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ABSTRACT

We derive the information matrix test, suggested by White (1982),
for the normal fixed regressor linear model, and show that the
statistic decomposes asymptotically intc the sum of three indep-
endent quadratic forms. One of these is White's (1980) general
test for heteroscedasticity and the remaining two components are
quadratic forms in the third and fourth powers of the residuals
respectively. Our results show that the test will fail to
detect serial correlation and never be asymptotically optimal
against heteroscedasticity, skewness and non-normal kurtocsis.
The information matrix test is contrasted with the test
procedures of Bera and Jargue (1983) and Godfrey and Wickens
(1982) , who construct a composite statistic from asymptotically
optimal and independent tests against particular alternatives.
Our results suggest that this alternative strategy is likely

to be a more fruitful source of a general regression diagnostic.



I. INTRODUCTION

Two tvpes of statistical test can be constructed to assess
model adequacy: pure significance tests, for which a significant
statistic only implies that the model should be rejected, and con-
structive tests, which require the specification of a particular alter-
native hypothesis. The familiar Wald (W), Likelihood Ratio (LR)
and Lagrange Multiplier (LM) tests fall into this second class.

The advantage of constructive tests is that, by design, they are power-
ful against the chosen alternative, but their weakness is that this
power may be at the expense of poor perfomance against other misspec-
ifications. In practice it is often desired to test the model's
adequacy against a variety of alternmatives. However to avoid the
prcblem of induced tests.encountered with a sequence of dependent tests
because the actual and nominal significance levels differ due to the
statistical depéndence of each test on those precgeding it in the
sequence, it is desirable to construct one general test of misspecific-
ation. This can be achieved in two possible ways. We can either

seek a more general testing principle than the W, LR and IM to
produce a pure significance test, or, as suggested by Godfrey and
Wickens (1982), try to design a composite statistic from the exiéting

constructive tests.

White (1982) considers the properties of maximum likelihood
estimators and the appropriate form of the W, LR and LM test
statistics when the model is misspecified. The latter provides the
motivation for this information matrix test principle. This is based

on the fact that if a model is correctly specified, then the following



'information matrix' identity holds:
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where L is the log likelihood function and © the parameters vector.
The right-~hand side of the identify is the variance-covariance matrix
of the score vector and the left-hand side the information matrix.

The familiar form of the W, LM and LR tests are derived under the
assunption that this identity holds. s White (1987) cbserves the
information matrix test can therefore be used as a preliminary test

before conducting inference with the usual tests.

In this paper we consider the information matrix test as a
pure significance test. Our interpretation can be justified since
the derivation of the identity is based on the assumption that ﬁhe
model is correctly specified. Consequently violation of this identity
for the model with which we are working can be interpreted as evidence
of misspecification. As with the IM test, the model only requires
estimation under the null hypothesis, but, unlike the LM, rejection
of the null only implies model inadequacy and not its potential cause.
In this paper we examine the information matrix test in the fixed
regressoxr normal linear model. We assess exactly which misspecifications
will be detected by this version of theinformation matrix test and the
extent to which it may be considered arcomprehensive test of model

adequacy.



Our results show that the test statistic derived under the
null hypothesis that the model is correctly specified is the sum of
three independent components. The first of these is White's direct
test for heteroscedasticity (White, 1980). The other two are quadratic
forms in the third and fourth powers of the residuals respectively.

The infomation matrix test is therefore the sum of three constructive
tests. Our analysis shows that the misspecifications to which these
three are sensitive, are not sufficiently varied for the test to be

considered a comprehensive test of model adequacy in this case.

Section 2 briefly restates the information matrix test with
slight adaptation to allow for independently but not identically
distributed random variables. In Section 3 the test statistic for
our model is derived. Finally in Section 4 the potential causes

of misspecification to which the test is sensitive are discussed.



2, THE INFORMATION MATRIX TEST

White (1Y82) follows the usual maximum likelihood approach J.n

deriving his results for i.i.d.variables. The case being considered here is
. ' 2
yt-"IN(gt;B, g I)

i.e. independent but not idemtically distributed random variabhles. We
therefore have to extend White's wotk to cover this more general

- situyation., The assqueiens—requi;edftorensure.that,his'theory,translates
to our model are given below., In the following we give the definitions

appropriate to the i.n.i.d. case, but follow White's line of argument.

Let the aseumed p.d.f. of y,  bDe ft(yt.ﬁ) where © is a
p X 1 parameter vector. The pnrzmetef estimates obtained from maximising the
assumed log likelihood are én « If the model is correctly specified then

the following information matrix identity holds:—

AQ) + B(®) =0

) ,' -1 B 3 log £ (yt,Q)-\
where é(@) =1im {n "% E 5-55 l
nro t=1 -

and the variance covariance matrix of the score vector is

. - ® a&og f (y G 6 log £ (yﬂ
B(©) = lim {n ~ I E - 5 }
! o - t’l 3

The matrices é(g) and §(Q) are unobservable, but can be consistently

estimated by én(g) and §n(§) respectiveiy where
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B () = {n z ? 109 £ @ 3 log £ 7,0
~n =" 30, 90,
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Subject to certain regularity conditions (see-White,‘1982).
the elements of /F;'Cénﬁén?+ En(én))f are distributed asymptotically
jointly normal with mean zero if the model is correctly specified, Due
to the symmetry of these matrices, the test of misspecification need only
be based on the p(p+l)/2 indicator vgctor gn(én) whose alements consist
of the lower triangular elements of ‘(éh(én) + gn(én)). Accordingly
we define the indicator vector as follows:

Let

| 2
dye ?1°8ft(yc'?)/aei'31°5ft(7:'?)/aej +3 1°3ft(yt'?)/aeiaej ,

vhere k = 1, ..,p(p+l)/2; i=i, .. ,p; j=1, ..,8, i2j ,

with k= (§-1)(p~j/2) + i

The indicator vector is then Dn(en) whose kth element is

~

1 8 A
Dpn(®p) = m tfldkt(yt'?n)'
The test can be based on the full set of p(p+l)/2 indicators or a subset

of q of them. We therefore define Dn(en) to be a q x 1 vector with

asp(p+1)/2.



The variance covariance matrix of VE'Dn(en) can be shown to

be V(@) evaluated at 9=6° the true parameter values. V(@) is defined by

~ o~

n
V(@) = lim {n 1 I E ataé}}
- N =l

I .
= d,(5,,0) - VD(O)AE@) 'Viog £ (,,9) ;
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where

t R

g0 od & »©)
@) = lim {a L : E kt-e LSl
-o- e t=1 i

and Vlog thyt,G) is the score vector for one observation.

The matrix V(ec) is unobservable, but can be consistently

estimated by Vn(an), ‘defined as follows:

~ n

-1 ¥ .
V(@©)=n" aa’,
-n.n e=1-E-t

~

' . v I
2, ét(yt'?) Y?n(?n)éh(-n) Ylggft(yt,?) ¢

. -12 dkt(yt’gn)
((?n) = {n tZ 3—-Te-i————}

vD
- =1

n
In White's derivation of the information matrix test statistic
(see appendix of White, 1982), his proof rests on five key results:
1) the convergence in strong probability of 9; = (8 ,62)
> .2
to ?q = (é,c ).
2) YD(GO) is finite.

3) the mean value theorem can be applied to VEbn(Qn).

4). € -0, has a well defined asymptotic distribution.



5) A central limit theorem can be applied to the score

vector in the i.n.i.d. case.

The assumptions typically made in the fixed regressor model ensure that
these five points hold. In particular it is necessary to asgume:-

(i) plim %’g/n is finite and positive definite
md D) plin @D xx =0 %

Under the null hypothesis that the model is correctly specified
(i.e. ft(yt'?o) is the true distributioﬁ) and given the above assumptioms,
the information matrix test statistic is then

A

n D_(8)'V_ () 7D _(

~.0°.n° n -n)’

which will be asymptotically distributedas xé on the null,



3. DERIVATION OF THE TEST STATISTIC FOR THE FIXED REGRESSOR NORMAL

LINEAR MODEL.
The assumed model specification is:

y= X8 +u u - N(O‘,ozIn).

~

-
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Let lim '&n} =M : a KX positive definite,
N> = .

‘finite watrix whose (i, ’j:‘):"th' alement is denoted m U R

Let the log likelihood of one observatiom be LLF : - - =
. 2 2
LLF =k~{lnoc _ 1 .('yt-x'B)
262

The first order partial derivatives with respect to and o are:-

[ 2~

SLLF _ 1 ,

8 T ¥ Gz 8%,
JLLF 1 1 ‘ ok 2
e B e cageewe 4 -

4 ¥ —— (y -xB)° .
g 2’02 20 S

The second order partial derivatives are then:

PLLE 1
2828" o2 ~E-F
Pur Ll o
38302 ot -t !




With our assumed

This implies that

" -1 0 - 1 .2
B(®)=n"1I o 4 x x'
-nln eml AT e
-:1 utx:: "' —':'—' u
20" 20
. .1 B - .
An(e) SRR —-]:—xtx,';
-8 - t=1 o2 =7
- 7
e = T
o o.
Note that under Hu:tilutft = 9 .

e

The indicator vector therefore comprises three subvectors,

K(K+1)/2 elements of Dn(en) are the subvector

t.t!?

Q =
b=

specification the parameter estimates are

2 4
1 gt ut
Go* 208 408
"2
_ ot
3
G -

The first
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-1 2. 1 - N
Ap = n L (ui - 02)x
- t=1 o .

2
1t

T2 hanL2.
Cug = 0%)xpy

b

n ~ ~
whose sth element is of the form =n : z (u% - o2) X0
t=1

g = (5-1)(Kfj/2)+ib i2j ,1i,3=1, .. , K. This subvector examines

xjt/° where

the discrepancy between the two estimators of the variance-covariance

matrix of the 8 <coefficients. The next K elements are the subvector

. n n
4 = n ; z -%—- ué L ‘
~ t=1 2¢% ©-

This vector measures the discrepancy in the estimators of the covarianmce

of 8 and @2,

The last element of Dn(Qh) is Aé which compares the estimatcrs of the

variance of o2 ,

bg=mlrp—tT 3 .
408 40"

The indicator vector is then given by

0,6 - [t



We now need a consistent estimate of the covariance matrix

of D (en), vh(en) , which we will comstruct from the sample moments

-~

of the subvectors Ai . Let n

ln

z

t=1
between Ai and Aj . The matrix

:J be the sample covariance

L =]

~

)

L &,) can then be written as,

giving lower triangular elements only:-

- -1 P,
Vve)y=a I [&
-0 .0 =

t=1 |221
4
~31
B¢

The appropriate form of the sample covariance matrices is given

in the table below.

To simplify the notation let :~

o = (] .
53 *1e%5t

jt
element is Eijt
2
3 Jup ub

and -4 - - +
' 4o 2085 4B

- '
(x;x,

vhere s = (§-1)(R~3/2)+i i3j, i,j =1,..., K

133
&

The derivation of the matrix is left to an appendix.

)/n and Et is the vector whose sth

2

11
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-Submatrix "diménsién "tzgical'elemeﬁt

11 1y 1 "2 _ 2y: R PUTRFTO
éc K(K+1)/2 x K(K+1)/2 (ut 0 )gmptgrstlo :(i,j)th element
' given by
i=(p~1) (R-p/2)+m
j=(8-1) (K-8/2)+r
o\21 e A2 —AZ A2- Az ~ ~ 510
422 K x (R+1)K/2 @2 -0?) (ul-30 )utxitt,“t/ZG
(i;j)gh element given by
i=i
j=(s~1) (k~8/2)+r
a3t 1 x R&+1)/2 (@2 ~ 2yaE_ [ it lement given by
j=(s-1) (K~8/2)+r
a2z e 22 - 362%a2x, x, /1% (1,1)™ element
t . 4% e £ - 4 A ’
a32 1xK @ - 3;?); 2x, /236 . i™™ element -
t t t it T
233 ‘ 22
At 1x1 Z

It is paésible to simplify this expression for vn(en) by using

the faet that is asymptotically equivalent to v(eo). It can be shown that

under Hj V(@d) is block diagonmal, and so can be comsistemtly estimated
by a block diagomal vn(en). This result is derived in the appendix, and
depends only on two properties of the model. Firstly that under Hj

v, and x' are independent, and secondly that u is assumed to have a symmetric

'
t

distribution about zero, and finite moments up to -and including order eight.

For the present we assume u_ to be distributed normally, and give a more

t

. robust version of the test in section 4,
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~

P . : -
Yn‘gn) is then given by:

n
-~ - ~1 _&_4 ' s
7,6 = a5
t=1
. BA 6 '
77
© 3~=8
he io‘ -l

~ . ~ _1 "~
.. [ L] ' v‘ . Ll ] [ 3 !
The test statistic is them n gn(gn) EYn(gn)] Dn(?n) which is distributed

asymptotically central x? with (K+1)(K+2)/2 degrees of freedom.

Therefore under H, , the information matrix test is the sum of

three independent components, the first of which is easily recornised to he
asymptotically equivalent to White (1980)°'s direct test of hetercscedasticity.

This enables the calculation of the test statistic to be considerably

simplified , as it is the sum of the following three statistics.

1) nR2 from the regression of ui on & constant and
K K 2
I I ax x (where R~ is the constant adjusted coefficient
j-l k‘j 8 jt kt

of multiple correlation). White (1980) has shown that this

corresponds to the statistic for the first 'K(K+1)/2 elements
~ ! 2 .

of D (?n). If x., 1, ¥t, then x; would be omitted from

this regression, as indeed would the indicator involving xit

be omitted from the test, thereby reducing the degrees of freedom

by 1.
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2) n %- q-'G ESS : where ESS is the explained sum of squares from
the regression of uz on xé s, O coming from original OLS
regression of y, on x! . This in turn under H, is nR?

t

:a'n

from the regression of which equals nR2 from

~3
ut on 15

—

X

the regression of uz on x{ .

(3) LB @l &g - 3g%y 2
24408

The analysis in Section 4 is concerned with the fixed regressor
model, but it is important to note that these conditions are sufficient
but not necessary for the above decomposition of the test. The result
tequires only the independence of regresscrs and error. It therefore
extends to the stochastic regressor model and, for example, applies‘to
the dynamic regression model, provided that the assumptions made in the

derivation in the appendix concerning the moments of X, are satisfied.
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4. ANALYSIS OF THE INFORMATION MATRIX TEST AS A TEST OF MISSPECIFICATION

We have proposed the information matrix test as a pure signif-
icance test of model adeguacy. Rejection of the null hypothesis implies
only that the model is inadequate and it is therefore interesting to
examine the misspecifications that may cause a significant statistic.
This enables us to assess whether the complete information matrix test
provides a comprehensive test, and £oréuggest possible reductions of
the indicator vector that deliver more powerful tests against specific

hypotheses.

As Hausman (1978) notes most econometric specification tests
for the linear model are designed to pick up violations of (i) the

orthogonality assumption: E(u|x) = 0 or plim

o——
- o~ o~ I

the sphericality assumption : V(ulx) = ozIn. We therefore start by

- e

¥'u = 0 and (il)

considering the extent to which such misspecifications are detected by

the present test.

Violation of the orthoganlity assumption will not be detected
directly, but this in turn will cause heteroscedasticity which, it is
argued below will be detected. The original vector Dn(e) contains

A

terms in §'E but these disagpear‘when evaluated at ?n due to the
orthogonality of the fixed regressor matrix to the OLS residuals.

However the existence of systematic components in the error process,
say due to an omitted variable, would cause the expected gnd actual

properties of higher moments of the error to differ, and we now examine

the extent to which this is detected by the test.

The sphericality assumption can be violated by heteroscedas-



ticity and/or serial correlation in the errors. We consider these in

turn.

It was remarked earlier that one component of the information
matrix test was asymptotically equivalent to White's direct test under
normality. This in turn is easily seen to be the LM test (Breusch
and Pagan, 1979) against heteroscedasticity of the form
oi =nh (.§ a X, x, +ald). Therefore whilst hLis direct test will
:have asyﬁptotically;unit power, as White notgs (p}826), hisitest will

only be leocally optimal if this 1mpIIEiE"H1 “coincides with the true

ci specification. However the choice of the correct variables for

the Hl specification requires the additional information, the very
absence of which, in most cases, led White to suggest this general
test. As one would expect, the greater the discrepancy between this

implicit H. and the true specification the greater the loss of écwer,

1
(see Hall (1982)).

hY
This effect is accentuated by the introduction of the remain-
. matrix
ing full information sAest indicators. Koenker (1981) has shown that the

Breusch Pagan LM statistic is distributed asymptotically non central x2

under local Hl of the form ci~= (l+g(z%zﬁ//5)02. This has been

extended in Hall (1982), using similar arguments to thoseused in Koenker's

16

derivation, to the case where the variables in the implicit H and true .
) 1

specification do not coincide. The noncentrality parameter is the only
factor affected by this deviation. White's direct test statistic will
therefore be a noncentral x2 under local Hy (of the above formulation)
regardless of the composition of 2. It can also be shown by using
Pmemiya's (1978) residual decomposition and similar arguments to Koenker

(198l) (see Hall (1982)), that the remaining quadratic forms from the



17

information matrix test will be distributed asymptotically central x2
with K and 1 degrees cf freedom respectively. Further these three
quadratic forms will be independent under this Hl. Therefore by the

2
additive property of ¥ random variables, namely

2 2
Zyx (m) =x (Im,),
Dy + Zpi i
the effect of introducing the remalning indicators is purely To increase
the degrees of freedom of the test statistic. This of course, causes

a loss of power that will increase with the numbers of regressors.

Whilst some of the indicators are sensitive to heteroscedas~
ticity, none of them will pick up serial correlation. This is easily
seen by examining the principle behind White's direct test. It locks

at the discrepancy between two estimators of the standard errors of

OLS estimator. One involves using n lE xtxtui as an estimator of

Xt VX/n and the other cz(x'x/n). The two coincide when the errors

~ o

are homoscedastic, but only the first of these estimators is consistent
under heteroscedasticity. If the errors are serially correlated,
although both biased and inconsistent, the two estimators of X'Vi/n
will be asvmptotically equivalént. The remaining indicators will be
similarly insensitive to serial correlation, and sco the information
matrix test will have power equal to its size against this mispecific-

1/

ation.

1l/ Following White (1982)we have considered a sample of observations on a
univariate endogeneous variable. We could have considered a sample of one
on a (Txl) random vector y. However due to the orthogonality of the
regressors and least squares residuals, this alternative version of the
test will only be meaningful if we lmpose the structure of the covariance
of u wunder the alternative on B (9 ). This is clearly not in the
spirit of the way in which the tes% has been set up.
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It is worth noting that although the derivation of our statistic

is unaltered by the presence of lagged dependent variables in X o

the above argument would not apply. If u is modelled as white

n
noise, but is in fact serially correlated, then plim n I uixﬁxé
t=1
2 .12
does not egual plim 8°n z x+x£ provided the lagged dependent
=1 7

variable is not of lag length less than the orders of serial correlation.
However we will again encounter a loss of power from the inclusion of
unnecessary indicators as those two probability units are the same for

the fixed regressor elements of X -

Our test will therefore be sensitive to heteroscedasticity
and consegquently would detect implicitly any other misspecifications
that cause this effect. In this class would be,rfor instance,
parameter variation, omitted variables (unless ;hey are orthogonal to
the regressors) and incorrect functional form.

~ ~ Y

3 4
The remaining indicators involving ﬁt and 'ui—3o will

be sensitive to skewness and nonnomal kurtosis of the errors iespect—
ively, although the appropriate form of the critical region requires
‘investigation. If Xy contains a comstant term then the information

matrix test principle could be used to derive the following independent

statistics:



and nin z —F
=1 240

These are asymptotically equivalent under the null hypothesis
to the tests for skewness and kurtosis suggested by Bowman and Shenton
(1975) and the LM test for normality based on (i) the Edgeworth
expansion (Xeifer and Salmon,; 1982) and (ii} the Pearson Family of
distributions (Bera and Jarque, 1980). In fact all three components
of the information matrix test will be sensitive to non normality.
Koenker (1981) notes that the Breusch-Pagan LM statistic is sensitive
to non normal kurtosis, and suggests 'studentising' the test by dividing

1 & %2 202 “4
the gquadratic form by o z (ut - 0%) rather than 20, This
u=1 ’
ensures robustness against non normal errors. White's original direct
test therefore corresponds to the studentised IM test of homscedastic
errors against the alternative: 02 =h(a_+ Zax x_ ).
t o . s it jt
i,3
To reduce this sensitivity to non normality, the information

matrix test can be studentised in asimilar fashion. The above arguments

for the block diagonality of V(8) rested purely on the requirement that

E(uz) _ { 0 «=1,3,5,7
finite a 2,4,6,8

for which normality is sufficient. The studehtised vexsion of the
information matrix test consists of the same indicator vector as before,

with the following variance-covariance matrix:-



: .. 4m . . !
Ve)=1] (uy=o*)n ¢ EE" ! 0 '
~n -1 ~ ~ | = ;
t=1 \
i
y S B
------------ 1 -7 t
. - - - -~ i
0 i (ug=6u"c?+9c®)X'X
& i n :
l ______ i
R T T T i
i 1
o ' 0 P
I - 1 5
i i 1 1601®
L ! !
R n..
where ¥, = n . Zut . N N
t=1

[ e T T g
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This amended test is sensitive to heteroscedasticity, skewness

and non normal kurtosis. All the arguments given above apply to this

case as well, the only change being in the scaling factor on the non-

centrality parameters. Within thiS'frahework, the White direct test

corresponds to the quadratic form in the subvector consisting of all

the indicators sensitive to heteroscedasticity derived from the

information matrix test.

Our analysis has been concerned with the ccmplete informaticn

matrix test. As noted earlier in White's (1982) derivation of the

test there is no need to restrict attention to this case alone, and

we can reduce the number of indicators to gain power against particular

alternatives. The information matrix test principle can therefore be

used to derive White's (1980f direct test of heteroscedasticity and

tests of skewness and kurtosis asymptotically equivalent undexr the

null to-those already familiar in the literature.




We have proposed the complete information matrix test as a

21

general test of mode adequacy, but our results suggest that it should not

be considered as such for our model. The seemingly pure significance
test decomposed intc three constructive tests. When viewed as this
combination, the test has two drawbécks, firstly the insensitivity of
all three components to serial correlation is a serious problem with
time series data. Secondly within the framework several misspecific-
ations may cause heteroscedasticity, and whilst this may be detected
by the first component we have no guide to the source of this effect.
The implicit alternative may also not be appropriate for the case in
hand, and the heteroscedasticity inducing misspecifications may be
better detected by more constructive tests. These can be overcome by
adopting the alternative strategy sﬁggested by Godfrey and Wickens
(1982) of combining asymptotically independent constructive tests,

Our results suggest that this is likely to be a more fruitful way of
deriving a general test of model adequacy, that avoids the problems

of induced tests. This agrees with the testing strategy suggested
by Bera and Jarque (1982). They derive a series of LM tests of homo-
scedasticity, serial independence, normality and correct functional
form in turn, which are asymptotically independent within their model.
Whilst the LM testlof the joint null hypothesis is the sum of the
individual tests taken together they form a comprehensive test of
model adequacy. The advantage of their method compared tc calculating
the complete information matrix test is that by testing each hypothesis
in turn the cause of misspecification can be identified and the loss
of power encountered by the inclusion of unnecessary indicators

avoided.
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We can partially offset these problems with the complete information
matrix test by taking advantage of the decomposition demonstrated above and
by introducing a fourth quadratic form designed to test for serial
correlation. For instance we could introduce the following LM test

statistic of Ho: serially uncorrelated errors against H. : u_ =0

+
19 B TP 1YE

is white noise:-

This statistic is asymptotically independent of the original three under the
null hypothesis. it ié worth notin§ however that this ccmposite statistic
cannot be derived from the fixed regressor n§rmal linear model with first
order autoregressive errors using the information matrix test principle.
For this model we have three additional indicator subvectors comparing the
estimators of the covariance of { and ﬁq p and 62 and the variance of

ﬁ; within this model we also lose the extreme form of the block
diagonality of the covariance matrix present in our criginal model. For
within this more general model the covariance between any two non identieal
subvectors is not always zerc. We can therefore show that whilst the
decomposition of our original test applies to the stochastic regressor
case, given independence of regressors and error, oﬁr test does not
similarly decompcose into the sum of quadratic forms in each of the
subvectors for the fixed regressor normal linear model with serially

correlated errors.
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Agnendix.

~

(i) We begin by deriving the correct expression for Vn(en). It was

stated earlier that:-

n

”» -1
V(®)=n TTa a'
-n-.n tmp~t ~t

A

~ -1 ~
vhere a = d (y,0) - VD (8 DA (8 ) "Viog £, (v,,8,).

. We begin by deriving

The first step is therefore to calculate a,

VDn(en) + ©Our line of argument will be that because VDn(én) and

- ar

VD(eo) are asymptotically equivalent, it is possible to simplify the

former by examining the latter under Ho .

= ’-,L 2 - 2 2 7
d, 702 e (“t_ TIxp e
1 (W2 - o?)x2
e -t th.

L g2 - 342
. (ut 30 )utft

2y

3u . u

3 .0 .k
4" 205 48

ke -

This implies that:-



yD(6)=1lim n iZE

~ o et

2g?
YeXi ke

)

E(u X, X, ) = it

t it jt
- E(ud) =
E(u,) = E@)) = 0,

Under Hg E(u )E(x.t
independent,

thus

since u

and E(u%) = g2
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3utht

— —— v —

y

oK) u

205

+ 9u?
t

208 o

»

X
=t

and E(ug) = 3g"

and are

t

vD(e) ]' 0 S - where g_a = @!Uq
| . et '
R -
______ oot L
| m - 0
0 J C
A e e e
. | |
0 ! 0 ]
L 1 1
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This can be consistently estimated by the matrix VDn(en>
whose only non zero elements occur in the top right hand block,

namely

e x. X, /n
ot -1:..1

L x%/n
;“ -~y -~

-

vhere x, = (xilxiZ cee xin) as opposed to X = %y oo X

We have already shown that:-

- _ ' .
= - 0
4,48, i
2 n
0] - 1
20" i
w6y AGI) L= T o v 2 ! )
' <<n<n n -n | = ~'];~‘1
] .
]
' 1
1 2 X X
| ';‘:K:K




3 = y ~ = l 1 ~ -y
Finally 7log £ (u,0,) = "t
52
_1 2
— + ug
o 20 20“ -
. - N - -'% . ) - —
Sooa, =d (3,80 - Y].zn(‘e-n)én(gn) Y lfg ft(yt"‘?‘n)' |
. ; = — = —_ - .2—.2_ _' . - . "_—_1__( 2 2)67(' ‘?f:.'.,_,’*
428y = [of-o%] 4 o c s Ey,
ot . 0 = :
‘ ‘2_ 2 2.1
. A—i—“‘t ) G N
c

Yn (?.n) is then equal to

in the main text.

1

PR

~1
n

b2l 5 %

n

o

o
I

t=1

~

- tet
256
3+ ut -3u?
— t t
4ot "8 o6
4g° 2c¢

a a” , which is result stated

~C.t

26.
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(i1) We now establish the block diagonality of V(©,) under H

From the definitions already given, it can be seen that

V(eo), when partioned in a similar way to vn(en), is given by

- [AL1 ¢ .
Y(?o) & !

where A:J‘correaponds to the expression for A:J, given in section 3,
except that © 1is evaluated at eo instead of en and so u: and

2 : & ot i - -

o must be replaced by u; and 02 respectively, and Eijt I Y

To evaluate each block we use the following results (i) u,

and xé are independent under Hb and (ii) given normality: E(u:) =0

for a = 1,3,5,7 and E(ui) = g2 , E(ui) = 30% , E(uz) = 1506, E(ug) = 10508,

1 1 -4 ., -1 %
Block Aé : Aé = 20 © limna LEE.
-~ ~ b t=1~""

This matrix consists of elements of the type.

: n
-4 . .
20 lim I =x. ¥%..x x . - M,.M
—— 1t Jt pt'mt 1] pm

and so it is necessary to make the additional assumption that

n
lim n . z
e t=1

x ‘ x : L] - & ] L] ; "
”itth thEt is finite ¥,i,j,p,m
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21 : 31 P e 21
Block 'eo under Ho, u, and x,  are independent, and éo only

contains terms in u" where o is an odd positive number. In addition

t

. , SN 7 P
we assume n zxitxjtxkt is bounded,
‘. a2l =g
L L] ~° - L]

Block Agz_ : Examining the terms in u, gives .

4

.34, 2 .y
Ef(u2 ~02) e = i + Ll )] = 0 ,,
o & 4o 205 4ot - S

a K -.»' . . .l b - -
Note also that the terms in x, are 'lm n I xitxj & mi.'j o,

A S
~0

Block A’%z :+ The terms in u, are :

t

6 — Guta2 + 9gty2
wo=ul Gut.c 9¢ Ly

Under normality E(w) = 6¢® and so

. a6
A%z.-%cu )

Block 432 : By similar arguments to block ,Agl Y Agz =0

33 2y .3 -8
Block éo : E@E°) 39

Therefore the matrix 'V((-)oi is block diagonal under’ .H&iae.atated' in the text,
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