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ABSTRACT 

A theoretical model is presented in which the 

decision marker's choice of step length for reform is 

allowed to depend on the consequences which this is expected 

to have for the accuracy of information about the structure 

of the economy. Also, destabilisation by means of introducing 

variance into policies, is desirable under some circumstances 

since it speeds up the learning process. 

1. INTRODUCTION 

The acknowledgement of ignorance frequently leads 

to the prescription of caution. With imperfect information 

about the parameters of the economic system risk averse 

economists often recommend piecemeal or marginal reforms 

instead of global optimisation. Rather than seek to identify 

the optimum on the basis of uncertain parameter estimates, 

a less ambitious problem is addressed, namely the directly 

of welfare-improving changes. A considerable literature 

has accumulated emphasising that limited movements towards 

the global optimum may not always be desirable (Lipsey and 

Lancaster 1956) but that some categories of second best 

reforms may be beneficial. (See for example Dixit 1975, 

Green 1962, and Bertrand and Vanek 1971). However, one 

issue which has received little attention, is that of step 

length: having identified the right direction how far should 

you go? 
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This paper emphasises the importance of information 

for the decision and allows the nature of the information 

revealed to depend on the policies chosen. Short steps 

are desirable in that their outcomes are relatively certain 

however, longer steps are riskier and hence their outcomes 

provide more new information. 

In the model which follows the government is 

allowed two instruments. Policies over a period are assumed 

to be random drawings from a normal distribution whose mean 

and variance on the government's choice variables. Decisions 

about changes in the outcome determine the step length, 

and increases in variance may be interpreted as deliberate 

'destabilisation'. The reason why it may be beneficial 

for the government to introduce uncertainty in the short 

run lies in learning process. 

The passage of time alone would be sufficient 

to yield more observations, and given some variation in 

the data, this would produce more accurate parameter estimates; 

however it may be desirable to speed up the process by 

introducing policy variation in the short run in order to 

have a more diverse set of experiences upon which to base 

policies in the future. This idea is well-known in the 

control literature, Kendrick (1981) for example distinguishes 

between three kinds of otimal control strategies associated 

with different attitudes to learning. The least sophisticated 
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is open-loop control which bases the future trajectory of 

instruments entirely on the data available at the starting 

period; no revisions are made in the light of new data and 

nothing is learnt. The second strategy involves passive 

learning and is called feedback control: parameter 

estimates are revised on the basis of new data but the development 

of instruments is independent of their expected effect on 

future parameter estimates. Active learning is the most 

sophisticated procedure and is an example of closed-loop 

control: policies are deliberately used to perturb the system 

in order_ more quickly to learn their_ influence on the state 

i.,n:foT_matlon is' nothing new .in economics: it is essential 

to concepts such as 'learning by doing', Arrow (1962); 

`experimental consumption', Kihlstrom, Mirman, and 

Postlewaite (1984), and the 'Rothschild effect'. For example, 

Rothschild (1974) envisages a consumer faced with a two-armed 

bandit. He is uncertain about the expected payoffs from 

playing each arm so his actions are influenced by the 

inclination to play the arm which he believes to pay out 

most often, and also by the desire to improve his knowledge 

of the probabilities of winning. Because of sampling errors, 

the gambler may reach a long-run equilibrium where he plays 

only IAIP 7,rm wit-11 the rayoff : (- he c7r'n^rn ] _ C{?1i. I 1 }')r) 11111 



Grossman, Kihlstrom and Mirman (1977) present 

a closely related model. Faced with a new commodity whose 

characteristics are uncertain, the consumer experiments 

in the short run, possibly consuming more of it than he 

would if he were perfectly informed. My model is simpler 

because firstly I impose more restrictions on the objective 

function, and secondly I make sufficient assumptions so 

that OLS rather than Bayesian learning is appropriate. The 

main departure is that I allow the decision maker to introduce 

variance into the policy instrument, as well as choosing 

its central tendency. 

Section 2 gives a preliminary outline of the main 

argument. Section 3 presents the model and discussion and 

possible extensions are in Sections 4 and 5. Appendix I 

gives a brief guide to interpretation of the derivatives 

of the objective function in relation to choice 

under uncertainty; and defines some of the concepts taken 

for granted in the text. Appendix II discusses the 

relationship between OLS learning and Bayesian updating. 

2. PRELIMINARIES 

The model in Section 3 envisages a decision maker 

who is uncertain about the influence of instruments on 

objectives. For tractability the simplest possible case 

will be considered, where the objective function may be 

approximated by a quadratic, and the uncertainty relates to the 
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coefficient in a univariate regression model illustrated in 

Figure 1. 

Figure 1 - Choice of v and variance of s 

x 
R y + e 

A 

yo  = O 

By examination of the objective function the decision 

maker knows the most preferred value of the state variable x 

but is not sure exactly what value for the instrument y 

will bring this about. This uncertainty results from the 

stochastic error term whose variance is assumed known, and 

also from errors in the estimation of p. If since the 

beginning of time y has ony taken the value zero, the 

spread of observations along the vertical axis will yield 

some information about the variance of e , but this is 

useless information since Q is already known; however 

it will be uninformative about S , all lines passing through 

the origin would fit the data equally well. To learn something 

about it would be necessary to either allow some variation 

around y 
0 or fix y at some new level such as yl, or 
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as is allowed in Section 3 employ a combination of both 

strategies. 

In this setting, there will be trade-offs between 

the use of policies for the purpose of learning, against aiming 

as closely as possible at the target value of x. More 

variation in y would lead to increased accuracy of parameter 

estimates, however it would also entail more variation in x 

and hence a higher probability in deviating from the target. 

Deviations from the status quo yo  are rewarded with 

greater data variation upon which to estimate p, but 

higher values of y also result in greater variance of 

x since the uncertainty is multiplicative. 

Dynamic issues are obviously essential to the 

argument. The only reason for concern about the variance 

of parameter estimates is that they form the basis for future 

decisions. Choices based on more accurate information have 

a higher probability of hitting the target, so there will 

be conditions, relating to the discount rate and structural 

parameters, when it is beneficial to deliberately aim 

short of the target this period in order to have a better 

change of hitting it next period. 

3. THE MODEL 

The examination of active learning strategies 

involving endogenous information requires three time periods. 

Period zero has the sole purpose of establishing a data 



set upon which the decision-maker's prior beliefs are formed: 

no actions are taken until period one. In period two the 

actions are taken as if there were no learning, since 

t = 3 is the end of time there would be nothing to be gained 

by obtaining information which could never be used. The 

essential aspect of learning comes in period one when it 

is necessary to take account of the influence of current 

decisions on future information and hence on future policies 

and outcomes. The order of events is illustrated in Table 1. 

Table 1 - Active Learning : the Order of Events 

1 2 3 

ONE TWO 

M 

y drawn from y drawn from 
N(yl, var y1) N(y2,  var y2) 

u 

TIME, t = 

PERIOD I ZERO 

NUMBER OF 
OBVERSATIONS N 

POLICY RULE I NONE 

Estimate Estimate 
ESTIMATION 

R1, var ~2, var 

Choose Choose 
DECISION y1, var y y2, var y2 
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The problem faced in period one is to choose current 

policies to maximise the expected future stream of discounted 

utility, taking into account the influence of present policies 

on future information. The technique used here is dynamic 

programming: the 'fundamental recurrence relation' for 

this problem amounts to 

Max 1 ,~ 

yl, var yl 
J = EU1 +(1+6) EU2 (1) 

where star denotes maximised value. Thus the solution 

to the period one problem requires information about the 

choices that will be made in period two. The solution 

unfolds as follows: firstly, the period two problem is 

solved, secondly the optimal instruments are substituted 

into the objective function to obtain the maximised value 

EU2, thirdly the period one criterion is established, and 

finally the first order conditions for this problem are 

derived and interpreted by means of an example. 

The period two problem is to maximise the objective 

function, defined on the state variable, given that there 

is uncertainty about the influence of the instrument - that 

is, multiplicative uncertainty results from the inability 

to distinguish perfectly between those variations in x 

which are caused by variations in y, and those that result 

from the stochastic disturbance E. The problem may be 
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written 

Max U(x2) 
(2) 

s.t x2  = Py2 + E 

In the present context, uncertainty about c and 

its variance Cr are of marginal interest. Q is assumed 

known, and since the objective function is symmetric* it 

only plays the role of supporting uncertainty about R. 

Taking the Taylor expansion of the objective 

function around x 

U(x2) _ U(x) + Ux(x2-x) + 2 Uxx
(x2-x)2 (3) 

where x is defined by 

X = R ly (4) 

Bars denote means, and hats points of certainty equivalencet , 

so y is the policy which would be chosen if 
Sl  were known 

with certainty, and x is the outcome which would be expected 

if this choice were made. Notice that this implies 

a  a   (x) = U 2  = o ( 5 ) 
Y2 

since under perfect certainty y would be chosen simply 

* See Appendix I for a definition of this term, and some support 
for the assertion. 

t See Appendix I for a definition of this term. 



by setting U  equal to zero. 

Taking expectations of the last term in 

parenthesis on the right hand side of (3) 

E(x2-x) 2  = E(PY 2  + E - P I-Y)
2  

= E( ( P .Y2  - R Y2  ) + ( P Y2  - P2Y2  ) + ( ~ 2Y2 - RlYi  ) 

R1 var y2  + Y2 var ~2  + 51(y2  - Y)2  + 
CJ (6) 

To simplify this expression I have assumed firstly 

that covariances are zero, and secondly that the estimates 

of the mean of formulated at the beginning of periods 

one and two are both unbiased so that E(Pi  - $2) = O. 

Taking expectations of (3) and using (5) and (6) 

EU2  _ U(x) + 2 Uxx [~1 var y2  + Y2 var ~2  

+ ~ 1(y2  - y) 2  + 6 7 (7) 

which is the maximand in period two. The first order 

conditions imply that 

var y2  = O ( 8 ) 

2  Ply 
Y2 _2 (9) 

(var ~2  + ~1) 



It never pays to introduce policy variations 

in period two because the benefits would be zero in terms 

of possible future policy improvements and there are non-zero 

costs implied by risk aversion (U
xx  < O). (9) is the familiar 

static result: with symmetry and multiplicative uncertainty 

the policy maker aims low, and certainty equivalence is 

the outcome only if Q is zero, and hence p  is known 

with certainty. 

Substituting (8) and (9) into (7) and assuming 

that var ~ is small, the maximised value may be written 
2 

EU2  _ U(x) + 2 Uxx 
r var  o 2  ly2  

2  + Q 
2 var R2  + 01  

(10) 

Notice that this is decreasing in var 32; given 

risk aversion there is positive value to new information 

because it reduces the variance of period two parameter 

estimates. 

The period one problem may be approached in the 

same way. Taking a Taylor series expansion of U(x1) 

around x 

U(x1) = U(x) + Ux(x1-x) + 2 Uxx(x1-x)2 (11) 

Note that 

E(x1-x)2  = 
01 

var y1  + yl  var ~1  + p1(yi-y)2  + a (12) 



having again assumed zero covariances. Taking expectations 

of (27) using (5) and (12) yields 

EU1  = U(x) + 2 Uxx(Pi var yi  + y1 var ~1  

-2 -+ 0 1  (yi  -y) 2  + Q ] (13) 

Substituting (19) and (13) into (1) the first order conditions 

for the period one problem may be derived 

(14) 

8J 2 1 y 2 2 a var 
= yl  var p 1  + R 1 (Yi Y) + 2 (1+6) - ( 4 -2 = O 

ayl var 2  + al  ) a Y1 

aJ -2 1 __ y2  a var P 2  
a var y1 P1 + (1+6) (4 var S 2 + p

2) 
1 

8 var yl = O 
(15) 

To interpret these conditions consider the case of OLS learning*. 

At the beginning of period one OLS estimates of p are 

based on the N observations over period zero, and at the 

beginning of period two they are based on regressions pooling 

the existing N observations with the M new data points 

* Appendix II discusses the relationship between OLS learning 
and Bayesian updating. A more fundamental problem arises 
since actions are chosen on the basis of parameter estimates 
based on observations which are themselves determined by the 
actions. Under these conditions there are likely to be no 
rational criteria for which OLS in the optimal estimation 
strategy. It has been suggested that the solution to this 
estimation problem lies in the econometrics of "variable 
parameters". Rather than aspiring to make a contribution 
to that debate I assume bounds on the econometric wisdom 
of the government and hope that OLS turns out to have 
properties which are not too undesirable. 



- 13 - 

which become available over period one. Thus 

var = 0  
R  1 N var y 0 

(16) 

var ~2 = 
0 

NM _ 2 
(17) 

N var yo  + M var yl  + (N+M) (yo-yi)  

Differentiating (17) with respect to vary  and yl, and 

substituting into (14) and (15) yields polynomials and it 

is impossible to write down neat formulae for the optimal 

values which they imply. However, the nature of the solution 

may be described by considering the limiting cases set out 

in table 2. The first four columns show what happens to 

(16), and (17), and their derivatives, and the last two 

are obtained by substituting into (14), and (15). 

In Table 2, (*) denotes the solution to the quadratic 

~1  M var y1  + 2(20 + ~1 (N+M) Yo) var yl  

(18) 
-2 

+ (N M) yo  (40 + S1 (N+~M) yo) 1+S R = O 
1 

and (**) the soltuion to 

~ 1 M var y12  + 4 0 var y1 - 1+6 Y 0 - O ( 19 ) 
P1 

bearing in mind the possibility of the corner solution 

since var y1  > O. 



TABLE 2 - ACTIVE LEARNING MODEL : RESULTS IN LIMITING CASES 

8 var R2  8 var 
2 

var S1  var 
S2 

a var yl  
8 Y y var Y 

o-+o 
i) 

var 
N 

y 0-*o 
0 0 0 0 y 0 

Q-~ co 00 w 0  
0 

var y -o 
° 

co o - 6M 
- - 

[M var Yl + N M ~yo-yl)2]2 

►m 
2Q N+M (yo

_ 
yl)  

[M var Y1 + N M y0 -Y1

2  0 ") NM - M var Y1 + 
R+ M (yo-yi)2 

iv)  M-~o 6 

N 
0 

var y
o 

 0 0  ~iy 0 N var y
o  

a 
Nvar y

o + ~1 
-2 

v)  N-ro co 
M 

a 
var vl  

_ oM 

[M var Y1 ] 2  
0 0 ,, ) 

vi)  M-~ Q  0 _ a 
var yl  0 

Rz1 y 
6 

N var y
o 
 + 

2 
R1 

1 
1+6 

2 
Q 

S1 

N var y
o 
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Interpretation of the results in table 2 is fairly 

straightforward. Taking the rows in order of appearance: 

i) The three limits, zero uncertainty about the 

strcutre of the economy, infinite past data, and infinite 

variance in past data, are all equivalent and all entail 

perfect information. Under these circumstances there is 

no reason to destabilise (var y1  = O) and the mean of yl  

steps immediately to the first best optimum. Thus with 

perfect certainty there is no justification in the model 

for short reforming steps. 

ii) As 6 tends to infinity there is complete 

uncertainty, or total ignorance, nothing is known nor can 

anything be learnt. Therefore there is no rational basis 

for any policy. The reform of y is either zero or negative 

depending on whether y
o  .was zero or positive in the past. 

iii) With zero variation in y
o  the prior estimate of 

R is diffuse - has infinite variance - and any choice 

of yl  other than zero would be infinitely risky. However, 

it still may be beneficial to introduce some policy variations 

in order to reduce the variance of future parameter estimates. 

From (18), a sufficient condition for non-zero policy variation 

is yo  = 0 and y > O. 
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iv) As the period of learning decreases, information 

acquisition becomes increasingly difficult and the model 

collapses to passive learning. No policy variations are 

introduced, and although the choice of y1  reflects uncertainty 

about R it takes no account of the expected influence 

on future parameter estimates. Assuming yo  = O, the step 

length of reform is inversely related to the variance of 

the estimate of and the reform is towards the certainty 

equivalent optimum. 

V) The duration of period zero (N) determines the 

number of observations upon which prior estimates of 5 

are based. As this duration tends to zero, the estimate 

R1  becomes diffuse and the reaction to this infinite 

multiplicative uncertainty is to choose y1  = O. However, 

policy variation is still desirable since without it the 

state of total ignorance would last for ever. Inspection 

of (19) reveals that in this case destabilisation is generally 

desirable, provided that CY is not zero, and y and ~1  are 

posivite. 

vi) If learning is infinitely easy, the central tendency 

of y is deployed as if there were no learning; and non-zero 

policy variations are introduced to ensure perfect knowledge 

of the structure of the economy in the future. 

As expected, these results support the proposition 

that optimal reforms will take the system closer to certainty 

equivalence, the smaller is the variance of parameter 
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estimates; and depending on the starting point, more 

uncertainty will usually lead to smaller step lengths. Also, 

trial and error policies will be more important when there 

is little relevant past experience, and when learning is 

relatively easy. However, the novel feature of the solution 

is that there are circumstances when it is desirable to 

use the central tendency of the policy as though no new 

information were to be revealed, and to introduce variations 

about this point in order to benefit from active learning. 

This happens when learning is easy, or there is little evidence 

from the past about the efficacy of policies. 

To get some idea of the magnitudes involves, some 

numerical examples are presented in figures 2 and 3. The 

calculations are made on the basis that a = 1 ' = 1 there 

is no discounting (a = O), and the policy maker would, in 

the absence of uncertainty, like to increase y from the 

past value of zero to two. The figures show the optimal 

values for y1  and var y1  (under different assumptions about N 

and M), for any variance in the past data. The vertical 

distance between the axis and the line y may be interpreted 

as the step length. The less variation there is in the 

period zero data, the shorter is the desired step length. 

Inspection of the line var y1  shows that destabilisation will 

only be desirable when the variance of existing data is 

small, or learning is easy given the extant state of knowledge. 
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FIGURE 2 

ACTIVE LEARNING NUMERICAL EXAMPLES 
PARAMETERS Q = $1 1; ya 6 _ 0. y = 2 

f 

s 

---- y1(N=M=20) 

i 1.5 ! _:  

....----- yl  (N=4,: M=20) 
- 

Q 
} 

vt 

H 

0.5 

i  

var y (N=M=20) 1 var y1(N=4, M=20)' 

0.1 0.2 0'.3 0.4 0.5 

i 

var yo  
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var y 
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4. DISCUSSION 

The active learning strategy described in the preceeding 
m 

model may be related to the underlying motivation of the 

tax reform literature. Atkinson and Stiglitz (1980) Chapter 12, 

Ahmad and Stern (1984), and Deaton (1985) discuss the idea 

that policy recommendations may be made on the basis of 

directions for marginal improvement rather than global 

optimisation. This approach is desirable in that it is 

informationally much less demanding, and the recommendations 

are likely to be more robust with respect to parameter 

uncertainty, and to the value judgements of the underlying 

social welfare function. However, some regard tax reform 

as essentially a strategy of passive learning. 

Deaton (1985) expresses this view quite explicitly: 

inadequacies of the data mean that local approximations 

of parameters are all that can be obtained. Global 

optimisation under these circumstances is little more than 

a leap in the dark. Therefore the limitations of the data 

provide a strong justification for an incrementalist approach 

to policy changes: marginal reforms are made on the basis 

of local approximations, and then as information becomes 

available about the new locality further reforms can be 

proposed. This is clearly a passive learning strategy, 

new information is taken into account but the choice of 

instruments is independent of their expected effect on future 



knowledge. 

Hence, it is possible to envisage an active learning 

tax reform strategy, where it pays to go further than marginal 

reforms in order to generate more useful data, and possibly 

all the way to optimisation treating local approximations 

as if they were globally true. Since "nature may not have 

been kind enough to perform the crucial experiments on 

our behalf", (Deaton, 1985), it may necessary to take 

matters into our own hands. 

In macroeconomics active learning may be regarded 

as a potential explanation for apparantly inconsistent 

behaviour on the part of both govrnment and private agents. 

A government would appear to be time inconsistent when 

in fact they were merely trying out an uncertain policy 

and revising it in the light of new information. Similarly 

private agents who in fact had unbiased estimates of the 

parameters of the economy would behave as though they were 

irrational in order to reduce their variances. Issues 

of convergence to rational expectations equilibria have 

been discussed with passive learning, see for example 

Bray (1982), but it is not clear in advance whether active 

learning would tend to stabilise or destabilise such models. 

5. EXTENSIONS 

A more flexible dynamic structure would be desirable 

for the further analysis of step length. The three period 
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model attempts to capture the rest of eternity as a single 

final period. This necessarily precludes the examination 

of subsequent steps: the model asked how actions in the 

second period affect possibilities in the third but says 

nothing about the nature and direction of subsequent reforms. 

An obvious neglected question is convergence to some optimal 

solution by means of reforming steps . Moreover, if information 

were allowed to decay, and preferences shift over time, 

perhaps it would be possible to model a long-run steady 

state characterised by experimentation and learning. 

The basic model in Section 3 may be revised in 

a more straightforward way to address other related issues. 

i) Optimal Procrastination 

Hold the variance of Y constant at a small level 

and allow the decision maker to choose M. There is no 

discounting, but as M increases the time remaining in period 

two is reduced. The problem then becomes one of deciding 

on the optimal duration of delay before a decision is made, 

given that this decision lasts for the rest of eternity. 

This is related to the irreversibility arguments of 

Henry (1974a) and (1974b), and Freixas and Laffont (1984): 

whereas they envisage an irreversible decision as constraining 

the value of the instrument to be non-increasing, or non-decreasing 

over time, I regard it as a decision that can never be 

altered. 



ii) Irreversibility and Learning 

Freixas and Laffont (1984) show that if not making 

as irreversible decision leads to an improvement in information 

then the result - that uncertainty makes it desirable to 

delay irreversible decisions - is reinforced. A more interesting 

case is suggested by the following example. There is uncertainty 

about nuclear technology, but better information can only 

be obtained by building nuclear power stations. However, 

when one is built it can never be demolished and must be 

maintained. Thus experimental consumption effects may 

tend to offset irreversibility, and it should be possible 

to derive conditions under which nuclear investments should 

be evaluated as if there were no uncertainty or learning. 

APPENDIX I 

BACKGROUND 

Understanding of the active learning model may be 

enhanced by some discussion of the underlying concepts. 

These concepts relate firstly to properties of the objective 

function, and their interpretation in terms of response 

to risk, and secondly to the distinction between different 

kinds of uncertainty and their consequences for decision-making 

As a by-product this discussion also draws together various 

strands of the literature relating to choice under uncertainty. 



- 24 - 

Examples of applications to questions of interest in 

public finance are given. 

In general the objective function U may be defined 

on the state variable x. There may be some overlap between 

state variables and instruments y, but often it is 

convenient to define U exclusively in terms of x. This 

broad class of functions may be approximated with a Taylor 

series expansion around some arbitrary x 

U(x) = U(x) + Ux(x-x) + 2 Uxx(x-x)2  + 6 Uxxx(x-x)3 

The definition of x allows some flexibility. 

In different contexts it is convenient to define it as 

one of the following: x = O yields an equation containing 

the moments of the distribution of x; x = x (the certainty 

equivalent value of x) allows the argument to be conducted in 

terms of moments, and deviations from certainty equivalence. 

If the last two derivatives in (1) are insignificant 

then the function is locally risk neutral. It is well 

known in the economic texts that with linear utility functions 

the utility of the expected outcome is the same as the 

expectation of the sum of the utilities of the outcomes 

weighted by their probabilities of occurance. If the second 

derivative is negative the function is said to display 

risk aversion, and a decision maker with this kind of objective 

would not accept fair bets, the expected outcome always 

being prefered to 4he risky alternative with the same expected 

payoff. 

(A.I.1) 



4D 

The third derivative relates to the symmetry 

of objectives. If it is zero then the objective function 

is symmetric and a small shift from the optimum in either 

direction brings about the same decrement to utility. However, 

if Uxxx  is negative (positive) then the marginal disutility of 

a small increase (decrease) in x above the optimum exceeds 

the marginal disutility of an equal reduction in x. Finally, 

a policy choice is said to be certainty equivalent if the 

same choice would be made under complete certainty. This 

term may also be applied to state variables: a certain 

equivalent state is the expected outcome of a certainty 

equivalent policy choice. Having defined these concepts 

the consequences of the two categories of uncertainty may 

be examined. 

Additive uncertainty may be represented 

x = y + E (A.I.2) 

where E is normally distributed expectation zero and 

variance 6 . Then necessary conditions for policy 

optimisation may be derived by substituting into (A.I.1), 

having defined x as the mean of x, taking expectations 

and differentiating with respect to y 

ay = Uy + 2 Uyyy 
6 = o 

Clearly, with additive uncertainty, symmetric objective 

functions lead to certainty equivalent policy choices: 

(A.I.3) 
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U
yyy 

 = 0 implies that y should be chosen such that Uy  = O. 

Thus Theil (1957), and Simon (1956) find that certainty 

equivalence follows from additive uncertainty with quadratic 

objectives, because these functions are symmetric. Clearly 

the direction in which the optimal policy would diverge 

from certainty equivalence depends on the sign of Uyyy. 

If it is positive (negative) the decision maker will prefer 

to aim high (low) since a small overshoot is preferred 

(inferior to) a small undershoot. Malinvaud (1969) interprets 

Uyyy  > O as describing a good which is a necessity - its 

marginal utility decreases at a rapidly decreasing rate 

- and this may lead to increases in the consumption of 

a good as it becomes riskier. Hahn (1970) for example, 

discusses this proposition in the context of savings. For 

a public investment interpretation see Example 1. 

Multiplicative uncertainty may be represented 

x = y(1 + n) (A.1.4) 

where Ti has expectation zero and variance s. In this 

case, substitution into (A.I.1), taking expectations and 

differentiating yields the optimal decision rule 

ay 
 = Uy  + Uyyys + 2  Uyyyy2s = O (A.1.5) 

If the objective function is symmetric the last 

term is zero but even so certainty equivalence does not 

.apply. Inspection if (A.I.4) reveals that the variance 



of x depends on the choice of y, and when the decision 

maker is risk averse this dependence will induce him to 

aim low, i.e. choose a value for the instrument below the 

certainty equivalent level. Hence multiplicative 

uncertainty with risk aversion means that smaller y's 

tend to be preferred since they are associated with smaller 

variance in the outcome. This is the algebraic argument 

underlying Waud (1976)'s diagramatic discussion of additive 

and multiplicative uncertainty. For a simple model of 

intertemporal public investment decisions with uncertain 

rates of return, see Example 2. 

EXAMPLE 1 

Choice of expenditure on risky public investments, 

with additive uncertainty and asymmetric objectives. 

The government has to decide how to allocate 

a fixed budget m between expenditure on conventional 

and nuclear power stations, y1  and y2. The two kinds of 

electricity x1  and x2  which they produce have different 

characteristics (in terms of the ability to respond to 

transient changes in demand) so the objective function 

depends on both, U(x1, x2). Conventional technology is 

certain but nuclear is subject to additive risk: attention 

is restricted to those uncertainties, such as returns to 

research and development expenditure, which are independent 



of the scale of investment 

xl  = y (A.I.6) 

x2  = y2 + E 

where E is normally distributed with non-zero and variance 

Q . Using the budget constraint m = yl  + y2, it is possible 

to write the governments objective function in terms of 

the choice variable yl  and the unknown state E. 

U(xi, x 2 ) = U(Y1 ►  m - yl  + E) = w(Y1►  E) (A.I.7) 

Taking a Taylor expansion of w around the expectation 

of E 

w = w(yi, O)  + 2 wEE a 
(A.I.8) 

Differentiating with respect to yi  yields the first order 

condition 

aw = wl + 2 w  EE 1 6 = O ( A. I.9 ) 
1 

which implicitly defines the optimal choice yl. Since 

at a maximum w11 < O, inspection of (A.I.9) reveals that 

ay1  
a s 

z 0 if wEE1 z 0 ( A. I. 10 ) 

which is a particular case of Diamond and Stiglitz (1974) 

theorem 1. From (A.I.7), and using Youngs theorem, 



U1  

< O 

U22 < O,  U222 > O 
U, 

- Ly 

w  EE1 
w1 

EE = U122 U222 (A.I.11) 

Now, if U222 is positive and U122 is small or negative, 

w
1EE  will be negative and the choice of y1  will. be  

decreasing in Q . To interpret these third derivatives 

consider the rates of change of the marginal utilities 

of x  and x2  with increases in the consumption of x2  

illustrated in Figure A.I.1 

"2 
Figure AI.1 Third Derivatives, x2  a necessity 

The signs of these derivatives are consistent 

with the proposition that x2  is a necessity: its own 

marginal utility diminishes at increasing rate; and the 

marginal utility of x  increases with consumption of 

x2  but at a diminishing rate. Thus consumption of x2  

in excess of some necessary level adds little to utility, 

and also the satisfaction resulting from the consumption 

of other good increases with consumption of the necessity 

but at a decreasing rate. 

Hence, this example shows that if nuclear power 

is a necessity, reductions in the uncertainties of nuclear 

technology should lead to a transfer of resources towards 

--2 
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conventional generating capacity. The intuition behind 

this result is that given the definition of necessity, 

the consequences of having too little nuclear power is 

disasterous, therefore uncertainty leads the decision maker to 

aim high. As a result, reductions in uncertainty make 

it possible to reduce nuclear investment and still be as 

sure of reaching that target. 

"ir T %mr r ra 7 

An inter-temporal public investment decision 

with risky returns, in a model with symmetric objectives, 

multiplicative uncertainty, and dynamic programming. 

The model consists of two periods, in period 

one the decision maker chooses consumption and investment 

on the wealth endowment m. The rate of return on investment 

r is uncertain, and determines the amount available for 

consumption in the second period. A dynamic programming 

solution (see Intriligator, 1971, and Kamien and Schwartz, 

1981) is presented (although the problem is simple enough 

for other methods to be applicable) since familiarity with 

this technique is required for the active learning model 

in Section 3. Using a Taylor series expansion around zero, 

and letting U(0) = O, the symmetric objective function 

at time t may be written 

U(xt) = Ux(xt) + 2 Uxx(xt)2 
(A.I.12) 



Obviously, the optimal policy in period two is to consume 

everything 

x2  = (1+r+q ) (m-yl) (A.I.13) 

where r is the rate of interest, and n is a stochastic 

disturbance with mean zero and variance s. By substitution 

into (A.I.11) the expectation of the maximised value for 

U2  is 

EU2  = Ux1) + 2 Uxx[(l+r)2  + s](m-y1)2 (A.I.14) 

The period one problem is then to maximise present utility, 

taking account of the influence of current decisions on 

future opportunities. 

Max J = EU1  + 11  EU2 (A.I.15) 

yl 

Where d is the rate of time preference. The first order 

condition for this problem implies 

U (8-r) + U [(l+r)'2  + d]m 
y1 = x 

xx 
2 (A.I.16) 

Uxx[(1+b) + (1+r) + s] 

The approximation entailed by (A.I.12) is only locally 

applicable, and certainly breaks down if U  + 
Uxxm  > O since this 

would mean a negative marginal utility of money. The 

expectation of y2  is given by the budget constraint 
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Ey2  = (1+r)(m-yl) (A.I.17) 

Thus from (A.I.16) it is possible to show that 

U m 
6-s  Ux  > r => yl> Ey2 (A.I.18) 

x 

With no uncertainty, if the rate of time preference is 

greater than the rate of interest then more of the budget 

will be allocated to current rather than future consumption. 

The more uncertain is the rate of return on investment 

and the larger is -Uxx  , the greater is the tendency to plan 

to consume more at present than in the future. 

APPENDIX II 

BAYESIAN LEARNING 

The following is based on Zellner (1971). The 

conditions under which OLS is equivalent to maximum likelihood 

estimation are well known: the errors e must be normally 

independently distributed with mean zero and common 

variance a , and the independent variable x, if 

stochastic, must be independent of s with distribution 

not involving s or the parameter Therefore it 

is sufficient to show that maximum likelihood estimation 

on the pooled data d0 + dl  is equivalent to maximum likelihood 

on d  followed by Bayesian updating with di. Since 

parameter estimates come from the derivatives of the likehood 



functions an appropriate simplification is to consider 

proportionally rather than equality throughout. 

The model may be presented 

xt  = yt0 + et t = 1, ... , N in do  

t = N+1, ..., N+M in dl. 

Given the normality of the errors the prior probability 

density function (given d 
0  ) is 

1 
Pr(d0: R,a) « ✓

C
N+1 exp [' 2Q (x

o  yoR) (xo'YoR)] (A.II.2) 

where subscripts denote the partition corresponding to 

d0  and dl. The likelihood of R, a given the new data 

in dl  is given by 

1 
dl  ) ✓ 6 M exp [ ' 26 (XI  -YIP) (XI  -Y1R) ] (A-II  . 3 ) 

The posterior is proportional to the product of the prior and 

the likelihood 

1 
Pr (dl  , do  ; R, c) a V G  N4-M+1 exp t - 26 { (xo-YoR ) (X O-Yop ) 

(A.II.4) 

+ (xl-Y1R)'(xl-Y1R)}] 

This forms the basis of the log likelihood function from 

which the parameter estimates are derived. 
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The alternative is to pool the data giving the likelihood 

function 

1 
L(R, o; do,  d1) ✓oN+M exp [' 20 (x 

-YYo(~ )' (xo  yos ) 

+ (x1-yiR) (x1-y1 W 

and taking a diffuse prior 

1 - - < < « 
Pr(0,o) « ✓o (A.II.6) 

O < o < 

Then the posterior probability density function upon which 
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