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I : Introduction 

Models estimated from censored samples are now familiar in the 

econometrics literature. For many cases Least Squares approximations 

to the Maximum Likelihood estimators are now well established. This 

paper is concerned with a more general problem; that of estimating an 

equation on the basis of data in which the dependent variably is only 

observed to fall in a certain range on a continuous scale, its actual 

value remaining unobserved. The data are also censored in the usual 

sense in that both end ranges are assumed to be open-ended. A number 

of Least Squares approximations to the Maximum Likelihood estimator are 

derived and compared. The results of Greene (1981) on the asymptotic 

bias of OLS are extended to this case. The question of information loss 

as a result of the grouping is also considered. 

The latent structure of the model to be considered is assumed to 

be given by 

yi = xi + U. (i = 1, , N) , 

where yi  is the unobserved dependent variable, xi  and 
M 
 are both 

J x 1 vectors, the former being regressors and the 

latter unknown parameters. The u  are assumed to be independent 

identically normally distributed random variables with zero mean and 

2 
variance Q and to be independent of xi The conditional distribution 

of the unobserved dependent 'variable is given by 

Y•1  Jx. ti N(x' R 02) N . ~1 -i 

1. 



The observed information concerning the dependent variable is that it 

falls into a certain range of the real line. The real line is divided 

into K ranges, the k-th being given by 
(Ak-1 

 , A, 1 . It is further .c 

allowed (although this need not be the case) that these K ranges 

exhaust the real line. Thus AO  = -00 and AK  = +W, i.e. the first 

and K-th ranges are "open-ended". The observed information concerning 

the dependent variable is which of these K ranges it falls into, 

i.e. an indicator variable k  is observed for each i(1<k 
i 
 <K). 

This type of problem is encountered in the analysis of certain 

variables on a number of data sets. The one which prompted the investi-

gation on which this paper is based is the earnings variable in the 

National Training Survey.(See Manpower Services Commission (1978) for 

details.) This survey,with its detailed employment, occupational and 

training histories,is fast becoming a major source for U.K. economists 

and its use will no doubt increase in the future as it becomes even 

more widely available. Simple, techniques for the analysis of its 

earnings variable are thus urgently needed. The earnings variable in 

the Oxford Mobility Survey is also grouped in a similar way and the 

analysis of a number of variables in the General Household Survey (see 

Office of Population Censuses and Surveys (1978) for details) give 

rise to this type of problem. In particular housing expenses, the 

length of time with the present employer and ddration of unemployment are 

all grouped in that survey. 

Analysis of these large survey data sets is usually undetaken 

on one of the commonly available general statistical packages. The sample 

sizes involved severely restrict the range of software that is available. 

The National Training Survey, for example, contains approximately 54,000 

observations. 
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When Maximum Likelihood or other iterative routines are available on these 

packages the sample size restrictions are usually such as to rule out their use 

with these data sets. Even when not so ruled out or when special 

programs are available the cost can often be prohibitive. 'Thus fast 

and easy one- or two-step Least Squares techniques are very useful in 

this work. This paper provides and illustrates such techniques 

for the problem under consideration. Further, since it might be thought 

that the usefulness of these variables is severely limited by the 

grouping, the paper seeks to investigate the extent of information loss 

as a result of the grouping in the context of the use to which the 

variable is to be put. 

Ad-hoc Least Squares estimation might involve assignment of 

observations in any given group the midpoint (possibly after transforma- 

tion of the variable), with the open-ended groups being 

assigned values on some even more ad-hoc basis. However such methods 

do not in general result in consistent estimates. Consistent estimates 

would be obtained by assigning each observation its conditional expectation, 

f (Z } - 

k 

f (Z ) 
E (yil k-1 < y S A — xi S+ 6 ~F (Z) 1 k  - F (Z ) 1 k k-1 

where Zk  = (Ak  - x' 0/a ,f is the standard normal density function 
ri 

and F is its cumulative distribution. Hence the requisite estimation 

of the conditional expectations requires estimates of B and a. 

However, as will be seen in the next section this approach provides a 

convergent maximum likelihood algorithm and 'hence possibilities for 

least squares approximations. 



The remainder of this paper is laid out as follows. Section 

II defines the Maximum Likelihood estimates of the parameters in the 

model under consideration and demonstrates an algorithm based on Least 

Squares that will attain these Maximum Likelihood estimates and 

converge monotonically. Section III dervies a "moment" estimator for 

the normal regressors case, extending the recent work of Olsen (1980) 

and Greene (1981). Section IV then considers a number of Least Squares 

approximations involving the moment estimator in conjunction with early 

termination of the convergent algorithm. These Least Squares approxim-

ations and the full Maximum Likelihood are then illustrated and compared 

in Section V by the estimation of earnings equations using NTS data. 

In addition the extent of information loss as a consequence of the 

grouping is examined by comparing earnings equations based on GHS data 

grouped for the purpose with those estimated from the original data. 

In Section VI the results of a number of simulation experiments on these 

methods are presented in an attempt to assess the sensitivity of the 

estimators to the properties of the sample data and the underlying model. 

Section VII presents some conclusions. 
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II : Maximum Likelihood Estimation 

The log likelihood function of the problem outlined in the 

previous section is given by 

K A - x'R A - x'R 
log L = E E log ~F ( k 

Q 
i~) 

 - F ( k-1 
6 
 ~i ) 

k=1 iek 

We omit the i subscripts and further simplify the notation 

in an obvious way to give 

K 
log L = E E log (Fk - 

Fk-1)  k=1 iek 

The first-order partials with respect to the parameters are given by: 

9109 L x iZ ' fk-1 - f   — 
aR3 i a F  - Fk-1 

9109 L _ E  1 Zk-lfk-1 Zkf
k1 96 i  c . Fk Fk-1 J 

where in simplified notation compatible with that used above 

z  = ( k 
a  1 ) , f  = f(Zk) and f is the p.d.f. of the standard 

normal. 

Hence the maximum likelihood estimates are defined by the set 

of equations 



E x 
fk-1 fk 

_ - O 
i lj [i;k Fk-1~ - 7 = 1, , . ., J 

C. 

[zk-lfk-1 Zkfk 
l = O 

i Fk 
 - Fk-1 

A number of different algorithms may be used to obtain these Maximum 

Likelihood estimates. This section concentrates on the derivation 

of one that requires only OLS at each iteration, 

The conditional means of the unobserved y 
i  are given by 

f - f
k  mi = ~E yi  l ki; R,, a21 = xi  g + Cr F 

 k-1 
F 

k k-1 

(All expectations in this section are also conditional on xi, although 

it is omitted from the notation for the sake of simplicity). 

Hence the first J of the first-order-conditions can be written as 

( ^2 R) = E xis  E fy
i 
 lki; - xi O 

i 
j= 1, . . ., J 

or as 

E (x„ m - x„ x' ~) = O 
i ij i ij i 



or in terms of obviously defined matrices and vectors as 

X'm - X'X R = O 

Hence given estimates of the conditional expectations, an estimate of 

the a—vector is given by: 

R = (X'X)-1  X' In 

Turning our attention to the final first-order condition, this can be 

rearranged to give an estimate of a2 in terms of the "residual"-sum-of-

squares from this least-squares regression as follows. 

The conditional expectation of y2 is given by 

E (y2 I ki  ; a, a2) = Q2 I  Zk-1  Z  ) (Z ( k-1F 
z  

(Zk) + a2  + W R) 2  ll k k-1 
) 

 

f (Zk-1) - f (Zk ) 
+ 26 (xi - 

l ,F (Zk) - F (Z - I 
k 1

) 
 

and so the conditional variances of the y i are given by 

2 
E(yiIki ; a, c2) - i [E(y.  i lk.; S, c2 )J 

62{ ~ Zk-lf  (Zk-1) - Zkf (Zk) l - f (Zk-1) - f (Z k
)1 

2  

t F (Zk) - F (Z k-1) J ~F (Z k) F (Z 
k 
- ) 

J 
+ 1~ 

2 1 ))J 
= a vi  , say. 

Hence the final first-order condition can be written as 

E (c2 v
i  + (mi  - xi B) 

2 
 - 62 } = O 

i 
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Thus given estimates of the conditional expectations and hence the R-vector 

an estimate of a2  is given by : 

62  = 1 E(mi  - xi s)2  
d i 

where d = E(1 - vi) 
i 

(jf  (Zk-1) 
 - f (Zk) 12 

Ej 
IF  (Zk) - F (Zk-1) J i 

_ Zk-1(Zk-1}  - Z
kf (Zk} 

F (Zk) - F (Zk-1) J 1 

Hence the likelihood conditions can be solved by iterating between m 

2  and (R, 6) . 

Since d can clearly be expressed in terms of conditional 

expectations of sufficient statistics for the yi  , this iterative 

method for solving the likelihood conditions can be seen to be an 

application of the EM Algorithm discussed by Dempster et al. (1977). 

Hence convergence is guaranteed, and the likelihood is increased at 

each iteration. 

The main advantage of the method, over for example Newton-

Raphson, liesin its simplicity. It is purely a series of OLS estimations. 

In addition,since the cross-product matrix X'X does not change from one 

iteration to the next, only one matrix inversion, or equivalent, is required, 

in contrast to Newton-Raphson where evaluation and inversion of the 

matrix of second derivatives is required at each iteration. 

The Maximum Likelihood estimates are consistent and 

asymptotically efficient and asymptotic standard errors can be obtained 



by inverting the matrix of second derivatives after convergence has 

been attained. The second derivatives of the log-likelihood function 

are given by 

2 2 
8 log L _ 1 Zk-lfk-1 

_ Zkfk _ 
fk-1 fk as3  ash 

6
2 i  Xii Xih { 

P  - F 
k-1 k k-1 CF - F 1 

2 2 2 
8 log L _ 

2 
1 ~Zk-lfk-1 - Zk  fk fk-1 fk 

8s. 8a - E x _ _ 

~ 

J 6i i7 Fk  - F
k-1 Fk - Fk-1 

Zk-lfk-1 - ZkfkH
F
fk-1 fk 

Fk - Fk-1 k k-1~ 

2 3 _ 3 
a log L _ 1 E Zk-lfk-1 Zk fk [Zk-l-fk-1 -Zkfk2 

162  i Fk - Fk-1 Fk  - Fk-1 

_ 

l

2 
rZk-lfk-1 -Zkfk] 
l F F k  - k 1 } 

These can be written more compactly by defining 

q _ q 
M = 

Z
k-1 fk-1 Zk fk 

q Fk 
 - Fk-1 

The second derivatives are then given by 

82109 L _ 1 2  

8s7 ash c2  i XiJ X
ih  {M1  - Mp} 

82
10 
g L _ 1 1 

asj  86 — 2i Xij {M2  - MO  - M1Mo~ 

2  81og L _ 1 
E 
fM3 -2M - M 

1
2

802 62 1 } 

0, 



Since E x MO  = O (j = 1, J) and E Ml  = O at the 
i 

ij 
i 

maximum of the likelihood function, the middle terms in these last two 

can be omitted when they are being evaluated at the Maximum Likelihood 

solution. Hence Estimated asymptotic variances and covariances are given by 

inverting the (J + 1) x (J + 1) matrix defined by 

Qjh 12 E xij xih jMO - Mll 
j, h = 1, .. J 

6 1 ) 

1 ( = 1 ., J _ 

QjJ+l ^2 E xij jM1MO - M2 j  

QJ+1J+1 62 i {Ml - M3} 

where ^I s indicate evaluation at the Maximum Likelihood estimates. 

10. 



III : A ;°oaent Estimator for the Normal Regressors Case 

"Moment" estimators have been proposed recently for both the 

truncated regression model (Olsen (1980)) and the Tobit model (Green 

(1981)). This section derives such an estimator for the grouped depen- 

dent variable model. It is consistent in the case when the 

regressors are normally distributed. In passing, the results of 

Greene (1981) on the asymptotic bias of OLS are extended to the grouped 

dependent variable model. 

The latent structure of the model under consideration is 

rewritten as 

yi  = a + xi y + ui U  

where xi  now excludes the constant term. It is assumed that x, 

is normally distributed. Thus 

yl u
y 

62 6 ~ 

N 4 x' 
I (i=1 ....... N) 

~X3 
uX 
 _xy ~XX 

Estimation of this equation by one Least Squares step would involve 

assigning a value for the "dependent variable" for all observations in a 

given group. Let the assigned values be qk  (k = 1,...,K) and let g 

be the "dependent variable" defined in this way. Thus 

11. 

gi  = q  if A
k-1 < y   5  A (k  



12. 

the OLS regression of g on x produces the following estimates: 

C  = S-1  S 
_xx -xg 

a = g - x'c 

2 
S = S - S' c 

gg „xg 

where S
xx
, S

xg 
 and S 

9 
 are the appropriate sample moments, which 

tend in probability to their population equivalents. 

To examine the inconsistency in the OLS estimates, some moments 

of the observed random variables must first be derived. 

K  
F(g) - 

k
E
l 
 qkP(p~ k-1 < Y ~ Ak) 

x -u 
= E q ~`

c 
 uy _ F Ak-1 y 

k-1 k  ` 6 } Y y 

K 
E (g2) = E q`  { F 

uy - 
x-1 - uy. 

k=1 k  l 6 
F 

c  Y y 



K 
E (xg) = E qkE (x I g = qk) P (g = qk) 
" k=1 

K 
A A 

kEl qkE ( X I  k_l < y < Ak)  P ( k-1 < y < `~jt) . 

The conditional expectation here is given by 

E(xjA 
- k-1 < y Ak) = ux  + (6xy/a y)jE(YIAk-1 < y < Ak) uy~ 

a f 
(Bk-1) 

 - f (Bk) 

ux + 6 F (Bk) - F (Bk-1) 

where Bk  = 
cr
y / 

whilst P(Ak-1  < y < Ak) = F(B
k)  - F(Bk-1)' 

Thus 

K 
E (xg) = E qk i ux  (F (Bk) - F (Bk-1)  ) + (Qxy 

 l6
y

) ( f (Bk-1)  - f (Bk) ) 
" k=1 l 1 

Given these moments, the probability limits of the OLS estimates can be 

found as follows 

13. 



plim S
xg 

 = cov(x,g) 

= E (x 9) - u
X

E (g) 

K  
E q Ca

rXY  {f.(Bk-1) - f(Bk) 
k=1 y 

K 
6 Xy  E qk 6 {f  (Bk-1) - f (Bk) 

k=1 y 

plim S = E 
, rXX -xx 

and y = E-1  c -xx -Xy 

Thus 

p15 m c = plim (S-1 S
xg

) 

K ( 

y 
E 

qk 6 j f (Bk-1)  - f (Bk)` y, in general. 
" k=1 y 

Thus all the OLS slope coefficient estimates are inconsistent by the same 

proportion. 

Turning to a, 

plim a = E (g) - uX plim c 

E q i F (B ) -F (B ) } - u' y E q 1  ~f (B ) - f (B ) 
k-1 k k k-1 ))) . X'  1 k 1 k Q Y k-1 k 

14 . 



Y_ 

kEl q
k~F (Bk) - F (Bk-1)  } + (a-uy)  E qk a j f (Bk_1) - f (Bk ) 

k I y 

At this point it is convenlent to define the following scalars 

K 
X = E qk

l
~F (Bk) - F (Bk-1) 

k=1  

K 
~ = E q  ~F(Bk)  - F(Bk-1)

k=1 

K 
l 8 = E 

qk 6 ~f  (Bk-1) - f (Bk) ?. 
k=1 y ) 

Note that the unknown parameters involved in each case are u and a 
y y 

Then 

plim c = y 8 

and 

plim a = a + (a-11y) a. 

Finally turning to s2, 

plim S
gg 

 = Var (g) 

~ - A2  

and 

pli m S
Xg 

 = a @ . 

15. 



thus 

plim s2  = - a2  - 601  plim c 

V~- l2 - 82a 1  Y 

= ~ - a - 6 2ay2P 

where p2  is the multiple correlation between y and x. 

2 
Given that p2 

Q2 
 , 

a 
y 

2 2 2 2 
a p  
y y 

Thus 

plim s2  = - a2  - @2  (CF y - a2) a2  , in general. 

Clearly the OLs estimates are in general inconsistent. However given 

consistent estimates of µ
y
, a

y 
 consistent estimates of Y, a and 

a2 can easily be derived from them using the following simple adjustments. 

Define 

Y = c/o 

a = u + a-a 

y 8 

"2 s2  +a2 "2 a = "2 + a 
6 y 

16 . 
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where a, ~, 8 are 6 evaluated at u
y 
 and a

y
, themselves 

2  consistent estimates of u
y 
 and a

y
. Then y, a, a are consistent 

estimates of 2 
y, a, a respectively. Thus for any relevant choice of 

qk(k = 1,...,K) consistent estimation of (y, a, a2) requires only 

consistent estimation of V  and a
y 
 in addition to the OLS estimates. 



IV : Least Srruares Approximations 

Maximum Likelihood estimation of the model under consideration 

can be extremely expensive on computer time, particularly when large 

samples are involved. Hence convenient Least squares approximations 

to the full Maximum Likelihood solutions are desirable. A consistent 

estimate needing only simple adjustments to any OLS estimates was 

presented in Section III. However the result demonstrated there, on 

which the estimator is base%, that the OLS slope estimates are all 

inconsistent by the same proportion, assumes normally distributed 

regressors. In the absence of such normality the fact that the moment 

estimator adjusts all the slope coefficient estimates by the same 

proportion is likely to be a weakness, since the proportional inconsistencies 

will not in general be equal. 

The monotonic convergence property of the algorithm outlined 

in Section II means that Least Squares approximations to the full Maximum 

Likelihool solutions can also be obtained simply by early termination of this 

algorithm. However this places great emphasis on the starting point of the 

algorithm, particularly if only one or two iterations are then performed 

to give the approximation. 

Hence in both cases a combination of the methods from Sections 

II and III will be beneficial. An interation of the monotonically 

convergent algorithm will improve on the moment estimator (in the sense of 

increasing the value of the likelihood) and is likely to be particularly 

useful when the required adjustments to the OLS slope coefficients are 

not proportional. On the other hand the moment estimator can provide the 

necessary starting values for the iterative method. 

18. 



The moment estimator adjustments can be applied to the OLS 

estimates of an equation based on any appropriate ( qk; k = 1,...,K). 

The adjustment factors require only consistent estimates of u and 
Y 

a . 
Y 

The qk  could be chosen in a number of ad Loc ways. Any set 

of values satisfying 

k-1 1  qk I  Ak (k = 1,...,K) 

would suffice. However riven consistent estimates of u and cr 
y Y 

a more systematic choice of the qk  can be made based on conditional 

expectations of the marginal distribution. These are given by 

A 
f  (Zk 1) - f (Zk) 

E 
(yi k-l<yi `k) 

= uy  + v
y O O 

F(Zk) - f(Zk-1) 

where Zk = (Ak  - Uy)/Qy. Consistent estimates of these conditional 

expectations can be obtained and used for the qk, 

_ 
A " f  (Zk-1) - f (Z

k) 
q uy Y 

AO 

F(Zk) - F(Zk-1) 

where Zk = (Ak  - u
y

)/cy. OLS estimation of S using these qk  is 

then equivalent to one iteration of the algorithm described in Section II 

except that the mi  are evaluated on the basis of consistent estimates 

of the parameters of the marginal distribution rather than those of the 

conditional distribution, the latter not being available at this stage 

of the procedure. 

19 . 



The adjustment factors for the moment estimator described in 

Section III are applied direct to the OLS estimates. Hence the OLS 

estimate of a should be used rather than the iterative estimate 

using d derived in Section II. If however the initial iteration 

estimates are to be used on their own, or with additional iterations 

without the moment adjustments then the adjustment (using d) of 

^ection II should be made. 

This moment estimator is extremely convenient and simple to 

construct and is consistent in the case of normal regressors. 

However a weakness with the initial OLS estimates is that the information 

contained in the explanatory variables for any given observation is not 

utilised in the construction of the estimated conditional expectations. 

This is inevitable since no estimate of B is available at that stage. 

For this reason one iteration of the Maximum Likelihood algorithm of 

Section II may produce considerable improvements in the approximation to 

the Maximum Likelihood estimates. 

Hence the proposed two-step approximation involves applying one 

iteration of the Maximus: Likelihood algorithm to the moment estimator 

based on the initial iteration described above. The m  in this second 

iteration can be evaluated on the basis of the parameters of the condit-

ional distribution as described in Section II. This estimator will be 

referred to as the "two-step estimator" and is compared with the Maximum 

Likelihood estimator and a number of alternative approximations in the 

next section. 

20. 
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The required consistent estimates of the parameters of the 

marginal distribution, p  and a
y
, can be obtained by fitting a 

normal distribution to the sample distribution of the partially observed 

dependent variable. One simple and convenient way of doing this, 

a Least Squares variant of the graphical method of 

Aitchison and Brown (1966); is as follows. If C  is the sample cumulative 

frequency, i.e, the proportion of the sample with values of the dependent variable 

less than Ak, then the distribution is fitted by regressing F 1(Ck) 

on Ak. This provides consistent estimates of uy  and a
y
. Other 

methods could be substituted. 



V : An Illustration - The Estimation of Earnings Equations 

This section illustrates the methods presented above 

in the context of the estimation of earnings equations. In the first 

illustration the "two-step estimator" and some of the others outlined 

in the previous section together with two ad hoc Least S~,uares estimators 

are compared both with one another and with the full Maximum Likelihood 

estimates on a typical earnings equation. The data source is the 

"?ational Training Survey (NTS) conducted on behalf of the Manpower 

Services Commission in late 1975. (For details see Manpower Services 

Commission (1978)). The sample used here is restricted to full-time 

manual male employees in manufacturing, giving a sample size of 5352. 

The dependent variable is thelogarithm of weekly earnings and the explan-

atory variables are as listed at the foot of Table 1. The NTS earnings 

variable is in ten groups each of width £10. The open-ended groups are 

<£25 and >£105. 

The first ad hoc method used for comparison involves allocating 

to all individuals in a given group the mean of the logarithm of weekly 

earnings of the comparable sampleof male workers in that range in the 

1975 General Household Survey (see Office of Population Censuses and 

Surveys (1978) for details). The second ad hoc method used involves 

allocating arithmetic midpoints to the internal groups and arbitrarily 

taking £15 p.w. for the open-ended group with weekly earnings <£25 and 

£130 p.w. for the group at the other end with weekly earnings >£105. 

The results of this comparative exercise are presented in Table 1. 

Table 1(a) presents the results for the initial iteration estimator and 

22. 
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Teble 1 : Comnarison of Approximations with Maximum Likelihood Estimates. 

Table 1(a) : 1-step estimators without moment adjustment. 

Method Maximum initial iterat- % diff- 1st ad hoc method `; dif.- 2nd ad hoc ~` metho.;~-r  Likelihood ion only 
(see text) 

differ- 

from MI 
erence

rom 

 

ference 
(see 

rom MI 
text) fence from 

t4L 
Cons t. 
x 

3.0720 (.0795) 3.1078 (.0977) 1,2 2.9074 (,1058) -5,4 2.9895 (,0913) -2.7 0239 (,0014) 0226 (.0017) -5.3 o34II (,0019) 45,6 0289 (,0016) 21.2 
X2  -.00045 (,00002) -.00042 (,00003) --5 ,--00063 (,00003) 141.9 -.00054 (.00003) 19.7 5 .0252 (,0047) .0242 (.DOSE) -4,2 .0250 (,0063) -0.8 .0253 (,0054) 0.2 F 0543 (-0089) .0524 (,0109) -3.5 .0491 (,0118) -9,6 .0531 (.0102) -2.4 I IA 0214 .(,0085) .0212 (,0104) -O,8 0038 (.0113) -82,3 .0143 (,0097) -33.2 M .1024 (.0125) .0985 (.0153) -3,8 ,1256 (.0166) 22,7 ,1149 (,0143) 12.3 j sia -.1235 (,0162) -.1161 (,0199) -6.0 -.1613 (,0216) 30.7 -,1410 (.0186) 14,2 R .1244 (.0095) .1211 (.0117) -2.6 .1285 (.0126) 3,3 .1283 (.0109) 3.2 T .0796 (.o085) ,0768 (.0105) -3.4 .1016 (.0113) 27.8 ,0910 (,0098) 14.4 U lC54 (,0086) 0999 (.0106) -5.3 ,1261 (,0115) 19.6 .1157 (,0099) 9.7 
a I 2601 .2622 34' 
+04 L -8966,2 -8969,6 1-9384.5 -90835 
R2  E ,364 .362 ( .335 .357 
mean 
absolute 
percen- 3,7 i 26,3 12.1 taae 
differ- 
ence 
from 'IL 

i 

Variables: 
X = Experience, S = Age completed full-time education, F = Any further education since initial firishirc, 
A = Taken apprenticeship, M = married, SW = secondary worker, R = job involves responsibility for the worst 
of others, T = Training need to get a job of this type, U = Member of Trade Union. 

Sample: Male manual workers in manufacturing. Sample size = 5352 

Standard errors are given in parentheses. 

Treble 1 (b) : 1-step estimators 'A-Cn moment adjustment 

Method 'Maximum 
initial iterat- 

diff-1 1st ad hoc method a dif- 2nd ad hoc method gdiffer- jLikelihood ion + 
I moment 

erence + moment adjust- ferenee adjustment from MIl ment I+ 1.:oment adjust- ence from 
from Ml~ment 

Const. t 3.0720 ML 
~ (.07957 3,0743 (,0794) O.1 3.0027 ~ X 

.0239 (,0014) ,0236 (,0014) -1,0 (•0885) -2.3 3,0450 (,0827) -0.9 
2 .0316 (,0016) 32,3 .0273 (-0014) 14.4 X 

-.00045 (.00002) -.00044 (.00002) -0.7 S -.00058 (,00003) 28.9 0252 (,0047) .0253 (.0047) 0,1 ,0227 --00051 (,00003) 13,1 F 0543 (.0089) 0548 (.0089) 0.9 (•0053) -9.9 .0239 (.0049) -5.4 
A .0214 (.0085) .0222 .0447 (,0099) -17.8 .0501 (,0092) -7.8 11 

(.0085) 3.7 .0034 (.0095) -83.9 .0135 (.0088) -36.9 .1024 (.0125) .1030 (,0125) 0.6 
SW -.1235 (.0162) -.1214 .1141 (.0139) 11.5 .1085 (-0130) 

6.0 R .1244 (•0162) -1.7 -.1466 (-0180) 18.8 -.1332 (.0169) 7,g (.0095) .1266 (.0095) 1.8 .1167 T .0796 (.0085) 0803 (.0085) I 0 g (•0105) -6.1 .1212 (.0099) -2.5 U .1054 (.0086) .1044 0924 (.0095) 16.1 .0860 (.0088) 
8.1 (.0086) I -1.0 •1146 (,0096) 8.7 1092 (.0090) 3.6 .2601 .2601 Log L -8966.2 -8966.4 .2907 2711 

R' .364 .364 
-9084.6 -8988.7 
350 .363 

mean 
absolute 
percen- 
tage 1.1 
differ- 21.5 9.7  
ence 
from ML 
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Table 1(c): 2-step estimators without moment adjustment 

J

Method J Maximum Two consecutive % diff- Ilst ad hoc method ~~ diff-T,2nd ad hoc method t Jiff -I Likelihood iterations erence + cne iteration erence+ one iteration erence estimator from ML from f1L from D5 
Cont. i 
h I 

3.0720 (.0795) 3.0748 ;0.;94) 0.1 3.0331 (.0830) -1.3 3.0536 (.0811) C239 (.0014) .0238 (.0014) -0.5 .0259 (.0014) 8.6 .0248 (.0014) 
-0.6 

x` 
S ! 

-.00045 
.0252 

(.00002) -.00045 (.00002) -0.4-  -.00048 (.00003) 7.9 -.00046 (.00002) 

3.9 

3.6 
F 0543 

(.0047) 
(.0089) 

.0252 
0542 

(.0047) 
(.0089) 

-0.3 .0255 (.0049) 1.0 .0254 (.0048) 0.5 
A 0214 (.0085) .0214 (.00-:5) 

-0.2 
o.3 

.0547 (,0093) 0.6 .0546 (.0090) 0.4 
M 1024 (.0125) .1021 (.0125) ' -0.2 

,0186 (.0089) -13.2 .0202 (.0086) -5.4 
SW -.1235 (.0162) -.1228 (.0162) f -0.6 

.1064 
-.1308 

(.0130) 
(.0169) 

4.0 .1044 (.0127) 2,0 
R .1244 (.0 G35) .1242 (.0095) -0.1 .1261 (.00AS) 

5.9 -.1268 (.0165) 2.7 
T .0796 (.0085) 

I 
'0794 (.0085) I -0.2 .0839 (.0089) 

1.4 
5.4 

.1252 (.0097) 0,7 
U .1054 (.0086) .1050 (.0086) -0.4 .1106 (.0090) 

.0816 (.0087) 2,6 
4.9 .1078 (.0086) 2,3 

o I .2601 .2601 .2723 Log L -8966.2 -8966.2 -8981.4 
.26 56 

-89699.. 5 
R2  .364 j 364 .364 .364 
mean i 
absolute 
percen- 
tage 0.3 4.9 
differ- 2.2 

ence 
from ML 

Table 1(d): 2-step estimators with moment adjustment. 

Method 
Maximum 
Likelihood 

Proposed 2-step % diff- 1st ad hoc % diff- 2nd ad hoc a diff- estimator erence method + both erence method + both erence 
from PM from ML from 1-M 

Const. 3.0720 (,0795) 3.0725 (.0794) 0.02 3.0529 (.0810) -0.6 3.0644 (.0800) -0.2 x 
2 

.0239 (,0014) ,0239 (.0014) -0.1 .0250 (.0014) 4.7 .0244 (.0014) 2.0 x 
'S 

-.00045 (.00002) -.00045 (.00002) -0.1 -,OOC47 (,00002) 4.3 -,00046 (.000:02) 1.8 
F 

.0252 (.0047) .0252 (.0047) -0.02 .0253 (.0048) 0.2 .0252 (.0048) 0.01 
A 

0543 
.0214 

(.0089) 
(.0085) 

0544 (,0089) 0.04 .0541 (.0090) -0,4 .0542 (.0089) -0.2 
M 1024 (.0125) 

0214 
,1024 

(.0085) 
(,0125) 

C.3 .0195 (,0086) -8.9 .0206 (.0085) -3.7 
=W -.1235 (.0162) -.1232 {.0162) 

0.02 
-0.2 

.1043 (.0127) 1.9 .1032 (.0126) 0.8 
R .1244 (.0095) .1245 (.0095) 0.1 

-.1277 (.0165) 3.4 -.1252 (:0163) 1.4 
T .0796 (.0085) .0796 (.0085) 0,01 

.1248 

.0818 
(.0097) 
(.0087) 

0.3 .1245 (.Op95) O.1 
U 1054 (,0086) 1053 (.0086) -O.1 .1080 (.0088) 

2.8 .0805 (.0086) 1.2 
2.4 ,1064 (,0087) 1.0 

.2r,Ol .2600 .2654 621 Log L -8966.2 -8966.2 -8969.9 
.
-822621  

R2  
6.8 

364 .364 .364 .364 
mean 
absolute 
percent- 
age dif- 0.1 2.7 1,1 ference 
from ML 



the two ad hoc methods. The moment estimators corresponding to each 

of these three are presented in Table l(b). The results of applying 

one Maximum Likelihood iteration direct to each of the three are 

presented in Table 1(c) and Table 1(d) contains the results of applying 

this iteration to the three moment estimators. Hence the first of the 

three presented in Table 1(d) is the proposed "two-step estimator". 

In addition the fully iterated Maximum Likelihood estimates are given 

in each of the sub-tables for purposes of comparison. The percentage 

differences in the coefficient estimates from the corresponding Maximum 

Likelihood estimates are also presented for each of the estimators. 

The single iteration on the basis of the estimated marginal 

distribution is clearly superior, in the sense of giving a better 

approximation to the Maximum Likelihood estimates, to both of the ad 

hoc methods. The mean absolute percentage difference in the coefficient 

estimates from the Maximum Likelihood estimates is 3.7% compared with 

26.3%-and 12.1% for the two ad hoc methods. The coefficient on which 

both ad hoc methods fall down most badly is that on the variable A, 

which has the lowest asymptotic t-ratio of those in the equation. This 

is obviously a serious drawback to the use of such ad hoc estimators. 

The single iteration estimator also provides a superior estimate of a 

(differing from the Maximum Likelihood estimate by less than 1% compared 

with 34% and 15% for the two ad hoc methods) and attains a likelihood 

value much closer to the maximum (differing from the maximum by 3 as 

compared with 418 and 112). 
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Comparing the moment estimators in Table 1(b) with the 

corresponding columns of 1(a) there is a clear improvement in all three 

cases, despite the non-normality of the regressors. However the estimators 

based on the two ad hoc starts are still poor. The relative improvement 

in the percentage difference from M.L. is greatest for the moment estimator 

based on adjusting the single iteration estimator. The mean absolute 

percentage difference is now only 1.1%. In addition the estimate of a 

differs by less than 0.1% and the log likelihood is only 0.2 away from its 

maximum. It would seem that in the non-normal regressors case the 

effectiveness of the moment adjustments is dependent on the initial choice 

of the qk. 

The improvement that results from an iteration of the Maximum 

Likelihood algorithm (Table 1(c)) is greater in each case than that 

from the moment adjustments. This is particularly true for the two 

based on ad hoc starts. These estimates are now reasonable approxima-

tions, but still considerably inferior to the estimator based on the 

iteration start. That gives a mean absolute percentage difference from 

the Maximum Likelihood coefficient estimates of 0.3% and an estimate of 

a equal to 4 decimal places and is within 0.1 of the maximum of the log-

likelihood function. 

Finally interspersing the two iterations with the moment estim-

ator adjustments to give the "two-step estimator" proposed in Section IV 

(Table 1,(d)) gives a yet further improvement. The mean absolute percen-

tage difference from the Maximum Likelihood coefficient estimates is now 

less than 0.1% and for no single coefficient does it exceed 0.3%. Thus 

in this illustration the proposed "two-step estimator" provides highly 



satisfactory approximations to the Maximum Likelihood estimates. Whilst 

the convergence of the algorithm of Section II is monotonic, the improve-

ments in estimates are much smaller in all cases for the remaining iter-

ations. (Six to eight iterations are required fbr'convergence when the 

largest parameter estimate change permitted is 10-5. ) 

The second illustration of this section examines the 

consequences of such grouping again in the context of the estimation of 

earnings equations. Data from the General Household Survey are utilised 

to compare the Maximum Likelihood estimates on artificially grouped data 

(using the NTS grouping) with the estimates from using the original 

(ungrouped) data. The dependent variable is again the logarithm of 

weekly earnings and the explanatory variables are as listed at the foot 

of Table _2. 

The results are presented in Table 2 and it can be seen that 

there is fairly close agreement between the Maximum Likelihood estimates 

and OLS estimates using the original ungrouped data. The mean absolute 

difference between the two is .0072. Since the dependent variable is 

the logarithm of weekly earnings this represents about three-quarters of 

a percentage point in the differential. The mean absolute percentage 

difference between the two sets of estimates is 5.7%. The correlation 

between the complete earnings data and the final Maximum Likelihood 

estimates of the conditional expectations is .9682, while the correlation 

between the predictions from the two sets of estimates (now not 

conditional on k in the case of the Maximum Likelihood estimates) is 

.9996. The consequences of grouping do not appear to be too severe in 

this case. 
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TABLE 2 : Comparison Using GHS Data Grouped and Ungrouped 

riginal Data Grouped Data Difference Percentage 
(Ungrouped) (M.L. Coeff. & Difference 
(O.L.S. Coeff. & asym. st. error) 
t. error) 

onst. 2.8360 2.8840 .0480 1.7 
X1 .1345 (.0086) .1269 (.0086) -.0076 -5.7 
X2 .0437 (.0050) .0435 (:0047)' -.0002 -0.5 
X3 .0125 (.0021) .0113 (.0020) -.0012 -9.1 
X4 .0020 (.0021) -.0017 (.0020) .0003 14.4 
X5 .0040 (.0022) -.0044 (.0021) -.0004 -10.2 
X6 .0147 (.0027) -.0146 (.0026) .0001 0.6 
S16 .1615 (.0133) .1521 (.0126) =.0094 -5.9 
S17 .2479 (.0211) .2295 (.0200) -.0184 -7.4 
S18 .2992 (.0267) .2655 (.0255) -.0337 -11.3 
S19+ .4358 (.0167) .4076 (.0159) -.0282 -6.5 
F1 .1334 (.0171) .1335 (.0162) .0001 0.1 
F2 .0754 (.0153) .0786 (.0145) .0032 4.2 
F3 .0351 (.0172) .0388 (.0162) .0037 10.4 
F4 .0486 (.0234) .0508 (.0221) .0022 4.5 
ILL (.0108) -.0582 (.0102) .0014 2.3 
MAR 

[.0596 
.1560 (.0134) .1501 (.0126) -.0059 -3.8 

COL .1699 (.0319) -.1759 (.0301) -.0060 -3.5 

~LS o .3203 - 

ML Q .3197 .2950 -7.7 

Log L 2668.8 -9771.6 
2 

.3560 .3840 

Distri- 
bution 
of 
Mean 3.9910 3.9855 
S.D. .3985 .3663 

Variables: Xl to X6 = Linear spline on years of experience (X1 and X2 
are of width 5 years the remainder 10 years),'516 to 519+ = Age on completion 
of full-time education, F1 to F4 = Father's occupation was (1) non-manual 
(2) skilled manual (3) semi-skilled manual (4) farmer or similar (base 
group, is unskilled manual), ILL = Has long-standing illness or disability 
MAR = Married, COL = Non-white. 

Sample: Full-time males Sample size = 5338 . 

Standard errors in parentheses. 



VI: Sensitivity to Sample Properties - A Simulation Exercise 

In order to ascertain how dependent are the favourable results 

of the previous section on the particular samples involved a number of 

Monte _Carlo experiments were conducted. Among the features to which 

the estimators might be expected to be sensitive are non-normality, and 

particularly skewness, in the underlying distribution, the proportion 

of observations in the open-ended groups (the degree of censoring), the 

multiple correlation and the extent of assymmetry in the grouping (relative 

to the underlying distribution of y ), 

The underlying model used in all the experiment is given by 

yi  = a + 
Slxli + S2x2i + u (i = 1,...,N) 

R1  = S2 = 1.0 

The grouping was performed with ten groups (K = 10) and Ak  = k 

(k = 1,...,9). Hence the centre of the grouping is at 5.0. The 

characteristics of the experiments conducted are given in Table 3. 

In all cases samples of 1000 were generated, this being regarded as a 

typical medium-sized sample for the type of work and data sets that the 

estimation methods are likely to be employed upon. The values of x  

were generated throughout from a standard normal distribution. The 

distributions generating x2  and u were standardised in each 

experiment to have zero mean and prescribed variances (denoted a2 and 

a2  respectively). 50 replications were performed for each experiment. 

I:n the base experiment (experiment 1) x2  is generated by a 

standard normal and u by a normal distribution with a = 2. Hence 

the multiple correlation equals .5. 
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The resultant marginal distribution of y is normal and has variance 4. 

a (and hence uy) is taken to be 5 making the grouping symmetric about 

)jy  and generating on average approximately 2~% of the observations in each 

of the open-ended groups. 

The estimators are then examined in different situations by 

varying a 
2 
 , a 2

2 " 2, and the distributions used to generate x2  and u 

(and hence y). p2  and the proportion of observations in the open-

ended groups can be varied by altering Q2  and v2. Varying a 

results in assymmetry in the structure of the grouping (relative to the 

underlying distribution of y). Using different distributions to 

generate x2  allows examination of the effects of non-normality in the 

marginal distribution of y on the estimators under consideration. 

Finally if distributions other than the normal are used to generate u 

the conditional distribution of y will also be non-normal and the 

Maximum Likelihood estimator itself may no longer be consistent. 

Experiments 2 and 3 vary a2  and v2. In experiment 2 a2 

is reduced to 0.2 and o2  raised to 2.8. This reduces p2  to .3 

while keeping the average size of the open-ended groups the same. 

Experiment 3 increases a2 to 3 and a2  to 4. This restores p2  to 

.5 (as in experiment 1) and increases the average size of the open-ended 

groups to about 8% each . 

In experiment 4, a and hence p  is taken to be 3 causing 

the grouping to become assymmetric relative to u
y
. This results in 

about 16% of the observations falling in the left-hand open-ended group 

with only one in a thousand on average in the right-hand one. Experiments 
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5 and 6 use two convenient skewed distributions to generate x2. In 

experiment 5 x2  is generated by the chi-square distribution with 2 

degrees of freedom (coefficient of skewness = 2.0). While in experiment 

6 x2  is generated by the lognormal distribution with median 0.5 and shape 

parameter 1.0 (coefficient of skewness = 6.2). In each case the distri-

bution is standardised to give mean and variance equal to that in 

experiment 1. Finally experiments 7 and 8 use these same two distrib-

utions to generate non-normal disturbances. In tb;Lscase the values 

are standardised to have a mean of zero and a variance of 2 as 

in experiment 1. 

The NAG function G05DDF was used to generate normal pseudo- 

random variables. (See Numerical Algorithms Group (1981) for details). 

X2(d) variates were generated by summing d squared standard normal 

pseudo-random numbers from G05DDF, and the lognormal variates were 

generated as 

Li  = m.exp(s.Ni) 

where m is the median, s the shape parameter and Ni  a standard 

normal speudo-random number from G05DDF. Each sample was initialised 

from the real-time clock. 

Results for the eight experiments are given for five estimators 

in Tables 4 to 6. The five estimators are: 
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Table 3: Characteristics of Exnerin:erts 

U". eri- Distribution 
a

2 Distribution 
J

2 2 mean riea;; 
rent of x2  2 of u u _ a  y P 

pro_ortion procortion 
- 
'::-1 

1 Normal 1 Normal 2 5 .5 .023 I .023 

2 Normal 0.2 Normal 2.8 5 .3 .023 .023 

3 Normal 3 Normal 4 5 .5 .079 079 

4 Normal 1 Normal 2 3 .5 .157 .001 

5  X2(2) 1 Normal 2 5 .5 .018 .029 

Lo,.rnc rmr.1 6 
(Tr.=.  S,s=1.0)  1 Normal 2 5 .5 f .015 C26 

7 Normal 1 X _ (2) 2 5 .5 .r>i0 .0.36 

8 normal 1 Lognormal 2 5 .5 .006 .03C m=.5,s=1.0) 

Notes: 1. xl  generated by 14(0,1) distribution in all experiments. 

2. Sample size = 1000 in all experiments. 
3. 50 replications performed for each experiment. 
4. In exeriments 5 and 6 distribution of x2  is standardised to have mean zero and variance 1. 
5. In experiments 7 and 8 distribution ..f u -s standardised to have mean zero and variance 2. 
6, x2  and u have mean zero in all experiments. 

Table 4: Mean Biases 

Initial 
Iteration 
Only 

Initial 
Iteration 
+ Moment 
Adjustments 

Two 
Iterations 

The 
"Two-step 
Estimator" 

Fully 
Iterated 
Maximum 
Likelihood 

OLS on 
Ungrouped 
Data 

Experiment 1: 
1 

82 
-.0315 
-.0213 

-.0068 -.0080 -.0067 -.0068 -.0030 .0037 .0019 .0032 •0032 .0038 v .0233 .0087 .0069 •0067 .0066 .0082 Experiment 2: 
81  
82 

-.0305 
-.0029 

-.0058 -.0066 -.0056 -.0057 -.0048 •0225 .0214 •0224 .0223 0172 o 
Ex peri ment 3: 

.0042 -.0020 -•0043 - 0~3  -.0045  .0011 
81 
82 

-.0308 
-.0271 

.0027 -.0009 .0018 .0015 .0044 •0065 .0028 .0055 .0051 .0051 v 
iment 4: Ex r 

.0222 -.0079 -.0102 -•0102 -.0110 -•0033 
81 
82  

-.0477 
-.0474 

.0014 -.0037 .0014 .0012 .0016 .0017 -.0032 .0019 .0017 .0020 CF 
Experiment 5: 

.0351 .0033 .0013 .0008 .0003 -.0002 

81 
82 

-.0289 
-.0538 

-.0040 -.0027 -.0012 -.0002 -.0003 
o 

-.0296 -.0067 -.0037 .0016 .0029 
Experiment 6: 

.0147 -.0002 -.0018 -.0020 -.0012 0022 
81  
82 

-.0430 
-.1758 

-.0180 -.0166 -.0151 -.0127 -.0100 
o 

-.1542 -.0674 -•0608 .0070 0097 
Experiment 7: 

.0208 .0080 0048 -•0052 -.0059 -,0027 
81 -.0354 

-.0414 
-.0101 -.0106 -.0091 -.0093 ool2 Q 2 -•0162 =.0161 -.0146 -•0148 -.0049 

Experiment 8: 
-.0733 -.0902 

1~2  -•1005 -.1015 -.0066 
81  
62  

-.0383 
-.0399 

-.0109 
-.0125 

-•0126 -•0106 -•0108 .0072 
a -.2912 I -•3144 

-•0142 -.0122 =.0124 -.0019 -.3256 -.3262 -.3271 .0016 



Table 5: Mean Bias to Standard Deviation Ratios 

Initial Initial Two The Fully 
Iteration Iteration Iterations "Two-step Iterated OLS on 
Only + Moment Estimator" Maximum Ungrouped 

Adjustments Likelihood Data 

Experiment 1: 
6i -0.68 -0.14 -0.17 -0.14 -0.14 -0.06 82  -0.46 0.08 0.04 0.07 0.07 0.08 a 0.73 0.27 0.21 0.21 0.20 0.29 Experiment 2: 

-0.66 
-0.02 

-0.12 -0.14 -0.12 -0.12 -0.10 
61 
62 0.17 0.16 0.17 0.17 0,13 

Expee riment 3: 
0.14 

-0.47 
-0.89 

-0.07 

0.04 

-0.14 

-0.01 

-0.14 

0.02 

-0.15 

0.02 

0.03 

0.07 

-
61 

 

62 0.20 0.09 0.17 0.16 0.16 a 
Experiment 4: 

0.58 -0.21 -0.28 -0.28 -0.30 -0.08 
al 
62 

-1.05 
-1.07 

0.03 -0.08 0.03 0.03 0.04 
a 

0.04 -0.07 0.04 0.04 0.05 
Experiment 5: 

1.09 0.10 0.04 0.03 0.01 -0.01 
61  -0.69 -0.09 -0.06 -0.03 -0.01 -0.01 82  
a 

-1.40 -0.75 -0.16 -0.09 0.04 0.07 
Experiment 6: 

0.46 -0.01 -0.06 -0.06 -0.04 0.07 

61 
62 

-0.97 
-1.93 

-0.40 -0.38 -0.34 -0.29 -0.23 
a 

-1.65 -0.93 -0.85 0.14 0.26 
Experiment 7: 

0.56 

-0.82 
-0.96 

0.21 

-0.23 

-0.13 

-0.24 

-0.14 

-0.20 

-0.16 

-0.21 

-0.08 

0.03 
81 
62 
CT 

-0.37 -0.36 -0.33 -0.33 -0.11 
Experiment 8: 

-1.58 -1.90 -2.15 -2.16 -2.18 -0.10 

81 
62 

-0.99 
-0.89 

-0.28 -0.33 -0.27 -0.28 0.14 
a -5.57 

-0.27 -0.31 -0.27 -0.27 -0.04 -5.79 -6.26 -6.27 =6.31 0.06 ' 

Table 6: Root Mean-Square Errors 

Initial 
Iteration 
Only 

Initial 
It. 
+ Moment 
Adjustments 

Two 
Iterations 

The 
"Two-step 
Estimator" 

Fully 
Iterated 
Maximum 
Likelihood 

CIS on  
Ungrouped 
Data 

Experiment 1: 
61 
82 

.0562 

.0514 
.0480 .0485 

.04786 
.0484 0469 

0397 
.0478 .0474 .0476 .0488 

Experiment 2: 
.0338 0334 .0334 .0333 .0301 

81 
82  

.0550 

.1312 
.0472 .0476 .0475 .0475 .0484 

a .0307 
.1363 .1357 .1360  .1359 .1378 

Experiment 3: 
.0308 .0311 0312 .0312 ,0342 

81 .0720 .0681 .0674 .0677 .0676 .0622 
a
2 .0409 

044o 
.0331 .0319 .0324 . 0324 .0316 

Experiment 4: .0379 
.0385 .0378 .0379 .0397 

81 
82 

.0658 

.0649 
.0481 .0465 .0467 .0465 .0431 

a .0476 
.0466 
.0321 

.0448 .0449 .0447 .0433 
Experiment 5: 

.0326 .0327 .0328 .0289 
81 
82 

.0510 

.0662 
.0432 .0427 .0427 .0427  .0423 

a .0351 
.0493 
.0322 

.0427 .0427 .0442 .0401 
Experiment 6: .0313 .0313 .0312 .0317 ' 

81 
82 

-0618 
.1980 

.0487 .0470 ,0465 .0456 .0155 
a-  

.1804 .0988 ~4O  .0506 .0369 
Experiment 7: 

.0427 .0388 .0370 .0371 .0376 .0355 
81  
62 

.0559 

.0599 
;0454 .0456 .0454 .0455 .6180 I 

0866 
.0471 .0473 .0469 .0470 .012 9 

Bxperiment 8: 
.1019 .1105 .1108 .1116 0429  .0676

9 

61 
82 I 

.0544 .0408 .6307 .0401 .0401 .0513 0599 .0473 .0476 .0472 .0472 .0535 a ,2958 .3190 .3298 .3303 .3312 .1896 
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(i) Initial Iteration Only: a single iteration of the Maximum 

Likelihood algorithm of Section II with the dependent 

variable constructed on the basis of consistent estimates 

of the parameters of the marginal distribution. 

Initial Iteration + Moment Adjustments : the moment 

estimator based on the OLS estimates in W. 

(iii) Two Iterations : a second iteration applied to (i). 

(iv) The "Two-Step Estimator" : a second iteration applied 

to (ii) . 

(v) Fully Iterated Maximum Likelihood : the algorithm of 

Section II iterated to convergence. 

For purposes of comparison the results of applying OLS to the ungrouped 

data are also given. Table 4 gives the mean biases of the estimates of 

S1, S2  and a, and Table 6 gives the equivalent root mean-square 

errors. If the estimates obtained from each experimental replication 

are assumed to be asymptotically normal, the ratio of the mean bias to 

its estimated standard deviation will be distributed approximately as t 

with 49 degrees of freedom. These ratios are presented in Table 5. 

Whilst they can be generated easily enough from the entries in Tables 4 

and 6, they provide useful summary statistics. 
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from applying OLS to the ungrouped data, it is important to distinguish 

the last two experiments from the rest. When the disturbances are 

normally distributed (experiments 1 to 6) both estimators give consistent 

estimates, whilst in experiments 7 and 8 only OLS on the ungrouped data 

does. Thus in experiments 1 to 6 the mean biases for both are all small 

and none are significantly different from zero (see Table 5). In 

addition the root mean-square errors for the two estimators are very 

similar, suggesting that the loss of precision due to the grouping is small 

when the disturbances are normally distributed and confirming the findings 

of the previous section (Table 2). In the case of non-normal disturbances 

(experiments 7 and 8) the mean biases in the slope coefficients (01  and 

62) for both estimators are again insignificantly different from zero 

and the root mean-square errors are very similar both to one another and 

to those in the earlier experiments. However the Maximum Likelihood 

estimate of a has a mean bias that is much larger and significantly 

different from zero in both experiments and the root mean-square error is 

much increases. Hence, not unexpectedly, the accuracy of the estimation 

of a is much reduced when the disturbances have a skewed distribution, 

i.e, when the wrong conditional distribution has been assumed. 

The "two-step estimator' performs very well in these experiments. 

The root mean-square errors are very similar to those for the Maximum Like-

lihood estimator in all experiments (including the experiments where u 

is non-normal) and the mean biases are never significantly different 

from zero except in the cases when those for the Maximum Likelihood 

estimator are. 
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Experiment 2 (reduced p 2  ) exhibits a slight increase in 

the mean bias and root mean-square error of the estimate of S2. 

This is due to the relative reduction in 
c2 and is only in line with 

that exhibited by OLS on ungrouped data. The relative performance of 

the "two-step estimator" does not appear to be impaired by a reduction 

in p 2 

Experiment 3 (enlarged open-ended groups) gives a slight increase 

in the root mean-square error of the estimate of R1, but again this is 

only in line with that exhibited by OLS on ungrouped data. In this case 

the relative variance of xl has been reduced by the increase in o2  

and a 22. The relative performance of the "two-step estimator" does not 

appear to be impaired by an increase in the proportion of observations 

in the open-ended groups (the degree of censoring) either. 

Experiment 4 (assymmetric grouping) produces no increases in any 

of the mean biases or root mean-square errors. Again the results parallel 

OLS on ungrouped data and no impairment in the relative performance of the 

"two-step estimator" is evident. 

In experiments 5 and 6 x2  is generated by non-normal distrib-

utions. Experiment 5 exhibits little change in the mean biases or root 

mean-square errors. In experiment 6 (the more skewed) the mean bias and 

root mean-square error of the estimate of S2  are somewhat increased, 

but the mean bias is still not significantly different from zero. 

In experiments 7 and 8 where u is generated by non-normal 
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distributions the mean biases and root mean-square errors move in para-

llel with those for the Maximum Likelihood estimator. The comments 

made earlier on the performance relative to OLS on ungrouped data apply 

equally here, but the performance of the "two-step estimator" relative 

to the Maximum Likelihood estimator is as good as before. 

Overall the evidence suggests that the "two-step estimator" 

provides satisfactory estimates in all cases where the Maximum Likelihood 

estimator does and only in the case of the most skewed x2  distribution 

is its relative performance impaired in any way. 

Turning to the other estimators considered, the moment estimator, 

as expected, performs equally well in the experiments where x2  is gener-

ated by a normal distribution, but less well in the remaining two. In 

experiments 1 to 4 the mean biases and root mean-square errors are similar 

to those for the "two-step estimator" and the Maximum Likelihood estimator. 

The moment estimator appears to give just as good an approximation in these 

cases as the "two-step estimator". The position is similar in experiments 

7 and 8. 

In experiments 5 and 6 the "two-step estimator" does, as expected, 

provide a considerable improvement in the estimation of S2 compared with 

the moment estimator. The mean bias and root mean-square error are much 

larger for the moment estimator and the mean bias is bordering on signif~ 

icance in the case of the more skewed of the two distributions. 

The two iterations (without moment adjustments) estimator results 

in root mean-square errors very similar to those for the "two-step 

estimator" in all experiments. The mean biases are only 



significant in the experiments where those for the "two-step 

estimator" and Maximum Likelihood estimator are; and they also are fairly 

similar. In the case of experiments 1 to 3 the moment adjustments (i.e. 

comparing the "two-step estimator") do not appear to improve the estimator 

in the sense of reducing the mean biases. In experiments 4 to 8 there are 

slight reductions in the mean biases of the estimates of S1  and S2, but 

the improvement does not appear to be a major one. 

Finally turning to the initial iteration only estimator, the 

root mean-square errors and mean biases tend to be larger than those for 

the other estimators. The mean biases of the estimate of S2  are signif-

icant, or close to, in experiments 5 and 6 and the significance is consid-

erably greater than that for both the moment and two iterations estimators. 

This latter comment is also the case for all parameters in experiment 4 

(assymmetric grouping). In all cases either the moment adjustments or 

a second iteration or both seem beneficial. 

In conclusion, these experiments suggest: 

(i) that the loss of precision due to such grouping is only 

slight when the disturbances are normally distributed; 

(ii) that the estimation of a suffers when the wrong 

conditional distribution is chosen, but that the slope 

parameter estimates are much less affected and may not 

be unduly impaired;  

(iii) that the "two-step estimator" performs very well in all 

cases where the Maximum Likelihood estimator does and 

~Z7 



provides most satisfactory approximations to the 

Maximum Likelihood estimator; 

(iv) that the moment estimator performs equally well when 

the regressors are normally distributed, but that the 

"two-step estimator" provides considerable improvements 

in the case of non-normal regressors; 

(v) that the two iterations estimator also performs well 

in all situations and that while the moment adjustments 

improve the performance in some cases they may not be 

necessary; 

(vi) that the initial iteration estimator is substantially 

improved by either the moment adjustments or a second 

iteration. 
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VII: Conclusions 

This paper has examined the problem..of estimating the parameters 

of an underlying linear model on the basis of data in which the dependent 

variable is grouped. An algorithm for attaining the Maximum Likelihood 

solutions has been described. This algorithm has been shown to be a 

special case of the EM algorithm and hence to have the property of mono-

tonic convergence. The results of Greene (1981) on the asymptotic bias 

of OLS have been extended to the grouped dependent variable model and a 

"moment" estimator derived for the normal regressors case. A Least 

Squares approximation to the Maximum Likelihood estimator involving use 

of a particular application of the "moment" estimator in conjunction 

with early termination of the monotonically convergent algorithm is 

proposed and found in an illustration to provide a useful and satisfactory 

estimator. The application to the estimation of earnings functions from 

NTS data found the proposed "two-step estimator" to be superior to the 

ad hoc methods examined, the various straight moment estimators, some 

estimators based on the Maximum Likelihood algorithm alone, and various 

combinations thereof and to provide a very good approximation to the 

full Maximum Likelihood estimator. This was confirmed by,a number of 

simulation experiments. Estimation of earnings functions from GHS 

data to compare the Maximum Likelihood estimates with thus& based on 

the original (ungrouped) data demonstrated considerable agreement between 

the coefficients and also between the two sets of predictions. In the 

case of the particular grouping examined (that employed in the NTS) 

the consequences of grouping do not appear to be too severe. This 

finding was also broadly confirmed by the simulation experiments. 
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