Likelihood Data !
— T
Experiment 1:
81 -0.68 ~0,14 -0.17 -0.14 ~0,14 -0.06
82 -0.46 0,08 0.04 . 0,07 0.07 0.08
o 0.73 0.27 0.21 0.21 0,20 0.29
Experiment 2:
By -0.66 -0.12 -0.14 -0.12 ~0.12 -0.10
B2 -0.02 0.17 0.16 0.17 0.17 0.13
o] 0.14 -0.07 -0.14 ~0.14 -0,15 0.03
Experiment 3:
By -0.47 0.04 -0.01 0.02 0.02 0.07
Bo -0.89 0.20 0.09 0.17 0.16 0.16
g 0.58 -0.21 -0.28 -0.28 ~0.30 -0.08
Experiment 4:
B1 -1.05 0.03 -0.08 0.03 0.03 0.04
82 -1.07 0.04 -0.07 0.04 0.04 0.05
o 1.09 o.10 0.04 0.03 0.01 -0.01
Experiment 5:
Bl -0.69 -0.09 -0.06 ~0.03 -0.01 -0.0L
52 -1.40 -0.75 -0.16 -0.09 0.04 0.07
¢} 0.46 -0.01 -0.06 -0.06 -0.04 0.07
Experiment 6: :
81 -0.97 -0.40 -0.38 -0.34 -0.29 -0.23
B2 -1.93 -~1.65 -0.93 -0.85 0,14 0.26
o 0.56 0.21 -0.13 -0.14 ~-0.16 ~-0.08
Experiment 7:
By ~-0.82 -0.23 -0.24 -0.20 -0,21 0,03
Bo -0.96 -0.37 -0.36 -0.33 -0.33 -0.11
o -1.58 ~1.90 -2.15 ~2.16 -2.18"° -0.10
Experiment 8:
By -0.99 -0.28 -0.33 -0.27 -0.28 0.14
B2 -0.89 ~0.27 ~-0.31 -0.27 -0.27 ~-0,04
4 ~5.57 -5.79 -6.26 -6.27 -6.31 0.06 -
Table 6: Root Mean-Square Errors
Initial Initial Two The Fully
Iteration Iteration Iterations "Two-step Iterated OLS on
Cnly + Moment Estimator" Maximum Ungrouped
Adjustments Likelihood Data
Experiment 1:
By .0562 .0480 .0485 .0484 .0484 0469
Bo .0514 .0478 .0474 0476 .0476 .0488
[+4 .0397 .0338 .0334 .0334 .0333 .0301
Experiment 2:
By .0550 0472 .0476 .0475 0475 .0484
84 .1312 .1363 .1357 .1360 .1359 .1378
o .0307 .0308 .0311 0312 0312 .0342
Experiment 3:
B1 .0720 0681 .0674 L0677 .0676 .0622
BZ .0409 .0331 .0319 .0324 .0324 .0316
o] .0440 .0385 .0378 .0379 .0379 . .0397
Experiment 4:
By .0658 .0481 .0465 .0467 .0465 L0431
B2 .0649 .0466 .0448 .0449 .0447 .0433
[} .0476 .0321 .0326 .0327 .0328 .0289
Experiment 5:
By .0510 .0432 .0427 .0427 .0427 .0423
B2 .0662 L0493 .0427 0427 .0442 .0401
o} .0351 .0322 .0313 .0313 L0312 L0317 -
Experiment 6:
By .0618 .0487 0470 .0465 .0456 .0455
B2 ,1980 .1804 .0988 . 0940 .0506 .0389
a” .0427 .0388 .0370 L0371 .0376 .0355
Experiment 7:
Bl .0559 0454 .0456 .0454 .0455 .480
82 .0599 L0471 .0473 . 0469 .0470 .0429
4 .0B66 1019 .1105 .1108 .1116 .0676
Bxperiment 8:
81 .0544 .0408 .0407 .0401 .0401 L0513
g2 .0599 .0433 .0476 L0472 0472 .0535
3 f .2958 .319¢0 .3298 .3303 . 3312 .1396
i
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(1) Initial Iteration Only: a single iteration of the Maximum
Likelihood algorithm of Section II with the dependent
variable constructed on the basis of consistent estimates

of the parameters of the marginal distribution.

(ii) Initial Iteration + Moment Adjustments : the moment

estimator based on the OLS estimates in (i).

(iii) Two Iterations : a second iteration applied to (i).

(iv) The "Two-Step Estimator" : a second iteration applied
to (ii).

(v) Fully Iterated Maximum Likelihood : the algorithm of

Section II iterated to convergence.

For purposes of comparison the results of applying OLS to the ungrouped

data are also given. Table 4 gives the mean biases of the estimates of

B

B, and o, and Table 6 gives the equivalent root mean-square

1’ 2
errors. If the estimates obtained from each experimental replication
are assumed to be asymptotically normal, the ratio of the mean bias to
its estimated standard deviation will be distributed approximately as t
with 49 degrees of freedom. These ratios are presented in Table 5.

Whilst they can be generated easily enough from the entries in Tables 4

and 6, they provide useful summary statistics.

Comparing first the Maximum Likelihood estimates with the results
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from applying OLS to the ungrouped data, it is important to distinguish

the last two experiments from the rest. Wwhen the disturbances are
normally distributed (experiments 1 to 6) both estimators give consistent
estimates, whilst in experiments 7 and 8 only OLS on the ungrouped data
does. Thus in experiments 1 to 6 the mean biases for both are all small
and none are_significantly different from zero (see Table 5). In
addition the root mean-square errors for the two estimators are very
similar, suggesting that the loss of precision due to the grouping is small
when the disturbances are normally distributedband confirming the findings
of the previous section (Table 2). In the case of non-normal disturbances
(experiments 7 and 8) the mean biases in the slope coefficients (Bl and

82) for both estimators are again insignificantly different from zero

and the root mean-square errors are very similar both to one another and
to those in the earlier experiments. However the Maximum Likelihood
estimate of 0 has a mean bias that is much larger and significantly
different from zero‘in both experiments and the root mean-square error is
much increases. Hence, not unexpectedly, the accuracy of the estimation
of o is much reduced when the disturbances have a skewed distribution,

i.e. when the wrong conditional distribution has been assumed.

The "two-step estimator' performs very well in these experiments.
The root mean-square errors are very similar to those for the Maximum Like-
lihood estimator in all experiments (including the experiments where u
is non-normal) and the mean biases are never significantly different
from zero except in the cases when those for the Maximum Likelihood

estimator are.
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Experiment 2 (reduced p2) exhibits a slight increase in
the mean bias and root mean-square error of the estimate of 82.
This is due to the relative reduction in 03 and is only in line with
that exhibited by OLS on ungrouped data. The relative performance of

the "two-step estimator" does not appear to be impaired by a reduction

in pz.

Experiment 3 (enlarged open-ended groups) gives a slight increase
in the root mean-square error of the estimate of vsl’ but again this is
only in line with that exhibited by OLS on ungrouped data. In this case
the relative variance of x) has been reduced by the increase in 02
and cg. The relative performance of the "two-step estimator" does not

appear to be impaired by an increase in the proportion of acbservations

in the open-ended groups (the degree of censoring) either.

Experiment 4 (assymmetric grouping) produces no increases in any
of the mean biases or root mean-square errors. Again the results parallel
OLS on ungrouped data and no impairment in the relative performance of the

"two-step estimator" is evident.

In experiments 5 and 6 X, is generated by non-normal distrib-
utions. Experiment 5 exhibits little change in the mean biases or root
mean-square errors. In experiment 6 (the more skewed) the mean bias and
root mean-square error of the estimate of 82 are somewhat increased,

but the mean bias is still not significantly different from zero.

In experiments 7 and 8 where u is generated by non-normal
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distributions the mean biases and root mean-square errors move in para-
llel with those for the Maximum Likelihood estimator. The comments
made earlier on the performance relative to OLS on ungrouped data apply
equally here, but the performance of the "two-step estimator" relative

to the Maximum Likelihood estimator is as good as before.

Overall the evidence suggests that the "two-step estimator"
provides satisfactory estimates in all cases where the Maximum Likelihood
estimator does and only in the case of the most skewed X, distribution

is its relative performance impaired in any way.

Turning to the other estimators considered, the moment estimator,
as expected, performs equally well in the experiments where X, is gener-
ated by a normal distribution, but less well in the remaining two. In
experiments 1 to 4 the mean biases and root mean-square errors are similar
to those for the "two-step estimator" and the Maximum Likelihood estimator.
The moment estimator appears to give just as good an approximation in these
cases as the "two-step estimator". The position is similar in experiments

7 and 8.

In experiments 5 and 6 the "two-step estimator" does, as expected,
provide a considerable improvement in the estimation of 82 compared with
the moment estimator. The mean bias and root mean-square error are much
larger for the moment estimator and the mean bias is bordering on signif-+

icance in the case of the more skewed of the two distributions.

The two iterations (without moment adjustments) estimator results
in root mean-square errors very similar to those for the "two-step

estimator" in all experiments. The mean biases are only



‘ significant in the experiméﬁté‘ﬁhére those fof tﬁé>"tw6;steb

estimator” and Maximum Likelihood estimator are; and they also are fairly
similar., In the case of experiments 1 to 3 the moment adjustments (i.e.
comparing the "two-step estimator") do not appear to improve the estimator
in the sense of reducing the mean biases. In experiments 4 to 8 there are
slight reductions in the mean biases of the estimates of Bl and 62, but

the improvement does not appear to be a major one.

Finally turning to the initial iteration only estimator, the
root mean-square errors and mean biases tend to be larger than those for
the other estimators. The mean biases of the estimate of 82 are signif-
icant, or close to, in experiments 5 and 6 and the significance is consid-
erably greater than that for both the moment and two iterations estimators.
This latter comment is also the case for all parameters in experiment 4
(assymmetric grouping). In all cases either the moment adjustments or

a second iteration or both seem beneficial.

In conclusion, these experiments suggest:

(i) that the loss of precision due to such grouping is only

slight when the disturbances are normally distributed;

(ii) that the estimation of ¢ suffers when the wrong
conditional distribution is chosen, but that the slope
parameter estimates are much less affected and may not

be unduly impaired;

(iii) that the "two-step estimator" performs very well in all

cases where the Maximum Likelihood estimator does and
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(iv)

(v)

(vi)
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provides most satisfactory approximations to the

Maximum Likelihood estimator;

that the moment estimator performs equally well when
the regressors are normally distributed, but that the
"two-step estimator" provides considerable improvements

in the case of non-normal regressors;

that the two iterations estimator also performs well
in all situations and that while the moment adjustments
improve the performance in some cases they may not be

necessary;

that the initial iteration estimator is substantially
improved by either the moment adjustments or a second

iteration.
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VIiI: Conclusions

This paper has examined the problem: of estimating the parameters
of an underlying linear model on the basis of data in which the dependent
variable is grouped. An algorithm for attaining the Maximum Likelihood
solutions has been described. This algorithm has been shown to be a
special case of the EM algorithm and hence to have the property of mono-
tonic convergence. The results of Greene (1981) on the asymptotic bias
of OLS have been extended to the grouped dependent variable model and a
"moment" estimator derived for the normal regressors case. A Least
Squares approximation to the Maximum Likelihood estimator involving use
of a particular application of the "moment" estimator in conjunction
with early termination of the monotonically convergent algorithm is
proposed and found in an illustration to provide a useful and satisfactory
estimator. The application to the estimation of earnings functions from
NTS data found the proposed "two-step estimator" to be superior to the
ad hoc methods examined, the various straight moment estimators, some
estimators based on the Maximum Likelihood algorithm alone, and various
combinations thereof and to provide a very good approximation to the
full Maximum Likelihood estimator. This was confirmed by a number of
simulation experiments. Estimation of earnings functions from GHS
data to compare the Maximum Likelihood estimates with those!'based on
the original (ungrouped) data demonstrated considerable agreement between
the coefficients and also between the two sets of predictions. In the
case of the particular grouping examined (that employed in the NTS)
the consequences of grouping do not appear to be too severe. This

finding was also broadly confirmed by the simulation experiments.
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