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ON COURNOT-NASH EQUILIBRIA WITH EXOGENOUS UNCERTAINTY 

Abstract 

A large literature has accumulated which examines how the optimal 

solution of an agent maximising the expectation of a real-valued function 

depending on a random parameter p and the agent's behaviour x reacts 

to perturbations in the first and second moments of p . In this 

literature p is given exogenously, i.e. independent of x . We extend 

the theory in two aspects. First we allow there to be many agents and 

broaden our attention to regard market behaviour. Second, we allow p 

to depend on the behaviours of the participating agents, for example when 

p is a price vector relevant to an oligopoly. The method used is an 

extension of Ireland (2), in that an analogy is made between the effects 

on behaviour of uncertainty in p and the effects of a change in p . 

We study, in particular, the Cournot solution with respect to perturbations 

in the first two moments of two types of parameter defining a linear 

demand for an industry - one parameter corresponding to ordinate intercept 

and the other to slope. This analysis immediately gives the old results 

as a corollary. We also apply the analysis to a cooperative of 

individuals where there is uncertainty in the return to communal work. 

In the applications we study the kind of simplifying assumptions necessary 

and the nature of the results. 



1. 

1. Introduction 

The effects of uncertainty on the optimal decisions of economic 

agents constitute a topic of considerable importance but commensurate 

difficulty. The approach of Rothschild and Stiglitz ((8), (9)) finds 

sufficient conditions for determining particular qualitative effects of 

uncertainty or increased uncertainty. There, sufficient conditions often 

involve third derivatives of agents' utility functions, and complexities 

in interpretation often prevent satisfactory results being obtained. Even 

if reasonable convincing conclusions can be reached, as in the theory of 

the competitive firm (see also Sandmo (10) and Ishii (6)), extensions to 

cases where the dimension of agents' decisions is more than one, or where 

the outcome to be determined is the result of a number of agents' decisions 

under uncertainty, are not generally productive. 

One alternative approach (Ireland (2)) which has a restricted 

validity, but otherwise appears to offer promise of more fruitful results, 

is to consider the effects on an agent's behaviour of uncertainty in a 

parameter in relation to the effects on that agent's behaviour of a change 

in the same parameter under certainty. Such an approach uses an 

approximation which holds better the smaller the amount of uncertainty, 

and so resulting conditions are in essence necessary conditions for 

determining qualitative effects of uncertainty. Although not sufficient 

conditions (for more than small uncertainty) and therefore not implying 

perfectly general results, they do have two interesting and useful 

properties. Firstly, they indicate likely effects of uncertainty - and 

they definitely hold for sufficiently small uncertainty, and secondly 

they allow us to discard the complementary set of outcomes as general 

quali tative predictions. Thus if the prediction from our 
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approximation is that less of commodity i will be produced under 

uncertainty than under certainty, we conclude firstly that this is a 

likely general result and secondly that more to be produced under 

uncertainty does not always occur. 

The restrictions involved in applying the approximation approach 

are that the utility of each economic agent is a function (or can be 

expressed as a function) of a single argument which is linear in the 

uncertain parameter(s) and strictly concave in the variable(s) over which 

the individual maximises the expected value of his or her utility. 

In Section 2 below we set out a formal model of m economic 

agents taking part in a game. We consider a Cournot-Nash equilibrium of 

agents' behaviour in the presence of uncertainty concerning one or more 

parameters in Section 3, and then present two illustrative applications 

of the analysis in Section 4. Conclusions and some remaining comments 

are in a final section. The more tedious mathematics are relegated to 

an Appendix. 

2. A Formal Statement of the Model 

We consider a game r with a set of M = {l, ., m} of 

players isM , each equipped with a behaviour space X, 
i 

We define 

Xl  = II X. , 
j EM/Ti 1 J 

X = II X. 
ieM 

1 



denoting generic elements of X,, Xl  and X by x,1  , x
l  and 

1  

X  = (x
i
, xl) , respectively (ieM) . Each player ieM is assumed to 

have a utility function Ui  X -> R with a special form. In fact, for 

each ieM , we posit functions fi  : X -> R and g  : X -* Rn  , with 

gi(x)  _ (gil(x), gin(x))T 
and we set 

Ui(x) = ui(Yi(x)) , 

where 

Y, 
1 (x) = f 

1 
. (x) + [p (x) jT•g 1  . (x) 

The function u, : R -} R is assumed to be strictly increasing in Yi. 
i 

Here p(x) = (p1(x), . . ., pn
(x))T.eRn  at each xeX , and 

p(x) is a random vector which has the particular form: 

p (x) = p (x) + a{r + S~ (x) } (2.3) 

where 

p (x) = a + B~ (x) (2.4) 

with a = (a1, ., an
)T  e Rn  , B an n x n diagonal matrix whose 

diagonal is b = (b1, . . . , bn)T 
 e R  , = X - Rn  is a function 

Wx) = (V , (X) ~n  (x)) T)  , a e R , r = (rl, . . .. rn) 
T  a 

random vector, and S an n x n diagonal matrix with diagonal 

S  = (Sir . . . , sn
)T  , of random variables. The means of r and s 

3. 

(2.1) 

(2.2) 
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are given by E{r} = E{s} = O , and we denote the covariance matrices 

E{r•rTI by V and E{s sT} by W respectively. Furthermore, r and 

s are assumed to be independent random vectors, i.e. E{r 
i 
s
j
} = O , 

i, j = 1, . . . , n . 

We assume for each ieM that x, is an n.-dimensional i i 

Euclidean space (n, > n) , and that the functions u., f,, g, are 

twice continuously differentiable, as is the function ~ . 

Each agent ieM is understood to maximise the expected utility 

E{u,} over x.cx. . 
i 1 1 

With these basic data, we will study solutions x(a, b, a) of 

the game r according to a Cournot-Nash (non-cooperative) solution. 

The solution x = x(a, b, a) is assumed to be locally isolated for all 

possible (relevant) values of (a, b, a) In each case, our interest is 

in comparing the effect of (a, b) on x with that of a . In the 

style of Ireland, (2), where nevertheless p is independent of x 

and M = {1} , we are able to study (locally) the relations between 

X (a) - X 

on the one hand, and 

0 
ax (a, b) 

as 
and 

la = a 

ax(a,b) 

ab 
b = b 
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on the other, where x(a, b) = x(a, b, O) denotes the associated 

solution in the certainty case where a = O , x(a) = x(a, b, a) 

denotes the associated solution in the case where (a, b) is held fixed 

to (a, b) and x = x(a, b, O) . 

In the case of a single agent (m = 1) , the vector p(x) 

can be interpreted as a vector of prices dependent on the agent's decisions 

x , which may be employment levels of factors of production, amounts of 

commodities to be produced, marketing decisions, etc. The agent may have 

market power, i.e., prices dependent on the agent's behaviour, in the 

way defined above in (2.3) and (2.4). Then, x(a) - x is the effect 

- of uncertainty of magnitude a on optimal decisions and 
ax(a, b) 
—aa 

I 

ax(a, b) 
a - a 

and —ab 
I is the change in optimal decisions given a = O 
b = b 

(certainty) of changes in a or b evaluated at (a, b) . The effect 

of uncertainty on decisions is thus to be related to the effects of 

changes in p(x) due to changes in a or b . Thus, for instance, the 

effects of uncertainty concerning the intercept and slope of a linear 

price function p(x) would be related to the effect of parametric changes 

in such a price function under certainty. 

In the case of a number of agents (m > 1) , agent i has 

control over the variables x•  = (x• it 
 , . . ., x in 

 , xi,n+1 , . . ., ini x ) . 
i  

The variables (xi,n+1' . . . 
xin.) are supposed to have no influence 

1 of.  . 
on the other agents, i.e., we assume from the beginning ax = O and 
ag.  ik  

O _ k n + 1, ., n., j ~ i An equilibrium is found as 
ax
ik 

the Cournot-Nash non-cooperative solution to the m-person game, where 

each agent i is maximising his or her expected utility given xi , that 

is the decisions of the other (m - 1) agents. In the Cournot-Nash 



0 

equilibrium agents are not affected by uncertainty in each other's 

behaviour: this is determined; rather, each agent is influenced by the 

uncertainty in the p(x) function due to the random vectors r and s . 

3. The Approximation 

The solution x = x(a, b, a) that we examine here is obtained 

by 

max Ejui(Yi(Xi, Xl))~ i = 1, ., m . 
x.Ex. 11 
I I 

First order conditions give: 

a 
Eju. (Y. (x. , xl) )~ I = O i = 1, ., m 

DX . tttt I 

As stated in Section 2, we wish to compare 

X (a) - X 

with 

ax (a, b) 
and 

I b  

axx (a, b) 

as a=a 
ab =b 

o 
where x (a) = x (a, b, a) x = x (a, b, O) , 

and x = x (0) = x (a, b) = x (a, b, O) 

(3.1) 

(3.2) 

By examining (3.2) when (a, b) _ (a, b) we can obtain an 



implicit form 

F (x, a) _ -aG (x, a) , 

E n. E n. 
1 1 

where F, G : R
i6m x R  -+ R

ieM 

^ 

Linear approximation of F and G around (x, a) _ (x, O) gives 

(see Appendix) : 

T 

~"'X'—Ii' 

^ 1T ^ 2 ^ 

lax 
ag1 ^ 1 a (x) 

 1 
• (x - x) = a •p. (h. (x)) • (x) 

 1 
V g. (x) 

ax . - i  — i — 

T 
+ a2  • pi  (hi  (X)). Cax (x) diag (gi  (x) ) 

i 

+ 
~

Do yg 
 

I W 
diag(~U(x + W • gi~(x) i = 1, ., m . (3.3) 

u',' (Y. ) 
where: p (Y,) _ _ i i 

i i u'(Y ) 
the coefficient of absolute risk aversion 

for the ith  agent, 

h, (x) = f . (x) + Ip-  W IT . gi  (x) 

g
il 

 (x) l  (x) 

g (x) _ 

gin  (x) - • ~n  (x) 

gil  (x) 

'• O 
diag(g 

i 
(x))  

O  

. 9in (x) 

7. 



q)l  (x) 

diag (~ (x))  

n (x) 

To find 

ox o  (a, b) a a x (a, b) 
and 

Da a = a ab b=b 

we set a = O in (3.2) and implicitly differentiate with respect to a 

and b to obtain (3.4a) and (3.4b) : 

ah, 1T ax (ag, 1T 

TX [ axl (x) J 
as (a, b) + I axl  (x) 

1 
= O , 

1 L i  

ahi T ax a~ 11T D 
ax Lax. (x)~ ab (a' b)  + Iax (x)J 

diag(gi  W) 

T ag, 1 
+ 

Cax1 
(x) 

 1 
diag (f (x)) = O , i = 1, . , m 

i 

(3.4a) 

(3.4b) 

Using (3.4a) and (3.4b) in (3.3) now gives the summary comparison we seek: 

ax  L

ah, 1T ah, T ax°  

ax. (x)1 
(x - x) _ - a2•pi• axLaX. (X) , •{aa (a ' b) •v•gi (X)  

aX l 
+ ab  (a, b) • W • gi (x) r i = 1, . , m (3.5) 

where P. = p,(h,(x)) . 
1 1 1 - 
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Equation (3.5) is the major result of this paper. It is a very 

general result relating to a set M = {1, . . ., m} of agents, each 

making many decisions and faced with n prices or other parameter functions 

each with two kinds of uncertainty ( r and s ) . A general inter- 

pretation of (3.5) will not be attempted, but rather we present in the 

next section a number of examples and applications which provide useful 

insights concerning the nature of a Cournot-Nash equilibrium under 

exogenous uncertainty. In some of the applications we focus on an average 

or aggregate measure of decisions rather than individual level decisions. 

We also consider the case of all identical agents (at least in their 

behaviour under certainty, although they may have different attitudes 

to risk), and of just two agents. These kinds of assumptions are much 

used in discussions of Cournot-Nash equilibria in the existing literature. 

4. Examples and Applications 

(a) Cournot Oligopoly 

The model described in Section 2 has an obvious application in 

oligopoly theory. Consider m firms each producing an identical product, 

the industry demand for which is represented by the stochastic inverse 

demand function with n = 1 : 

p (x) = a - bQ + a (r - sQ) , 

m 
where Q = E x, and (r, s) are stochastic. Each agent has the 

i=1 
i 

same subjective probability density function on r , and similarly on 

s . Random r implies uncertain intercept and random s uncertain 



slope of the inverse demand function. 

Each firm maximises the (expected) utility from profit, so that 

the ith  firm chooses x, 
i 
 given (true in equilibrium) assumptions about 

x  , ex ante of (r, s) being revealed. Profit for the ith  firm is 

Y. (x) _ (a - bQ)x. - c. (x. ) + a(r - sQ)x. , 

so that: f,(x) _ -c,(x,) , and 
1 1 1 

gi  (x) = xi  

in (2.2). We can immediately pick out the individual expressions defined 

in (3.3). We have 

h. (x) _ -c. (x. ) + P(X)•X. 
i i 1 i 

where 

p (x) = a - bQ 

Also: diag(f(x)) = -Q , 

gi(x) = -Qxi  , and 

diag(g. (x) ) = x, 

10. 

(4.1) 

We also have: 
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l D 1  (x) J = - ~b, . , b, ~i + b, b, . , b] (4.2) 
ah 

aX ax. 

where in the ith  component of the m-vector is 
i 

c.' (x, ) + b 

Thus (3.3) takes the simpler form: 

- Ib, . , b, + b, b, . , bI - (x - x) 
i 

= a2  P. Vx. +a2  P. X̂  +Q}WQx. (4.3) 

and (3.4a) and (3.4b) take the form: 

aX 

- [b, . , b, ~i + b, b, . , b] • as + 1 = O (4.4a) 

ll 
ax 2  

-[b, . , b. W + b, b • - bI ab + (xi)  - Q = O (4.4b) 
i 

The final approximation (3.5) is then: 

1b, b, + b, b, b] (x - x) 
i 

ax 
= a2  p 

i -i 
V x 1b, b, + b, b, b] • as i 

+ a2 
ax 

P W Q X. ~b, b, + b, b, - , b] i • ab 

m (4.5) 

Equation (4.5) holds for all i , and is useful in a number of particular 



cases. 

Case (i): Firms are identical under certainty but have different attitudes 

towards risk (i.e., Y.(•) = Y.(•), all i, j , but different utility 
1 3 

functions). Then adding equation (4.5) over all i yields, using 

X. = x. all i, j so that x. = 1  Q (but x. is not necessarily 
-1 —3 1 m - 1 

equal to x. ) and i  = all i —3  
m 

Q aQ E pi 
(mb +0) (Q-Q) _ -a2 V (mb+) m 3 1 m 

m 

Q a  Q Z pi  
2  + a W Q (mb + ) m ab 1

__ 
 m ' 

or: 

M 

,. pi 
2 
(V 8a - W Q ab ) m m 

Thus the proportionate reduction in industry output due to uncertainty 

in the intercept of the inverse demand function alone (W = O) is: 

m 

° pi a Q- Q 
2 Q 

-a V as m m ' 
Q 

and this depends on the amount of uncertainty (a2V) , the response of 

industry output defined by a Cournot equilibrium to a parallel shift 
0 

under certainty (Q) and the average coefficient of absolute risk 
m ° 

aversion (m E pi) We would expect 9Q > O and so if on average 
i=1 1  m 

there is risk aversion (— E P. > O) then industry output will be 
m 1 
i=1 

less under uncertainty. Uncertainty concerning the intercept of the 

inverse demand function thus involves an industry output reduction 

12. 

(4.7) 
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analogous to that for a reduction in the intercept under certainty. 

Note that if uncertainty is involved only in the slope of the 

inverse demand function, then for an (on average) risk averse industry 

such uncertainty produces a qualitatively similar response to an increase 

in b under certainty. An increase in b , like a reduction in a , 

produces lower profits and less utility. 

Case (ii): Suppose c(xi) = c all i , i.e., ~i  = all i , 

and p.x, = 8 all i In this case it is no longer assumed that 
I i 

outputs and responses to parameter changes under certainty will be the 

same for all i . Nevertheless, again add (4.5) over all i and obtain 

0 0 
aQ aQ 

(mb + ~) (Q - Q) _ -a28 V (mb + ~) as + a2e W ~(mb + ~) ab (4.8) 

0 0 
aQ ~ aQ 

or: Q - Q = _a2; [V as - W Q  ab 
(4.9) 

which is a result comparable with (4.7), so that the same interpretation 

of response to risk can be made if firms are not identical under 

certainty, but have the same slope of marginal cost function (c) and the 

same output-weighted coefficient of absolute risk aversion. 

Case (iii): Suppose we have only two firms (m = 2) . Define 

cl  = cl(xl) + 2b and c2 = c"(x2) + 2b . Then (4.5) written out, 

gives for i = 1 



14. 

aX 
xl)(cic2  - b2) _ -a2'Ipl-lcic2  - P2X2b2~ aal 

0 0 
ax ax 

a2V IPlxl  - P2x23  c 2  b  aa2 + a2   (xl 
 + x2) 1plxlcic2 p212b21  abl 

a°  
2  + aW(xl  + x2) IP1X1 - P2X21c2b Db2 (4.1o) 

and for i = 2 

a0  
(x2 - x2 ) (cic2  - b2) _ -a2VIP 2x2  - P1X11clb Dal  

0 0 

a2V[p2x2cic2 Plxlb2] 2  + 
aa 

a2W(xl+x2)Ip2x2-Plxl3clb abl 

a° 
+ a2W(x1  + x 

—2 
 ) Ip

2 
 x 
2  c1  c2 1— 

- p x
1 b2~ ab . 

—  
(4.11) 

Suppose p1Xl  = P2x2  = e then the formulas for (xl  - xl) and 

(x2  - 22) become very much simpler, even though c  is not necessarily 

equal to c2  

ax. ax. 

X. - xi  = -a2V e as + a2W (x1  + X2) Dbl , i = 1, 2 . (4.12) 

Again, the same interpretations are possible as in cases (i) and (ii), 

only here behaviour relates to a particular firm rather then the industry 

as a whole. 

Alternatively, assume that, as in case (i), both firms are 

identical under certainty, only their attitudes towards risk differ. 

Then 
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2 
aoxi A  c1c2  + c2b A b2  + c2b 

x1  - 21  = -a V as ~Pl A A - 
_2 P2 

- b2~ c 
1  c  2  b c 1 

c 
 2 

A aox 2  i A  c1c2  + c2b A b + c2b 
2 } 

+ a W ~ ab {P l ~2 - p
2 A ,.2

I  c1c2  b c1c2  - b 

where i = 1 or 2 Now as cl  = c2  = c from the assumption of 

identical firms under certainty: 

11 rr ax. ~ a 

-a2  ~' c 
b 

- p1  - A P
2J  ' IV as - WQ  abl, xi 

(4.13) 
c - b c - b 

( A ax. 

2  I x2  - x2  = -a A c P 2  - A 
b 

P l~ ' LV aa1 - V7 Q abl, x 
(4.14) 

lc b c b 

Adding (4.13) and (4.14) of course yields (4.6). Subtracting (4.14) 

from (4.13) yields a comparison of responses: 

ax. A ax, 

2 1  - 2 2  = -a2 
c + b ( p

l  - p2) LV as - W Q ab, X.  ' (4.15) 
c - b 

DX A ax. 
A 
c + b 

so that, assuming (V Da  - W Q ab  ) > O and 
> O , we have that 

c - b 
the smaller output under uncertainty is produced by the firm with the 

higher coefficient of absolute risk aversion. 

(b) Collective Firms and Private Plots 

The application in (a) only considered one decision variable 

per agent (n. i = 1, all i ), and yet one major aspiration of the 

procedure outlined in Section 3 was to allow consideration of multiple 

decision variables. Here we will show this possibility of applying the 

analysis to a simple model of a collective farm where individual worker 

i e{1, . . ., m} chooses the allocation of his time to work on the 

communal land ( k. hours), work on his private plot of land ( ti  hours) 
i 
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and leisure ( (E - k. - k,) hours) For a discussion of collective 
i i 

farms see Bonin (1), Ireland and Law (3) and Oi and Clayton (7). The 

utility of an individual member is given by (2.1), where (2.2) is of the 

form: 

q (K) 
Y - p — 
i m 

+ z. (k. ) - S. (k. + k. (4.16) 

and p = p + ar . 

m m 
We write K = E k, , L = E k, , so that _q(K) is 

i=1 i=1 
total output of the communal plot which is sold to the State at a price 

p per unit and then the revenue is distributed equally among all workers 

on the collective farm. (Other distributions rules will be considered 

briefly later). The individual obtains an income-equivalent return of 

z,(k.) from the private plot and -~.(k. + k,) represents the cost in 

terms of leisure of working on both the communal and private plots. 

Non-negativity conditions on k., k. and E - k. - k, are assumed to 

be satisfied at all interesting equilibria. The form of (4.16) is rather 

special but others can be found which still satisfy (2.2). Now 

q (K) 
h. = p m + z  (ki) - R  (ki  + ki) 

q(K) 
gi (•) m ' 

so that for just two individuals (m = 2) , the left-hand-side of 

equation (3.5) stacked for i = 1, 2 is 
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p~ 
O  

2 

- S1 (zl 
O O  

2 
O (2 - a2) - 

s2 1
2  - 12  

O O - R2 (ZZ - R2) QZ - QZ 

(4.17) 

where the components of the matrix are evaluated at 

(kit kit k2' k2)  _ (kl' Ql' k2' k2) 
Describe the matrix in (4.17) 

as H then the right-hand-side of the stack of equations (3.5) is 

0 
dk 1  

Pl dp 
O d? 

P 
l  

_ 
2 a(K) 1 dp 

-a 2  V 
A H dR2 

(4.18) 
p  
2  

O dp 

d?2  
P2  

dp 

Now simple results can be obtained in at least two cases. 

Case (i): Let pl  = p2 = p Then, provided H l  exists, 

2   (K) dox - 
xi - ~ = -a 2  V P - , x = k, R ; i = 1, 2 (4.19) 

dp 

Thus for each variable and for each individual, the response to uncertainty 
2  g.(K) 

in price from communal output is the same constant a = -a 2 V P 

of the respective adjustment to a change in p . 
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Case (ii): Now consider the agents as identical in the certainty 

situation (same h(•)-function) but allow them to have different attitudes 

to risk (p,) . Then (4.10) can be written as 

P Pq" - S" -  o 
1  dK 

p
0 

dP  Z„ - S„ 

a(K) 1  
-a2  

2 
 (4.20) 

P 2 Pq„ _ Q It - ~„ o 
dL 

O _ 
dp 

2 p - 
Q„ 

{- 
Z „ - W„ 

0 0 
dkl  dk2  

as dp  = etc. Now add the first and third rows and the dp  

second and the last rows of (4.17) and (4.20) to obtain 

k1  - kl  

pq„ _ S„ _ ~„ pq„ 

ZVI  - 
Q„ 
l~ 

_ 
F-~ 
Q„ Z„ _ Q„ 

I-~ k 
—2 

k 
—2 

2 - Q2 

o 
K - K 

_ - o 
Z „ _ Q„  L - L 

from (4.17) , and 0 
dK 

2  q (K) dP 
-a 

2 V (P1 + p 2) o 
dL 

W O 
Z

11 

dp 

from (4.20). 
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Thus, provided the inverse of 

Z 1I  

exists, we have 

0 
K - K dK 
— — 

- -a2 q (K) V (P + P ) dP 
2 1 2 dL 

L -L 
dP 

0 
dK 

Again, the relationship between (K - K) and — is the 
0 dp 
dL 

same as between (L - L) and dp so that uncertainty in communal 

product price has an effect on total labour supplies analogous to a 

(4.21) 

reduction in that price under certainty, if individuals are, on average, 

risk averse. 

The application above can be generalised in a number of directions. 

Particularly m > 2 presents no problem. For case (ii), other distribution 

rules for communal plot revenue, such as according to individual labour 

input (see Ireland and Law (4) and (5)), and other specifications for 

(2.2) can be accommodated with no additional difficulty. 

5. Conclusions and Extensions 

We saw in Section 4 how, by appropriate assumptions and 

restrictions, equations (3.5) (all i ) could be used to relate differences 

in individual or aggregate behaviour due to uncertainty in a parameter to 
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responses to changes in that parameter under certainty. Consider one 

such result, equation (4.19). Suppose one posed the question, what 

difference in parameter value under certainty would produce (approximately) 

the same behaviour as the given amount of uncertainty, i.e., Ap which 

solves 

xi  (a) = xi  (p + Ap) 

The answer is simply (for the result (4.19)) 

2  q (K) 
Ap -a 2  V p , 

and Ap can be described as a behaviour-equivalent change. 

A Ap of opposite sign could be used as a compensation to 

maintain the same behaviour with the onset of uncertainty. Note, 

however, that this would overcompensate a risk averse individual in terms 

of his expected utility. An Arrow-Pratt risk premium such that utility 

is equivalent to that under certainty would be approximately one half 

of Ap in (5.1) . 

We have concentrated our analysis on a Cournot-Nash non-

cooperative solution. However, other possible solution concepts to the 

game F might be applied and can be the subject for further research. 

One obvious one we should mention here is a cooperative solution. In 

the case of identical utility functions and cost functions, an oligopoly 

problem such as in application (a) in Section (4) reduces to maximising 

the expected utility of an average firm, with respect to all decision 

(5.1) 



variables x (x. = x) . Then 
i 

T T 

aX 

[2h 

a

dn 

x _ (X)1 — aX [ax (X)I 

forms a square non-singular matrix and immediately: 

aX aX l 
X - x = -a2P as V g (x) + ob  W g~ (x) (5.2) 

It is likely that most other solution concepts to the game do 

not yield such tractable results as the Cournot-Nash solution. Confirmation 

of this is a matter for further research. 

21. 
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Appendix 

The Cournot-Nash solution x(a, b, a) to the game t considered 

in Section 2 is characterised by the following set of equations: 

a E (u. (Y. (x I x1)) ~ = O , i = 1, . , m , 
ax, l i i i 1 X. = X. 

1 -~. -- 

or 

aY, 1 

+i (Yi (x)) 
 • axl (x) r = O , i = 1, m. (Al) 

1 J 

By definition of Y  : 

aY, ah, ag. agi 1 1  + a,rT. 1 + a•:Ig, W] 
Dg 

+ a• [~,(x)
]T 

~S•8x , ax, — ax, ax, 1 ax. i 1 1 1 

where h. (x): = fi (x) + aT •gi (x) + [~(x)]T•B•gi(x) 

So, (Al) becomes: 

( ah. T 
T 

(( ag, 

E tu' (Y. (x))}• 1  (x)~ + a•Eju' (Y. (x)) • [ 1  (x)] 'r} + 
` 1 1  — 

laxi 
l̀ 1 1 — xi 

T l 

a•E~ui (Yi (x)) • Cax. (x)~ 
•S•gi (x) r 

1 1 

ag. 
T 

1 
+ a•E rui(Yi(x))•~ax

l  (x)~ •S•~(x)r = O , i = 1, m. (A2) 
l LL i J 

a 0 a° 
Now to calculate as and ab set a = O in (A2) and 

obtain, 

23. 
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ah T  
ui (hi  (xo)) • 

Caxl 
(x)  J 

 
i 

or, since ui(•) is strictly increasing: 

T 
ah. 
i o m (A3) (x (a, b) , a, b) = O , i = 1, . , 

ax, — 

Notice that from (A3) we also have 

ah 
^ 

T 

1
. = 

(A4) 
ax — 

where it is understood that we suppress the notation of a and b as 

arguments of functions. Equation (A3) written out gives: 

raf . 11 T Dg 11 T  

laxl (x
o  (a, b)) J + I a  —Xi 

(x (a, b)) 1 
.a  

11T ag. 
+ I (x (a, b))

J 
 •B.a (x (a, b)) 

i 

T 
+ I gi(x(a, b))~ •B• (x(a, b)) = O, i = 1, ., M. (A5) 

i 

Differentiation with respect to a on both sides of (A5) at a = a 

(b = b) , yields: 

ah. T  ax ag. T  

ax [ax. 
(x) as (a, b) + 

Iaxl  W 
= O , i = 1, ., m. (A6) 

1 1 

Differentiation with respect to b on both sides of (A5) at b = b , 

(a = a) , yields: 



ah. T ax 
T 

(ag. 1 

ax 
laxl 

(X) , ab (a, b) + I axl  (x) J diag (V~ (X) ) 
i I.  1 

11  

+ [ax 

T 
 (x)

J 
diag(gi(x)) = O i = 1, ., m . 

i 

where 

diag(gi(x)) : = 

gil  (x) 
O 

O ' 
• gin (x) 

25. 

and 

diag (~ (x)) : _ 

For determining (x - x) , set (a, b) _ (a, b) in (A2) and obtain: 

ah T ag 
T 

. l , 11 r ( r 
E u' (Y. (x, a)) T 1  (x)

1 
 = -a• ~Ei u' (Y. (x, a)) • I 1(x)~ 'r 

i — taxi  — 

( T 
+ Ejui (Y. (x, a)) • lax 

(x)~ •S.gi(x) 
i J 

((ag 
T 

. 11 111 
+ Ek (Y. (x, a)) • I ax''i 

 W •S -~ (x) TJ 
i = 1, m. 

l ll  

1 [ax, 
ah, 1T  

Define : F. (x, a) = E j ui (Yi  (x, a)) r• (x)
i  

(A8) 



F1(x, 'a) 

F (x, a) 

F
m 

 (x, -a) 

Linear approximation of F around (x, a) _ (x, O) is given by 

F (x, a) F (x, O) + ax 
 (x, O) • (x - x) + as 

 (x, O) •a , 

or 

aF. aF 
F  (x, a) = F  (x, O) + 

DXl 
(x, O) • (x - x) + aal (x, O) , 

Now, 

jah. 
^ 

1T  
F. (x, O) = ui (hi (x)) • I ax1  (X) 

1 
= O , 

` L 

aF. - - T aY 

ax (x, a) = I 
(
a
' —Xn  1 

(x) •E{u
lf  
i (Y

i  (x, a)) - ax1 (x, a) 
i 

`~ ah, 

I 

T 

+ E ~U! (Yi  (x,a))j•ax axl(X) 
J i 

aF. ah, 
T 

axl (x, O) = ui(h.(x))'ax ~axl  (x)1 
i 

aF. ( aY. l ah - T  
aal (x, a) = E j u (Yi  (x, a)) ' Da (x, o.) f [axl (x)I 

l J i  

aF. 
Da (x, O) = O , 

26. 



and thus 

ah. 
1T 

F. (x, a) -- ui (hi  (x)) ' ax lax1 (x)
1 

(x -  x) i = 1, ... ,m. (A9) 
i 

Linear approximation of the term in the square brackets on the right-hand- 

side of (A8) is the sum of the linear approximations of the three terms 

in these brackets. 

T 
r gi 

Define: G. (x, a): = E~(
( 
 ui(Yi(x, a))-  ax  (x)' •r

T 
i = 1, ..., M. 

C'" 11 L i 

T 
Then we can rewrite G.(x, a) as: 

1 - 

T 
( n agi. 

1 Gi (x, a) = E j ui (Yi  (x, a)) • E r j  • [aX (x)  J l 

T 
n ( ~ ag.. 11 
E
l 
 E rui (Yi  (x, a)) •rjl• (axis (x) 

J 

Further: 

T 
n g. 

G. (x, O) = E ui (hi  (x)) •E{rj } • I~xlZ (x)  
j=1 i 

aGI n ag 1T aY 

axl (x, a) = E Iaxe  (x)
1 
 •E j u (Y. (x, a)) ' ax (x, a)  • rJ j=l i l 

n ( a
x laxi 

ag 
T 

i. 
+ E! (Yi  (x, a)) •r j}'a s (x)~ 
7 l 

 -+ 
l 

aGI 
i 

ax (x, o) = 0 , 
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00 

DGI n aY T  Dg„ 
aal (x, a) _ 

]
E E u(Yi(x, a))'aal  (X' a)•r j~•~ax  7  (X), ' —1 

aY
i T N 

Da — r •gi(x) + ~ (X T•S•giW , 

I aG n ( 

Dal (X, O) = E u (hi  (x) ) •EjrT •g (x)i •rj  + (x)'T•S•g (x)i -r J 1 j} 

T 

l 

• 

[

agij 
1  

ax, (X)  J  
1 

By definition: E r,•rT = V, 
7 } j*  

(jth row of V ) , 

+j  • sk~ = O . 

So, 

aGI n ag   

Da (x, O) = J 
1  

E u (h
i  (x)) •V

j*
•gi  (x) • jaxl] (x)

I

T 

V1*•gi(x) 
T 

C,  
u chi  (X)) • 

Ia 1 (X) J 

Vn*•gi(x) 

g. 
T 

ra 
u (hi(x))•I axl  W •V•gi(x) ll i 

Therefore: 

g. 
T 

Fx 
(x, a) a•ui(hi(x))• l (x) •V•gi(x) i = 1, ..., m. (A.10) 
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(  

Define: Gil  (x, a) : = Ejui (Yi  (x. a)) • [ax (X) IT.S.gi (x) 
ll i 

II 
Then we can rewrite G. (x, a) as: 

1 - 

I ( n 1 T 
G. (x, a) = E j ui (Yi  (x, a)) • E S. •glj  (x) • [ax (x) 

J l J 1  

n (r a - I T
E Ejui (Yi  (x, a)) •sjl•gij  ( IaxJ(x) .

j=1 t i  

Further: 

n ( l a 1
T 

Gil  (x, O) = E
1 
 u' (hi  (x)) •Ej s j  t•gij  (x) • I a (x)  

7 
l 1 ll 

aG11 n - rah - T - aY 

1 (x, a) = E g, j  (x) • I j (x)1 •E~ufl (Y. (x, a)) • 1(x, a) -sj~ 
ax — j=1 i — ax

i 1 1 1 — ax — 

n (( rah 1T 
Y a 

~ l
W 

T 

+ E Eju' (Y. (x, a)) •s.~- I—~ W •g' . (x)+g.. (x) •— 
j=1 ` 1 1 — 7J Iaxi 17 — 17 axxi  

9G11  

ax 
1 (x,  O) = O 

aG12 
T 

n ay. av, .  
(x, a) = E E u" (Y, (x, a)) • (x, a) • s . H 1 

aa1 — { 1 1 — aa1  — 7}•gij (x) • [ax (x) 1 j=1 1 

3G I  ,. n (   

aa1 (x, O) = E u (hi  (x)) •E'S rT•g (x) •s j  + (x) ~ T•S•gi  (X) -s 
j-1 

l — — 

a ~ . .. T  
•gij  (x) • Ia (X)] . 

1 
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By definition: Ejsj•sr = W*j  (jth  column of W ) , 

Ejr, 
J 
 •s 

 
k} = O . 

11 )))) 

So, 

3G n II sjslgil(x) T 

1 
aal (x, 0) = u (hi (x)) E 

C~ 
(x) J T•E{ 1-g,j (x)- 

[ex (x)1 
•j=1 i 

s 
J  
, s g (x) 

n in — 

n 
1T 

T a,~ . 11 
= u (hi  (x)) • E l~  (x) •diag (gi  (x)) •W*j  •gij  (x) • 

Iaxi 
 (x)

1 
J 1  

T 
U1.  (hi  (x)) • IDX. (x) 

J 
•diag (gi  (x)) •W•diag (gi  (x)) - (x) 

I 

Therefore: 

T 
GiI  (x, a) -- a•u (hi  (x)) • 

I 
ax (x)

J 
 •diag(gi  (x)) •W•diag(gi  (x)) •f (x) , 

i 

i = 1, . . . , M. (A.11) 

( ag 
T 

. 11 l 
Define: GiII (x, a) = Ejui 

(Y. (x, a))  • Caxl (x) J 
 •S• (x) { 

Then, proceeding in the same way as for GII(x, a), it follows that 

ag. 
T 

GiII (x, a) -- a *U1.1
(hi (x)) 

laxj 
(x)1 •diag (~ (x)) •W•diag (f (x)) •gi  (x) , 

i 

i = 1, . . ., M. (A. 12) 



U" (Y. ) 
Define: p (Y  i i 

gil  (x) •l (x) 

gl (X) • _ 

g
in 

 (x) . ~n  (x) 

Then, (A8) - (Al2) combined gives: 

F. _ - a(GI + GII + GIII) , 

or 

T  
[ah, _ rag. 

a 1  (x)~ • (x — x) = a2 •p. (h. (x) ) • I 1  (x), •V•g. (x) 
aX ax. — — — aX. 1 — 

(~ 1T 
+ a2  •pi(hi  W )•IaX (x)

1 
 •diag(gi(x))•W•gi(x) 

II.. i 
T 

~Xl 

g. 1
+ a2  •pi (hi (x)) • (x)1 •diag(~ (x)) •W•gi — 

i 

jag. 
T 

11 r 
a2  •pi(hi(x))•jaXl  (x)J  -

V-g (x) i + a2• 

Z, 

pihi(x))• [ax (x) 

T 

•diag(gi(x)) + [—' (x)I •diag(~(x))?•W•gi(x) , i=l,...,m. 

31. 

Then, with (A6) and (A7) : 



a ahi  T 2 a ah
i  T  

1 
 W • (x - x) _ - a •p. (h. (x)) •— 

1 
 W ax ax. 

J 
- - 1 - ax ax. 

ax aX  
{aa •V•gi(x) + ab •W•gi  W i = 1, ., m . 

which is equation (3.5). 

Note that the dimensions of the terms in (3.5) are: 

a ahi ^ 1 T m 

ax [ax. (x)1 ni  x E ni  
i i=1 

m 
x- x E n. x l 

i=1 

a, p.(h.(x)) 1 x 1 

V, W n x n 

gi  (x) , gi (x) n x 1 

ax ax m 

_— -- E n. x n 
as ' ab i=1 1 
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