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SUMMARY

SIGNAL EXTRACTION IN NONSTATIONARY SERIES

The state-space method is applied to the problem of separating
an autoregressive (AR) signal from composite AR and white normal noise.
In the stationary case, for which the Wiener filter exists, we show
explicitly its equivalence to the steady-state Kalman filter. Existing
results for difference-stationary processes are generalized to the
explosive AR case, with careful attention paid to initial conditions;
the limiting filter is shown to be stable. Conditions are given for
convergence of the signal extraction error variance, and these are seen
to exclude the existence of an unstable common factor in signal and noise
autoregressions, but not nonstationarity. The general argument is
illustrated wiﬁh simple examples and the role of controllability and

detectability is explored in an appendix.



1. INTRODUCTION

In the statistical analysis of economic time series, models in which
the observed sequence is generated as the sum of two or more unobserved
variables have a long history, recently surveyed by Nerlove et al. (1979,
Ch.I). For example, in the early studies of economic cycles it was assumed
that some pre-processing of the data was necessary, to rid the observed series
of unwanted variation that would otherwise obscure the feature of principal
interest. Also the traditional model for a variable observed at regular
intervals each year decomposes the series into trend, cycle, seasonal and
irregular components, and this model still underlies the seasonal adjustment
procedures used by many statistical agencies. The signal extraction problem
is to "estimate" the component of interest (the "signal™) by a function of
the observed data, and so separate it from the remainder, regarded as "noise®.
In addition to seasonal adjustment, a further application is in models that
assume that an economic agent's behaviour depends on an unobserved component,
such as "normal" price or "permanent" income, which is estimated as a
function of current and past observed values of price or income, yielding

a distributed lag relation among the observed variables.

This paper considers: . the extension of existing signal extraction
theory, where the unobserved components are stationary stochastic processes, to a
specific class of nonstationary models, namely those containing explosive
. autoregressions. It extends the work of Cleveland and Tiao (1976) and
Pierce (1979), who ceonsider series that can be reduced to stationarity by
differencing. A motivation arises in studies of the linear filters implicit
in the Census Bureau X-1ll1 seasonal adjustment program. In seeking auto-
regressive models for which the cne-sided filter for the adjustment of
current data minimises the mean square of first annual revisions, no non-

explosive solution is observed (Wallis, 1981). Likewise, explosive models



are found in subsequent searches for models for which the X-1l program
approximates the optimal signal extfaction procedure, prompting the
question of whether the standard algebraic formulae are indeed valid in
these circumstances. More generally, given the recent interest in testing
for unit roots in time series models, it seems appropriate to consider the
extension of existing theory to cases that arise if a two-sided alternative

hypothesis is postulated.

The basic set-up of the problem and the general approach we adopt are
described in Section 2. Following Pagan's (1975) suggestion that unobserved-
components models may be usefully analysed within the state-space framework,
our approach uses the Kalman filter (Kalman, 1960), which is developed in
Section 3. The steady-state Kalman filter is shown to be equivalent to the
existing results for the stationary case, presented for example by Whittle
(1963), but, in the context of a simple example of a series that comprises
a first-order autoregressive signal and a purely random noise, it is shown
to be applicable in the nonstationary case too. The convergence of the
Kalman algorithm to a steady state is considered in Secﬁion 4, and conditions
which guarantee this are presented. Under these conditions, the implied
linear filter of the observations again corresponds to the existing results
for the stationary case, but stationarity is not a necessary assumption. In
the "nondetectable" case in which these conditions are not met, namely that
in which the component autoregressions have an unstable common factor, the
covariance of the signal extraction error diverges, and although the Kalman
gain converges in numerical examples, a general proof is not yet available.
Discussion of our results and their relation to the existing literature is
contained in Section 5. In common with this literature it is assumed that the
forms of the models and their parameter values are known, and problems of

identification and estimation of unobserved-components models are not discussed.



2. SETTING UP THE PROBLEM

The observed variable Ye is given as the sum of two unobserved
uncorrelated random processes respectively termed signal, S, and noise.
The signal is the component of principal interest, and the noise is simply
taken to be the remainder, Yt - st; the noise may in turn comprise more
than one contributory component. The signal extraction or filtering problem
is to estimate Sy from observations on y. The theory of the linear least
squares (1l.l.s.) approach to this problem for stationary time series,
developed by Wiener and Kolmogorov, is treated extensively by Whittle (1963);
see also Nerlove et al. (1979, ch. V) and Priestley (1971, ch. 1lO). Here the

approach is to construct a linear function of the observations, or linear

filter,
(2.1) st = f(L)yt

where f£(L) 4is a polynomial in the lag operator L, so as to minimise

the mean square error

2
(2.2) E(ét) = E(st - st) .
Different filters result from different informational assumptions: one
might consider only the finite sample (yo'yl""’yt+k)’ or the semi-
infinite sample (yT; T <t + k), or indeed the infinite sample

(yT;—°°<l'<°°).

As Whittle observes, "the l.l.s approach is theoretically elegant,

in that it fits in naturally with the representation theory of stationary



processes; concerned with canonical linear representations calculated
from the covariances" of the observed process. However, given an
unrestricted choice of function of the observations then the estimate

of S, which minimises the mean square error is the conditional expectation

(2.3) s, = E(s |y, ).

t AR £

This coincides with the l.l.s. estimate §t if the random variables

S r¥ reeer¥, , are jointly dormallz distributed. In much of the time
series literature attention is restricted to linear functions of the data
irrespective of the joint distribution, the argument being that if this
distribution is normal then the linear estimator is optimal in the mean
square error sense, whereas if it is not "then, in general, we would be
unable to evaluate the expression (2.3) and so we ﬁight as well seek the
'best'! linear predictor", in Priestley's words. While it is easy to
produce examples in which a linear estimator is absurd, these usually rest
on explicit distributional assumptions that one would hope to be able to
exploit in practical situations to construct the conditional expectation.
In what follows it is often convenient to work with the conditional
expectation, yet we seek equivalences to the existing l.l.s. results, and

so we explicitly assume that the relevant random variables have a joint

normal distribution.

We consider autoregressive models in which the stationarity
condition on the roots of the autoregressive operator is relaxed. Thus
we remain in the class of models with time-invariant parameters, and the
particular evolutionary feature of the model is that, beginning from given

initial conditions, the variance increases without limit. It is then



inappropriate to consider a sample of observations extending from the
infinite past to the present, and we take the relevant information set,
denoted QT, to be the finite sample yo,yl,...,yT together with some

description of the initial conditions.

Initially we consider one-sided filters, that is, estimates of S,

based on Qt. As time goes by, and more y-observations become available,
the estimate of the signal at time t can clearly be improved, and an
asymmetric two-sided filter results. In the seasonal context this is the
problem of preliminary adjustment and subsequent revision of seasonally
adjusted data, and Wallis (1982) has shown that a set of (finite) linear
filters can be constructed to represent the operation of the X-11 seascnal
adjustment method. These are of the form

(1)

m
b A ai(L)yt = a, .y i=0,1,...,m

(1)

where yt

denotes the seasonally adjusted value of Yo based on

observations up to time t+i, thus yéo) is the first-announced or

(m)

£ is the final or historical

preliminary adjusted wvalue, and ¥y

adjusted value. The filters are said to be "time-varying" because, on

running the seasonal adjustment program at time 7T, the m most recent
(T-t)

values of the output series are yt , £t =1T-m,...,T, each a different

linear filter of the input series.

If we think of the intermediate adjustment problem as that of

(m)

obtaining the best (l1.l.s.) estimate of Ye

given Qt+i’ that is, data
only up to time t+i, then the solution (Geweke, 1978; Pierce, 1980) is

that the filter ai(L) that minimises the mean square of the revision



(m)
y

(i)
t Y

€ is given by the application of am(L) to the series

yt—m""’Yt""'yt+i’yt+i+1""’yt+m' where the last m-i wvalues are
the 1.l.s. forecasts of the missing future y-values. Since these are
linear filters of the observed y-values, the net effect is again a

linear filter, namely ai(L). A set of filters constructed in this way

is said to be internally consistent with respect to the given y-process

(Wallis, 1981), and it minimises revisions throughout the whole sequence

of adjustments. Thus if the filters ai(L) and ak(L) minimise the mean

square of the revisions yém) - yél) and yém) - yék) respectively, being

identical to the application of am(L) to a series of observations augmented

by m-i and m~k forecasts respectively, then ai(L), i <k, alsc minimises

the mean square of the revision yék) = yél) and is identical to the

application of ak(L) to a series extended by k-i forecasts. If the linear
filters represent conditional expectations, then internal consistency is
simply an implication of the "tower property" of conditional expectations,

that is,

Q ..) =E {E(s_|Q

(2.4) E(s, |9, "

By regarding the signal, s as an unobserved 'state', and the

e’
observations, y, as 'outputs', one may translate the signal extraction
problem into a state-space estimation problem. The state estimation
problem can be solved using the recursive formulae derived in Section 3,
namely the Kalman filter. The recursions are derived by exploiting the
fact that all the information about st available at time t+i is

ontained in the state estimate § , i P , =
contained in th a imat st,t+1 and the covariance t,t+i

2 . . .
E{(§ - s,.) I }, so that as new observations arrive, new estimates

t,t+i t t+i

may be formed as a function of the old estimates and the new observations:



repeated filtering of the past history of the series is not necessary.
We show in Section 3.1 that the state estimate may be updated by a

recursion of the form

(2.5) E(st]Qt+i) s E(stIQ ) + )}

t4+i-1 Kt+i{yt+i N E'(Yt:+1‘.l9t+i—1

where Kt+i is a function only of model parameters. Thus the update in
the state estimate is a function of the "unanticipated" element in the new
observation. Indeed, E(st|9t+i) may be written as a linear combination
of such "innovations" in the observed series, and since this plays a crucial

role in obtaining equivalences between the Kalman and Wiener filters, we

give some further preliminaries.
The innovation in yt is defined as

(2.6) §t =y, - E(yt]Qt_l), t > 0.

The sequence is initialized by assuming a distribution for Y thus
Q-l comprises the information that Y, is normally distributed with

mean ub and given variance, and ib = yo-uo. The information sets

— ~

Qt+1 = {9—1’ yo""’yt+i}’ﬂt+i= {Q—l’ Yo""’yt+i}

are identical, with the consequence that

(2.7) E(x|9t+i) = E(x|Qt+i)

for any random variable x for which either side of (2.7) exists. This



follows immediately by repeated application of (2.6) to prove that

g Q.= . i ti T T geeer¥ : :
Qt+i‘ Qt+i"9t+i The innovations {Yo'yl’ ’yt+i} form an uncorrelated

b,

sequence: if this were not so then which contains {§o,§1,...,§

t-1"' t-1

would contain information about §t' but it is immediate from (2.6) that
E(ytlﬂt ,) =0O. Further, if x and y_ are jointly normally distributed,
then so are x and Y.r SO that E(x]ﬂt+i) is linear in Yoreoer¥igi

As noted above, we are concerned to relax the usual stationarity
assumption on unobserved-component models, and to relate the resulting
treatment to existing results for the stationary case. Since the
stationarity of an ARMA model is determined by its autoregressive operator,
we consider autoregressive models in detail. Most of the features encountered
in practice can be captured by a three-component model in which the "noise" is

the sum of an autoregression and an independent white noise. Thus we consider

the model
(2.8) yt = st + n, + nt
where d)(L)s.t = Et’ d}(L)nt = vt,

the lag polynomials ¢(L) and UY(L) being of degree p and r respectively,

and the uncorrelated white noise variables ¢

Oéy 03 and Oi respectively. We principally analyse this model in state-

e vt and nt having variances

space form, writing the state transition equation and the measurement

equation as

i}

(2.9a) X Fx, + th

t+1 t +1



(2.9b) y, = HTx + v, .

In general x and Y denote the state vector and the output vector

t
respectively, and LY and v, are independent serially uncorrelated
normal random variables with zero means and covariance matrices Q and R

respectively. In the present case Y, is a scalar, and the model (2.8) is

expressed in the form (2.9) through the following definitions and equivalences:

T

® T (st’st—l""’st—p+1’nt/ Beogreo e riq)

t

o |

by by by 9

1 0 ...0 O [

o1 ...0 o | o

o o ...1 o

I lpl "‘wr-l lp::
| 1 ...0 o
0 | :
| o...1 o
(2.10) - i
J.[to...000...0
" 00 ...010...0

2
/)

)T = (€,_,V )T, Q = diag (0 N

2
t't €

R = 02 (scalar) .

Some slight redundancy in notation results from our wish to reconcile two

traditions.
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3. THE KALMAN FILTER, ITS RELATION TO THE WIENER FILTER, AND A SIMPLE

EXAMPLE

3.1 First principles: the Kalman filter

In this section we give a derivation of the Kalman filter. The
treatment is quite standard, and is given for completeness and to help
fix ideas. We consider the state-space model (2.9), specializing to

(2.10) in later sections.

It is assumed that in advance of any cbservations, the initial state
vector X is known to be normally distributed with mean ;o and
covariance O < Po < ©, We derive the filter equations in four stages
(cf. Anderson and Moore, 1979, § 3.1).

T T

T -
I. The random variable (xg, yg) has mean (xz, on) and

covariance matrix

[P PH
o] o]
T

5y
(3.1) Le'p, HPER | .

Hence, conditional on Y r X is normally distributed with mean and

covariance given by

- T = T -
¥ + P H(HP H + R) 1 (y =-H x),
o o o) o) o

Lo
1]

0,0
(3.2)

T = T
P -P H(HPH + R) t HP .
o o e} o

ko)
1
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II. Conditional on yo, x1 is normal with mean and covariance

x>

1,0 0,0

(3.3)

o
It

FP FT + G Q GT
1,0 0,0 :

IIT. It follows that conditional on Yor the random variable

(xf, yrf)T is normally distributed with mean and covariance

4 P P
xl Io 1,0 I,QH
(3.4) . n .
HTﬁ HP HP, H+R
1,0 1,0 1,0

IV. Thus conditional on (yo,yl), X, is normal with mean and covariance

>

N 4y
= X + P H(H P
o

1,1 1,0 ¥ *1, SEE I

1,
(3.5)
P = p -P H(HTP H + R)'1 gl p
(o] Q

1,1 1,0 1, 1,

We can now repeat steps II through IV and obtain the following recursions,

valid for t > O:

N N TA
(3.6a) xt,t _'xt,t—l + Kt (yt - H xt,t—i)
(e Xert, e - T *e ot
(3.6c) P =p - K. HP
. £,t t,e-1 ~ Fe B P e
(3.6d) P PP F +GQaGl
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1

T -
where K =P 1 BH(H P H + R) .

t t,t- t,t-1

These four equations constitute the Kalman filter. Equations (3.6a)

and (3.6¢) are sometimes called the updating equations, and (3.6b) and
(3.6d) the prediction equations. Note that the final term in parentheses
in (3.6a) is the innovation §t' so that the equation is of the form of
(2.5), with i = 0. It is useful to simplify (3.6c) by using the

following identity, valid for nonsingular A,

1 1 -1 T -1

T -1.T -
A-AH(HAH +R) HA= (A +HR H) .,

and this yields the alternative form

-1 -1 T
(3.7) P = (PL g vRE)

-1

The sequences of coefficients {Kt}, {Pt t} and {p }, are
14

t+1,t
independent of the data, and their index has no necessary connection with
the observation sequence. That is, éhey can be calculated "off line™.
Conditions under which these sequences have a limit or "steady state" as
t + © are discussed in Section 4. Convergence to the steady state is

conveniently studied by rearranging (3.6d) and (3.7) into two of the many

possible forms of the Riccati equation:

~ T T -1 -1 T -1

(3.8a) Pt+1,t+1 = {(FPt’tF +GQG') ~ + HBR H}
B -1 -1 T -1_T T

(3.8b) Pevie F(Pt't_l +HR H) F + GOG .

The choice of working with (3.6a) and (3.6b) depends on the particular
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form of the various parameter matrices, and for our purposes (3.8b) is

more useful. Setting P = P, say, assuming that a steady

=P
t,t-1 t+l,t

state exists, gives the following expression for the steady-state one~

step-ahead covariance

1 1

(3.9) Pp=rF " + R E) T + gt

Rearranging (3.6a) and (3.6b) then gives the steady-state filter recursion

A

(3.10) b4 + Kly, - 2 PR )

= F&®
t,t t-1,t~1 t-1,t-1

where K = PH(H'PH + R) 1.

A further problem of interest is the "smoothing" problem, that of

constructing £ Two possible approaches to this problem are (a) to

t,t+j°
use a "fixed lag" smoother, obtaining a recursion for the sequence

A

N . P . . ’ y Nes
xt,t+j' xt+1,t+j+1"" in which j is constant, (b) to use a "fixed

‘point" smoother, obtaining a recursion for the sequence ﬁt £+
7
£ .,qr++- in wnich t is constant. These methods are discussed at
t,t+i+1
length by Anderson and Moore (1979, Ch.7). The latter approach corresponds
to the problem of revising a given seasonally adjusted figure as time goes

by and more data become available, and best suits the purposes of Section 4.

As shown in Appendix A, the steady-state recursion is

(3.1.1) xt’t+j = xt,t+j—1 + ijt+:]
with Ky = p{(1-K)F } H(E'PE + R) "L, and P and K as defined

at (3.9)-(3.10).
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3.2 Equivalence of the Kalman filter and the Wiener filter in the

stationary case

It has long been recognized that since the Kalman filter and the
Wiener filter both yield the linear least squares solution to the signal
extraction problem, they "must” be equivalent in situations in which
both are defined. However explicit demonstrations of this egquivalence
in familiar time~series settings are not commonplace, and one is provided
here. Moreover, this is not without interest to readers already familiar
with state-~-space methods, since we see in Section 4 that the complete
treatment of a class of models routinely employed in the statistical

literature requires some extensions of existing state-space results.

We consider the model (2.8) in which the autoregressive components
S and n_ are now assumed to be stationary processes, and in which the
information set comprises the semi-infinite sample (yT; -~ << T LKt + k).
With éiven initial conditions this is equivalent to the information set
(§T; -® << Tt + k), and the stationarity assumption allows conditions
in the infinite past to be neglected. In order to show that the 1l.1l.s.
estimate of st as presented by Whittle (1963) exactly corresponds to
that delivered by the Kalman filter in steady state, it is convenient to
work with the innovations ?T; developments of the l.l.s. results in the
statistical literature are similarly based on the moving average
representation of a stationary process. Equivalent formulations in terms
of the observations, yT, for both stationary and nonstationary series
are given in Section 4.2.

) is

Fi i i & s
irst, the Kalman filter for £ St,t+k’

&, bk (and hence
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expressed in terms of the innovations §T. By using (3.11) recursively
we obtain

k

=% + I K,

(3.12) xt,t+k £t = 3

Yerye

Treating (3.10) as a difference equation and making repeated substitutions

yields

s _ Jo ~
(3.13) ¢ 1E’OE‘ X Yt—j'

Combining these equations and using the definition of Kj» at (3.11) gives

_1~
Yy

(3.12) R = ¥ ijit_j + 2 p{(z-m")F Pr(a'rr + »)
. , 5=1

Stationarity ensures that the eigenvalues of F 1lie inside the unit circle;
as we see in Section 4, those of (I—HKT)FT also lie inside the unit
circle in circumstances in which the steady-state Kalman filter exists.
Hence the coefficient of §t+j' - ©< j <k in (3.14) may be obtained

as the coefficient of z—J in the generating function

(3.15) c(z) = (p{r-z 1 (z-mHFT}7 + zF(I-zF) "'p)m (" PH+R) 1.

Secondly, to obtain the Wiener filter we introduce the covariance

generating function of vy, namely

2
gyy(z) gss(z) + gnn(z) + On

1) + 02.
n

2 @007 2™ + 2T @ T



(3

As shown in Appendix B, by virtue of the definitions and equivalences

(2.10), this can be written as

(3.16) gyy(z) =R + HT(I—ZF)_I GQGT(I—z-lFT)—lH

. T -
which has the canonical factorization gyy(z) = W(z)W (z 1) where

3

(3.17) w(z) {1 + zHT(I-ZF)_lFK} (HTPH + R)

bt W.zJ, say.
j=o J
. T . . . : 2 .
Since H PH + R is the steady-state innovation variance 0; (compare

(3.4)), this corresponds to the innovations representation

_ T -4 -
yt = (H PH + R) .f wjyt—j'
j=o

Following Whittle (1963, Ch.6), the generating function for the
coefficients on the innovations in the 1l.l.s. estimate of S, given
é is

t+k

-7 -1 -1
1 -
gss(z) (z ) Oy

C (2)
s

1 1

KTFT(I-Z—IFT)_1H}—1(HTPH+R)_

gss(z) {1 +2

where the expansion is taken over powers of z from -k to +w, Since

S. is the first element of x

€ e to show that this gives the same result

as the Kalman filter we need to show that
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Cs(z) = STC(Z):

T
where S is a row vector that selects the first element of the vector

C(z) defined in (3.15). In practice, it is more convenient to show that

(3.18)  g__(2) = sTc<z)c§wT(z'1) )

The polynomial on the right-hand side of (3.18) is

(elr-z "t (z-ax") F"} 7 + zr(z-zm) D)1 + 2 K% (12" 1FD) lm)

and on employing the identity

1. T -1

{I—z_l(I—HKT)FT}-l = 12" M 4 2 1Ty Tyl

T T
HK F (I-z "F )

this reduces to

(3.19) p(z-z"1F5) "t & zF(I—zF)-lP + F(I-zF) PHKTFT(I—Z_IFT)—l}H.

From (3.6¢c), (3.64) and (3.11) we have
PEK. = P - F_l(P—GQGT)F_T
and substitution in (3.19) and rearrangement yields
1

S"C(z)0§WT(z-1) = ST(I—zF)—lGQGL(I—z-lFT)_ H,

which is equal to gss(z) as required (compare (3.16) and Appendix B).
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The large amount of algebraic manipulation that is necessary to
translate the state-space results into their classical form is mainly due
to the fact that the Kalman filter yields only an implicit solution for
the steady-state covarianﬁe matrices via the algebraic Riccati equatioms.
However such equations may sometimes be solved analytically, by obtaining
quadratic equations for individual elements of P, and this is the case
in the example presented in the next section, in which the state vector

is a scalar.

3.3 A scalar example

This example not only illustrates the previous equivalence of
" the two approaches, but also illustrates the Kalman filter's ability
to handle nonstationary processes, and so motivates the general

discussion of filter convergence in Section 4.

We consider the AR(l) signal plus white noise case:

1]
]

(3.20)

specializing the general state-space form (2.9) by setting x = st, F =9,
T 2 2 . .
G =1, wt = Et, E =1, Vt = nt' Q = Oe and R = Oﬂ . The Riccati

equation for the one-step-ahead covariance, (3.8b), now becomes

(3.2, . = o2t 07374 6% = g

t,t-1 n € Pl g-1)r sayy
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and (3.6a,b) yield the signal estimate recursion

See T P Sigemr tORe v 05 )
¢ o2
= - 8 +
(3.22) _ > St-1,t-1 Ke¥e
P + O
t,t-1

Bt S P R Ke e v 537
2
i = ST icient
with K Pt,t—l/(Pt,t-l + on) he coefficient sequences {Pt,t—l} '

{at} and {Kt} are independent of the data, and can be calculated off line.

T si imi t e lof P =P =P i
o consider the limits of these sequences we set t+l,t t,t-1 in

(3.21) to obtain the quadratic equation

(3.23) £(p) = p? 4 {cﬁ (1-¢2) - og} P - 0% o = o.

2
€ N

This has real solutions of opposite sign since £{(0) < O. Choosing the

e . 2 . 2
positive solution, we also have P > Ue since f(GE) < O. Moreover,

) < O guarantee convergence of the

h'(P_ ) >0 and h"(P
’

t,t-1

iteration (3.21) to P for any finite Po 2 0. The asscociated limits of

the sequences {at} and {Kt} are, for any value of ¢,

2
¢0ﬂ P
a = T3 . K=—=,
P+ On P+0n

and these coefficients give the steady-state Kalman filter as

*

*
(3.24) sy ¢ = 2SS g,pe PRV
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*

S S
t,g 2

This signal extraction recursion can be "solved" to express
a linear filter of current and past y-observations with coefficients
tending to zero provided that a is less than one in absolute value.

This is obviously true for |¢| € 1. To see that it is also true for

|¢| > 1 we notice that the steady state of the variance recursion (3.21)

gives

"]
I
MmN
-

which is, again, obviously less than one in absclute value.

We now consider the Wiener filter in the stationary case. The

process y,_ - ¢ Ye g has covariance generating function

(3.25) glz) = c‘é + of] (1-6z) (1-¢z 1)

= 02 (1—82)(1‘BZ_1)I say.,

where in the latter canonical factorization we choose 02 so that
]Bl < 1. The quadratic equation to be solved for B, which has a
reciprocal pair of solutions, i1s obtained by setting z =B in (3.25), whence

(3.26) 0> + 02(1-¢8) (1 - %) =0,

+ O
£ n

while setting z = ¢ gives a relation from which the normalizing variance

is then obtained:

(3.27) 02(1 - Bd) (1 -% 02 .
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For this problem, the l.l.s. signal extraction filter based on current
and past data is then given (Whittle, 1963, §6.3; Nerlove et al., 1979,
§ V.5) as

A _ _ 1 - B/d
(3.28) 8 . =f (Ly =715 o Ve -

The associated mean square error is as follows, the first expression
being obtained on simplifying Whittle's (6.3.7), and the second on using
(3.26) above:

A 2. 2 B/b . 2 8
(3.29) E(st st’t) = 0€ T -8 = Gn (1 &ﬁ.
The invertibility condition |B| < 1 ensures that (3.28) has a convergent

power series expansion and that the right-hand side of (3.29) is positive.

To check the equivalence of the steady-state Kalman filter to the
Wiener filter (3.28) we first show that the quadratic equations solved
in each case are equivalent, and then show that the filters coincide.
For the first part, equating the steady-state current covariance, given
by (3.7) as Poﬁ/(P + Oi), to Oﬁ(l—ﬁ/¢) from (3.29) suggests a change of
variable from £ to P. Accordingly, on substituting for B in (3.26)
and rearranging, the quadratic (3.23) is then obtained. Since the implied
transformation is P = O§(¢/B—1), the positive solution for P clearly
corresponds to the invertible solution for B. Finally, making this
substitution in the coefficients of (3.24) gives

*

*
(3.30) s = Bs

t,t t=-1,t-1 © (1-8/9)y, .
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Thug the Kalman filter coincides with the Wiener filter (3.28) for |¢l <1,
but is also defined, and takes the same form, for l¢l 2 1. EHence the
Wiener filter apparatus is also applicable in nonstationary cases of this
model, if reinterpreted as the steady-state Kalman filter under appropriate

assumptions on initial conditions.

As more information arrives, we can continue to update the estimate

of S, by employing the steady-state filter

*
St,eeg-1 T K3V

*
(3.31) st,t+j

where Kj is obtained by specializing (3.11):

s . .
(3.32) Kj =P {(1- — 2)¢}3/(P+0§) = 83(1-8/¢),

P+0.
n

using once more the above substitution for P.

In the stationary case the Wiener filter for "projection on the
semi-infinite sample" is given, on translating Whittle's equation (6.3.8)

into our present notation, as

1 -8/0 |, , Bz a - 85279

T8z =1 (1 - ¢z) |.
' 1 - Bz

(3.33) £.(z) =
J

To obtain a recursion we observe that

_ -1 -8/¢ - 3, -3
£,(z) £i4® =1—g, U ¢z)B"z 7 ,
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and noting that the innovation §t is given as

~

- = l-9n
Ye =¥, - B IR ) = 1= L, Yt

we then have

~

N _ o Bl
= (1 ¢)B Yt+j ']

(3:34) 8 t43 T Se,eri-1
which coincides with the steady-state Kalman recursion (3.31). BAgain the
standard expression for the l.l.s. filter in the stationary case is seen

to be applicable in the nonstationary case under our assumptions.
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4. EXISTENCE AND GENERAL CHARACTERISTICS OF THE STEADY-STATE KALMAN FILTER

4.1 Introduction

In Section 3.1 we presented the steady-state Kalman filter under

the assumption that the sequence of one-step-ahead covariance matrices

{

stationary this filter coincides with the Wiener filter, as-was shown

Pt,t-l} converges to a limit, and when éignal and noise are both
explicitly in Section 3.2. 1In the scalar example of Section 3.3 we saw

that convergence to a steady state does not depend on stationarity, and

that the filter weights could be obtained from the same polynomial

quotient in the nonstationary as in the stationary case. In this section

we give sufficient conditions for the covariance sequence to converge, and
indicate the form of the steady-state filter in both stationary and
nonstationary cases; In the literature on seasonal adjusthent of ecoﬁomic
time series, models in which the latter conditions do not hold are frequently
encountered. The difficulties that this raises for the analysis of the

limiting behaviour of the Kalman filter are discussed in Section 4.3.

To proceed we require the concepts, from linear state-space theory,
of observability and controllability. Loosely speaking, the state-space

realization (2.10) is said to be completely controllable if any initial

state x_ may be driven to an arbitrary chosen state X in a\finite
number of steps by an appropriate sequence of inputs {wt}, here
regarded as control variables rather than random variables. Similarly

the realization is completely observable if all possible movements in the

state vector can eventually affect the observed process Y- More
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formally, we have the following definitions (cf. Kailath, 19801, p.135).

Definition 4.1 A 1is an uncontrollable eigenvalue of the pair (F,G)

T T T T
if there exists a row vector, a # O, such that a F =la , and a G = O.

Definition 4.2 A is an unobservable eigenvalue of the pair (F,H) if

T
there exists a column vector, b # O, such that Fb = Ab, and Hb = O.

Definition 4.3 The pair (F,G) 1is stabilizable if either all eigenvalues

of F are controllable, or its uncontrollable eigenvalues lie inside the

unit circle.

Definition 4.4 The pair (F,H) is detectable if either all eigenvalues

of F are observable, or its unobservable eigenvalues lie inside the

unit circle.

The major result we require, proved by Caines and Mayne (1970),

is the following:

T
Theorem If R is positive definite, GQG is non-negative definite,
the pair (F,G) 1is completely controllable, and the pair (F,H) is
detectable, then for any positive semi-definite initial condition,

Po' the sequence { } converges to the unique positive definite

Pe,t-1
solution, P, of the algebraic Riccati equation (3.10); furthermore,

T
the eigenvalues of F(I-KH ) lie inside the unit circle.

As stated this is slightly less general than Caines and Mayne's

theorems 2.2 and 2.3 which allow for correlation between wt and vt,
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but in the signal extraction problem these are usually taken to be
independent. The general role of the controllability and detectability
conditions in this theorem is examined by worked examples in Appendix C.
In the next section we apply the preceding definitions and Caines and
Mayne's theorem to establish sufficient conditions for convergence in

the present problem.

4.2 The Steady-state Kalman filter: detectable case

Recalling the forms of G, H and F from (2.10), and writing

aT = (a a } we see that aTG = 0 implies a, = a = 0,

.erd ,ap+1..--, p+r 1 p+1

1’
T . . . .

but then a  cannot be a left eigenvector of ¥, as is clear by inspection.

Thus, since F is of full rank and has no uncontrollable eigenvalues, in our

problem (F,G) is completely controllable. Defining b in similar fashion,

T
we see that H b = O implies b1_+bp+1 = 0. Partitioning F in the obvious
way, let
|‘1 1
Flb b B
Eb = = A
F2b2 b2

Then either A 1is an eigenvalue of both F and F2, or one of b1 and

1

2 T .
b must be zero, but this contradicts H b = 0. Simple calculation shows

that the eigenvalues of F1 and F2 are the solutions of ¢(A—1) =0

and W(A_l) = 0 respectively. Thus (F,H) has unobservable eigenvalue A\

if and only if ¢(L) and Y(L) have common factor (1-AL); referring to
definition 4.4 we see that (F,H) is detectable if and only if &(*) and

Y(*) have no common rcots on or outside the unit circle. Finally, our
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assumptions on Q and R clearly meet the requirements of Caines and
Mayne's theorem. Thus the Kalman filter covariance converges to a steady
state provided only that the signal and noise AR operators have no

unstable common factor.

In the general detectable case (stationary or not) we now consider

the linear filter of the observations, namely

~

Xe ek - @Y

that is implied by the steady-state Kalman filter. First, the one-sided

filter fo(z) is obtained by repeated substitution in (3.10) as

(4.1) £ (z) = ¥ 23{(1-xa")F}k.
o .
j=0

. . T R , .
Since the eigenvalues of F(I-KH ) lie inside the unit circle, by the
Caines and Mayne theorem, the right-hand side is a convergent power series,

and so we may write
(4.2) £ (z) = {1-z(z-xka ) F} k.

To obtain fk(z) in general, we note that the innovation §t+i

is given as

~ T
Yeei T Yepg “HFXi0, t4iot”

so that if this is regarded as a linear filter of the data, §t+i = hi(L)Yt”
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z = - HTFz'l+lfo(z)

(4.3) hi(Z)

2 (1 - TP~z (1xE ) F}K) .

The second factor on the right-hand side, equal to zlhi(z), may be

simplified as follows, the second rearrangement resulting from application

of the well-known formula for (I+abT)-1:

P zHTF(I—zF)'1{I+zKHTF(I-zF)-1}'1K

zihi(z)

1 - zHTF(I-zF)-IK{1+zHTF(I-zF)-IK}-l

={1 + zHTF(I-zF)-lK}_l

Wl

=(HTPH + R)
which may be compared with (3.17), obtained in the stationary case. Since
the right-hand side of (4.3) has a convergent power series expansion, soO
has W-l(z), and the canonical factorization (see Appendix B) is always

invertible.

From (3.12) we then have

X .
(4.4) £.(2) = £ (2) + I K.z 3 (H PH4R)
) jo1 3

Y liz)

which, upon writing fo(z) as

1

(I-#F) K (ﬁTPH+R)% W_l(z)
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may be rearranged to yield

k ) :
£ (2) = ((z-ze) 'k + 1<jz_3')(H'I'1>H-+R)J‘r wliz)
j=1

However, the first term in braces is just that part of C(z), defined in
(3.15), involving powers of 2z greater than or equal to -k, and so we

may write

il T

(4.5) £,.(z) = ((1-z5) ege” (1-271FT) a W—.(z—l))_k W (z)
This is a generalization of Whittle's (6.1.13) in the sense that

attention is no longer restricted to the statiocnary case. Also, fk(z) is

. s . A ~
a vector whose elements are the filters yielding St,t+k' st-l,t+k""'

A

N - . T s e . .- S . t.
nt,t+k' nt—l,t+k' he first element also coincides with equation

(4.5) of Pierce (1979), whose treatment admits difference-stationary signal
and noise processes. However, Pierce also allows ¢(L) and VY(L), in our
notation, to have a common unit root, which has been excluded in the
preceding discussion. Such a nondetectable case is discussed in the next

section.

For computational purposes, (4.4) is to be recommended, since it
presents no difficulties that might be caused by divergent power series even in
explosive cases, as already noted. On the other hand, calculating (4.5)
by convoluting the power series expansions of the four factors will produce
numerical difficulties, since the first two factors are individually

divergent in nonstationary cases.
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4.3 The undetectable case

The results of the last section rested on the convergence of the
covariance sequence {Pt,t—l} to a limit P. The conditions given in
the Caines and Mayne theorem are sufficient, but not, in general, necessary
to ensure this. It appears from numerical calculations, however, that in
the signal extraction context the covariance does diverge in undetectable

cases, and the counterexample given in Appendix C has an undetectable state

which is constant over time (corresponding to a 'noise' with zero variance).

As shown in,Section 4.1, the pair (F,H) has an undetectable
eigenvalue A when the factor (1-AL) appears in both ¢(L) and (L),
and ]AI 2 1; such "coincidental situations", in Granger's sense, are not
of practical significance, except in the case )\ =+ 1 which does arise
in the analysis of seasonal time series. That is, where the AR operator
of the signal process contains the factor (1-LD), D Dbeing the seasonal
periodicity, and that of the noise component, the factor (1-L), which is
thus common to both, giving the matrix F an undetectable unit root.
Cleveland and Tiao (1976), give a formula for this case which corresponds
to (4.5) with k + «, and, as noted above, Pierce (1979) gives the formula
for finite Xk which results from simplification of (4.5) when a ;ommon
unit root is present. In order to derive their result, the former authors
work explicitly with the infinite sample {yT, - © < T < @}, rather than
with the sequences {Pt,t—l} and {Kt} used in the present paper. Their
method thus relies on the possibility that such a sample could be obserwved
in nonstationary cases, and we prefer not to utilise this assumption for

the reason given in Section 2. Pierce's approach, which mirrors that

adopted by Whittle (1963, §8.5) for a difference-stationary signal in
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stationary noise, is to apply the formula appropriate to the stationary
case, and tlien argue that the polynomial quotieﬂt so obtained yields a
well defined stable filter. As suggested by Masani (1966), this line
of argument, although leading to an intuitively plausible result, does
not constitute a proof that the resulting filter delivers the 1l.1.s.

estimate.

In numerical analysis of examples in which a common unit root is
present, but all other roots of ¢(L) and Y(L) 1lie on or inside the unit

circle, we find that although the covariance increases without

Pe t-t

limit, the gain K_ nevertheless goes to a steady state, and the formula

t
{(4.5) still characterizes the filter weights. We note that in such a case

the formula (4.5) is numerically stable, while (4.4), which is generally to
be preferred, cannot be used since it requires the steady-state covariance,
P, which no longer exists. It seems, then, that the formulae which have

appeared elsewhere in the literature do indeed apply in the undetectable

case, but a satisfactory proof does not yet appear to be available.
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5. DISCUSSION

The state-space approach adopted in this paper has, in the past,
found little favour in statistical time series analysis even though it has
long been recognized that it is the most natural framework within which to
handle many types of nonstationarity. In part this is the legacy of Wiener's
work in the 1940°'s and 50's, in which the properties of stationary processes
could readily be exploited to derive large-sample results. Thus the apparent
dependence of Kalman's (1960) recursive method on initial conditions was seen
as a disadvantage, as was the restriction to . autoregressive representations
(Sobel, 1967). While the fact that Kalman's approach can accommodate non-
stationary processes has been a commonplace in control theory for twenty
years, seen from the traditional perspective of statistical time series
analysis the simplest approcach has been to obtain results for stationary
models and then allow the process parameters to approach suitable limits.
Whatever merits this latter strategy might possess, a major shortcoming is
that nothing can be said about processes whose parameters are neither in
the stationary domain nor on its boundary. Thus the results for explosive
autoregressive processes contained in Section 4.2 could not have been

obtained by such means.

More rigorous derivations of large-sample extraction filters for
signals with unit roots corrupted by stationary noise were offered by
Hannan (1967) and Sobel (1967). Hannan argued in the frequency domain,
seeking a filter which minimized the spectrum of the error process, while
Sobel used projections in Hilbert space to directly obtain the l.l.s.
estimate. Both approaches required the manipulation of quantities with

unbounded variance, and the initial conditions imposed by Sobel were less
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natural than those reguired by the Kalman theory. More recently, Pierce
(1979) has shown that application of a filter corresponding to (4.5) to
a series in which signal and noise processes share a common unit root
yields a signal estimate with unbounded variance. This result is in
accordance with the discussion in Section 4.2 in which we show that such
a common factor yields an undetectable unit eigenvalue of ' F. Unlike
these earlier authors we have not treated moving average processes in
detail, because nonstationarity has been our main concern; this omission

is one which might usefully be remedied in future work.

None of the papers cited above discusses numerical matters, but
the computational advantages of various representations of the basic filter
(3.6) have attracted a great deal of attention in the state-space literature.
If the eigenvalues of F are unfavourably distributed (a fortiori if one
or more are undetectable) then the recursions (3.6) may become numerically
unstable, while if F, .G, H, Q and R are time invariant (as here) then
many fewer calculations need to be performed than are required for direct
implementation of (3.6). Such considerations are examined at length by
Kailath (1980b). In the seasonal adjustment context the extreme sparseness
of F, G and B should also be exploited to save computing time. It might
appear that asymptotic filters for explosive processes are unlikely to be
of use in handling a finite record, but numerical experience indicates
that provided the roots of ¢(z) and Y(2) are not too close together,
Pt,t-l (and hence Kt) settle down to a steady state very quickly, so
that little is to be lost by employing the steady-state filter over the

whole series.
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The formal similarity of (A.3) to (2.9) may be exploited to

obtain the following recursions, analogous to (3.6):

~T _ STat
(a) xr+1,r =F xr,r
T
At _ at +° At
(b) *r.r = Xpret T Kr(yr:-H xr,r-l)
(A.4)
T T
t _ .t 1 o
(c) Pr,r-l =F Pr-l,r-iF + G QG
T
+ _ .t 3
(d) r-1,r-1 PJ:—l,r-2(]:-H Kr-l)

where r = t+k, and the augmented gain is defined as

(A.5) k=" @&’ Ty L,
r Xr,r

The recursions (A.4) are defined for r-k > O with initial

conditions obtained by running the standard filter (3.6) for k periods.

We see from (A.l) that xt,t+k is the bottom column block of xr+1,r

.f.

[

and from (h;4a,b)'and the structure of F that this may be written

where Kr is the bottom block of KI, and is given by

. T + -1
(a.7) Kr = Pr,r-l(k+1’1) H(H Pr,r-l(l'i)H+R)
with P+ (1,1) = P . The final term in parentheses in (A.7) is,
r,r-1 r,r-1

of course, the innovations variance, which is unaffected by the stacking
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The formal similarity of (A.3) to (2.9) may be exploited to

obtain the following recursions, analogous to (3.6):

i _ otet
(a) *ret,r CF X
T
ot _ ot to otat
(b) xr,r B xr,r—1 * Kr(yr-H xr,r-l)
(A.4)
- o+ o+ 4T
(c) P]__’r_1 =F Pr-l,r-lF + G QG
T
t _ ot t t
(@ Py z1” Prat,r-2(T B K )

where r = t+k, and the augmented gain is defined -as

B} ottt
(a.5) K, =P (B P HR)T.

The recursions (A.4) are defined for r-k > O with initial

conditions obtained by running the standard filter (3.6) for k periods.

N . ~F
We see from (A.l) that Xe ek 1S the bottom column block of Xril,r'

and from (A.4a,b) and the structure of F+ that this may be written

(% 50) xt,r = xt,r—l + Kryr

where Kr is the bottom block of K:, and is given by

_ ot T + -1
(a.7) K = Pr,r-l(k+1’1) H(H Pr,r—l(l'l)H+R)
with P+ (1,1) =P . The final term in parentheses in (aA.7) is,
r-1 r,r-1

of course, the innovations variance, which is unaffected by the stacking



-36-

1.

of the model, and P (k+1,1) = cov {x_,x_.. |0 }. Thus, in
r,r-1 t

t+k' t+k-1

accordance with the projection theorem for conditional expectations
which was used repeatedly to derive the basic filter in Section 3.1,
we may write

(A.8) § =% + °°V{xt'yrlﬂr-1} P

t,r t,r-1
var{yrlﬂr_l} r

Embedded in the covariance recursions of (A.4) is a sub-sequence which

yields P: - 1(k+1,1) in terms of k-1 successive one-step-ahead
,X-

. These

covariance matrices P
t,t

t+1, 700 Pr-l,r-2 together with P

recursions are, for t,j >0, and gq = t+j:

1 ; =pl . .
quq'1 (J+1'1) - Pq_1 ,q-l(J II)F
(a.9)
t R -
Pq-l,q-l(j'l) = Pq_l'q_z(jpl) (I-m(q-l).

By making repeated substitutions in (A.9), all quantities not derived

directly from the basic filter, (3.6), may be eliminated, terminating

with P+ (2,1) =P FT. In steady state the necessary substitutions
t+1,t t,t

yield, as required,

X, = p{(1-8x") P} m(E PE+R) L.
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APPENDIX B SOME COVARIANCE GENERATING FUNCTION AND z-TRANSFORM IDENTITIES

(i) The c.g.f. of Yy

We wish to prove that

(B.1) gyy(z) =R + HT(I-zF)-l GQGT(I—z-lFT)_lﬂ .

Partitioning the two inverses conformably as

(1-zF) L = , (x-z )7 o

I
-

and noting the forms of H, G, and Q from (2.10), the right hand side of

(B.1) can be written

T, =1 2 2 2
W(Z)W (z 7) = On + Oe auc11 + cv b11d11 .

Now IA-II = ¢(z), and the top left term of adj EA-IJ is easily seen

to be unity, so that, by symmetry, as asserted,

1 1

P2z wiz)w(z"h)

21111 T ¢« byydyy =

(ii) The symmetric factorization, W(z)

In steady state, we have, substituting (3.6c) into (3.6d)

(B.2) GQGT =P - F{P-PH(HTPH+R)-1HTP}FT
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and from the definition of K, therefore
T T

(B.3) GQG =P - F(P-K(HTPH+R)KT)F 5

Substitution of (B.3) into the right hand side of (B.l) gives

W)Wz =Rr+ KT(I-zF)'l(P~F{P—K(HTPH+R)KT}FT)(I—z'iFT)'IH;

1

HT(I-zF)—l(P-FPFT)(I-z-lFT)- H may be rearranged, using

(I—zr)'1 - I+z(I-zF) 'F , to the form

1

! LeTerT (1-2" 1) i ,

T T - -
(B. 4) H'PH + 2H (I-2zF) "FPH + 2z

T
and substitution of K(H PHE+R)  for PH in the second and third terms

of (B.4) gives, putting M = (R+HTPH) G

(B.5) w(z)wT(z'l) =M + zaT(I-zF)‘IFxM + z‘lMK?FT(I-z-lFT)-IH

1

1FKMKTFT(I—z'1FT)° H

+ HT(I-zF)-

1 1

= {T+zB" (I-2F) “LrrIM{1+z 1KTF (1-2 'FT) la}

as required.
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APPENDIX C CONTROLLABILITY AND DETECTABILITY

In this appendix we illustrate the role of some fundamental state-
space concepts in determining convergence of the signal extraction error
covariance to a steady state. We thus examine the questions of existence,
unigueness, convergence and independence from initial conditions in the
context of a simple example. The theorem of Caines and Mayne employed in
the body of the paper provides sufficient but not necessary conditions for
convergence, and thus a case of general statistical interest (cf. Section
4.3) could not be treated fully. However, the pursuit of necessary conditions
is beset with difficulties, as the examples show. We note that despite the
importance of the topic, the standard texts on state-space estimation do not

discuss such details.

We consider a simple 2-dimensional realization:

*1,t A0 *1,t-1 Y1t
= + G
X2t O Al [*2,t-1 Ya,t
o |1t
Y, = H . Ve
2,t
where w1 £ w2 e and vt are independent white noises with variances
’ r
of, 0; , and R. Wwhere no confusion may arise we denote Diag {AI;AZ}

by F, and we consider various possibilities for G and H.

Case 1



Applying definitions 4.1-4.4 we see that the pair (F,G) has uncontrollable

eigenvalue A,, and is thus stabilizable if and only if |A2| <1, while

2’
the pair (F,H) is completely observable if and only if 11 # Az, and if
A; = A, =X it is detectable if and only if A] < 1.

(i) Existence. In this case w2 t plays no role, and
’

it . . -
x2,t = Azxz'o, so that if x2'o is known exactly we can transform to
y*=y -x irrespective of the value of A,, thus reducing the
t & 2,t 2
problem to the scalar case of Section 3.3. Thus there exists a steady state
*
of the form P* = 911 ° 5
o o
(ii) Uniqueness. Substituting (3.6c) into (3.6d) yields a form of

the Riccati equation valid for singular P, from which we obtain the

following three equations which must hold in steady state:

2 -2 2 2
{5 Pyy = Ay (Byy =0 Ry * Py ) + T

(c.3) Py, = Alxz(plz o] (911 + 912)(912 + 922))
42 =2 . 2
(C.4) Pyy = Ay (Pyy =0 7(Py, * Py

T
where 02 = H PH + R and 921 =p It follows that

12°
(a) If (F,G) is stabilizable (lkzl < 1) then P* is the unique
solution: this is obvious, since x2 £ +- 0 as t + », Furthermore,
’

IAZI < 1 implies that (F,H) is detectable so this case departs from the

conditions of the Caines and Mayne theorem by virtue of the stabilizability

rather than controllability of (F,G), and in consequence although the
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steady-state covariance is unique, it is non-negative rather than

positive-definite.

(b) If (F,G) is not stabilizable, but Al # AZ so that
(F,H) is detectable, we have two possibilities: if |A2| =1, then P*
is again the unique sclution; if lkzl > 1 there always exists a second
steady state which is positive definite. This illustrates the difficulty
that any search for necessary and sufficient conditions for uniqueness

must encounter.

(c) If (F,H) is not detectable and (F,G) is not stabilizable

i Az = A, |A\| 3 1) we again have different situations if A =%+ 1 or

[A] >1. If A =%1, then Py, = “P,,s from (C.4),and if we let

(A

d > O then (C.2) gives P, as the positive solution of the quadratic

3

(C.5) 911 =d + % (Of 2 Gl(df + 4R} X

There are thus arbitrarily many such steady states. Conversely, if

|A| > 1, then P* is again unique.

(iii) Convergence. Establishing convergence is complicated because

of the three dimensional time path of P and even in this simple

t,t-1"'

example the powerful general methods of Caines and Mayne seem to be
required. They show that detectability is sufficient for convergence

For the undetectable case in which IAI >1, but %0 is not known
’

exactly, transforming to the sum and difference of x, and x, shows
that the difference is unobservable but explodes over time, and this results

in the divergence of P When IAI =1, we can show that the

t,t-1°
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variance of izt £-1 is monotonically decreasing in t, and hence that
,t-

it attains some limit, d. We can also show that p11 then converges to

a solution of (C.5). The value of P attained depends on the initial

conditions, however,

Case 2

Here (F,G) is controllable, and (F,B) has unobservable eigenvalue Xz,

and is thus detectable if and only if |A2| <1,
(1) Existence. That a steady state exists for Py follows
from the fact that Yo = xl,t + Ver and xl,t does not depend on let

so the analysis of Section 3.3 again applies. If lkzl < 1, the steady

state of p22 is easily seen to be p22 = cg/(l-l ), the unconditional

2
2
variance of a stationary AR(1) process. If IA | > 1 we find the only

2

solution of the Riccati equation is negative definite, while if Ilzl =1

it has no real solution.

(ii) Uniqueness, convergence and initial conditions. In this

case, with (F,G) controllable, we find that P converges to a

t,t-1
unique positive-definite steady state if and only if (F,H) is detectable.

If (F,H) has an undetectable eigenvalue, then that part of Pt £-1
,E=

associated with the detectable subspace still converges.
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