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1. INTRODUCTION AND SUMMARY 

Many econometric models for forecasting and policy analysis consist 

of a statistically estimated system of nonlinear simultaneous stochastic 

equations. The distinguishing feature of these models is the nonlinearity 

of the solution for the endogenous variables in terms of model 

disturbances. Despite the widespread use of these models, there has been 

little formal analysis of predictions based on such models. Furthermore, 

practitioners' validation of such models has proceeded, for the most part, 

on an informal basis. 

This paper covers a preliminary study of the finite-sample 

properties of predictors in nonlinear systems and as such provides an 

additional analytical treatment in parallel with the large-sample 

asymptotic analysis carried out recently by Mariano and Brown (1983a, 

1983b, 1984, 1985). 

The large-sample analysis, done by Mariano and Brown through 

asymptotic expansions for prediction error, points to potential short-

comings in the current practice of forecasting through deterministic 

simulations of the estimated model and suggests alternative forecasting 

procedure based on stochastic simulations. In particular, two alternative 

procedures are discussed in detail: the Monte Carlo and the residual-

based stochastic predictors. In a deterministic treatment, the 

disturbances in the model are replaced by their expected values in the 

simulation of the model. In stochastic simulations, on the other hand, 

the disturbances are replaced by random proxies. For the Monte Carlo 

predictor, the proxies are random draws from an estimated parametric 
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distribution - typically the multivariate normal. The residual-based 

predictor, on the other hand, uses the calculated sample period 

residuals as stochastic proxies for the disturbances. The deterministic 

predictor is used commonly in practice. The Monte Carlo predictor has 

been used in the past, but to a much lesser extent than the deterministic 

predictor. The residual-based is a new procedure developed in Brown and 

Mariano (1984) as a device to reduce the computational burden and 

misspecification sensitivity in the Monte Carlo predictor. 

The model, the alternative predictors, and their large-sample 

asymptotic properties are summarized in Section 2. For large samples, 

the asymptotic results lend support to the residual-based procedure as 

a viable alternative to the Monte Carlo and deterministic forecasting 

methods. In general, the deterministic predictor is asymptotically 

biased while the residual-based procedure, like the Monte Carlo, is 

asymptotically unbiased when the model is correctly specified and 

consistently estimated. If the distribution of the error process is 

misspecified, however, the Monte Carlo predictor becomes asymptotically 

biased while the residual-based remains unbiased provided the functional 

form is correctly specified and consistently estimated. When parameters 

are estimated efficiently and the number of Monte Carlo simulations does 

not exceed sample size, the residual-based predictor is efficient 

relative to the Monte Carlo in terms of asymptotic mean squared prediction 

error. These asymptotic results lead naturally to the development of 

model validation tests which are sensitized to deterioration in the 

predictive performance of the model. These specification tests, not 

summarized in this paper but discussed in detail in Mariano and Brown 

(1983b), are based on comparisons of stochastic simulations with actual 

observations over the sample period. They are asymptotically valid 
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significance tests and, as such, they provide a more formal model validation 

procedure than the common practice of calculating summary error statistics 

such as root mean squared percentage error and the like. 

Beyond point predictions of the endogenous variables, or point 

estimates of their first moments, it would be of major interest to 

develop prediction regions which reflect the inherent variability in 

the endogenous variables. Prediction regions are difficult to obtain 

for nonlinear systems due to the general non-normality of the endogenous 

variables. Thus, unlike linear systems, the distribution of the 

endogenous variables is not characterized by their first two moments. 

First and second moments, however, can be utilized to form conservative 

prediction regions using Chebyshev-type inequalities. One of the primary 

advantages of both Monte Carlo and residual-based predictors over the 

deterministic is that the stochastic simulations used to estimate the 

first moment may also be used to assess the higher moments as well as 

the probability distribution itself of the endogenous variables. The 

asymptotic analysis of point predictors summarized here has been extended 

in Brown and Mariano (1984) to the estimation of the higher order moments 

and the cumulative distribution functions of the endogenous variables in 

the nonlinear system. 

The applicability of this whole large-sample analysis of 

predictors in a practical modelling situation with a given sample size 

remains an open issue. One might suspect, for example, that the 

residual-based procedure may not perform as well in small samples. There 

are indications of this, for example, in Fisher and Salmon's (1984) 

stochastic simulations of the National Institute of Economic and Social 

Research and the London Business School models of the U.K. economy. 
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In an initial attempt to address this issue, we carry out in 

this paper an analytical investigation of the finite-sample properties 

of our alternative predictors. The exact bias and mean-squared 

prediction errors for the closed form, the Monte Carlo, and the 

residual-based predictors in a static nonlinear model are compared in 

Section 3. The use of antithetic variates to modify the Monte Carlo 

and residual-based predictors are also covered in this analysis, as-well 

as the bootstrap procedure as an alternative to the residual based. The 

derived moment expressions lead to some relative efficiency comparisons. 

They show for example that the closed form, the Monte Carlo and the 

Monte Carlo antithetic predictors all have the same finite-sample bias 

and that, in terms of exact mean-squared prediction error, the Monte 

Carlo predictor, with or without antithetic variates, is less efficient 

than the closed form predictor for any sample size but with the inefficiency 

disappearing as the Monte Carlo replication size increases indefinitely. 

The use of antithetic variates may or may not improve the Monte Carlo 

procedure depending on how the nonlinearities in the system affect the 

covariance stpzcture: specific conditions are given under which the use 

of antithetic variates leads to a smaller mean squared prediction error 

for the Monte Carlo predictor. 

For the residual-based predictor, the relative size of its bias 

and mean-squared error prediction error as compared to either the Monte 

Carlo or the closed form predictor is ambiguous. In general, the use 

of antithetic variates would alter the finite-sample moments of the 

residual-based predictor, with the direction of alteration again being 

ambiguous. Finally, the bootstrap predictor, which uses a sample from 

the empirical distribution of the residuals instead of a complete 

enumeration as in the residual-based, is shown to be less efficient than 
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the residual-based predictor: the additional sampling component in the 

bootstrap introduces another source of variation in the predictor. This 

inefficiency, however, disappears as the replication size in the bootstrap 

approaches complete enumeration. 

Unfortunately, the finite-sample results reported in Section 3 do 

not cover relative efficiencies with respect to the deterministic 

predictor; neither do they include comparisons between the Monte Carlo 

or the closed form predictor, on one hand, and the residual-based 

predictor on the other. To get some partial answers for these, we 

consider the single-equation log linear model in Section 4 and analyse 

first and second moment expressions for the various predictors. 
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2. LARGE-SAMPLE ASYMPTOTIC RESULTS 

This section introduces the model and the predictors to be 

discussed and summarizes the results contained in Mariano and Brown 

(1983a) and Brown and Mariano (1984, 1985) concerning the large-sample 

asymptotic properties of predictors in static as well as dynamic 

nonlinear systems. 

2.1 The Model in the Static Case 

In this section, we consider a model consisting of the following n 

simultaneous nonlinear stochastic equations: 

f(y
t
, x t ; 6) - ut  ; t - 1, 2, T (2.1) 

where f, yt, and ut  are n x 1; x  is m x 1; and 8 is p x I. The vector of 

functions, f, is completely known; 8 denotes the unknown parameter vector; xt  

represents nonstochastic exogeneous variables; and the ut  are unobservable 

disturbance terms for which we assume 

ut  - i.i.d. N(0, I), t = 1, 2, ..., T. (2.2) 

We also assume that, as a mapping from yt  to ut, (2.1)defines a locally 

unique inverse relationship 

yt  - g(ut) x t ; e) ' 
(2.3) 

This is the analog of the so-called reduced-form equations in the linear 

simultaneous equations model. In the nonlinear model, however, it is usually 

the case that g(•) cannot be written in closed form and, for a given set of 
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values of (ut, xt, 8), the corresponding value of yt  is calculated not 

directly from(2.3)but rather as the numerical solution to (2.1). 

We will also assume that at least the first two moments of yt  are 

finite. We denote these moments by 

Y(xt; 8) - Eyt  = Yt (2.4) 

Q(xt; 9) - E{(y
t 
 - Eyt) (yt  - Eyt)' ) = Sit. 

2.2 Main Problem 

Given a sample 
{(xt ' yt ): t - 1, 2, ..., T}, from which 8 can be 

estimated, and given x*  for some time point, *, outside the sample period, the 

main problem is to predict y*. Because of the static nature of the model, the 

solution to this problem also applies to multi-period prediction. 

2.3 Predictors of Interest 

We will analyze the large-sample asymptotic behavior of the following 

forecasting procedures. 

1. Closed-form predictor: 

y*(c)  - Y(x*; 8) -= 
fu* 

g(u*, x*; 8) pdf(u*)du*. (2.5) 

In general this integral cannot be evaluated analytically, since neither 

g(•) nor 7(•) is available in closed form. This integral has to be 

approximated through numerical integration techniques. 
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2. Deterministric predictor: 

y*(d)  = g(0, x*; 8). (2.6) 

Given x*  and A, y*(d)  is calculated as the solution to 

f(y*d), x*, 8) = 0. (2.7) 

3. Monte Carlo stochastic predictor: 

Y
S 
 E 

Y 
(m)/S' (2.8) 

* *s 
s=1 

where 

y*s) $(us, x*; 0) (2.9) 

us independent draws from N(0, 1), s = 1, 2, ..., 

S. Again, y*s)  is calculated numerically as the solution to 

f(y*g), x*; 6) = us
. (2.10) 

Also, note that(2-8)is one way of approximating numerically the closed-form 

predictor (2. 5)under the assumption that u*  - N(0, 1). 

4. Residual-based stochastic predictor: 



T 
Y*r)  - E y*t)/T (2.11) 

t-1 
where 

Y*t) - 
g(ut' 

x*; 8) 

(2.12) 

A 

ut  - f(yt, x
t; 8). 

2.4 Basic Approach 

Under appropriate conditions, we derive asymptotic expansions of the 

following form for the various predictors under study: 

w q 
-(q+l)/2  Y*-Y*  -

j
E
0 
 ej  + 0

p
(T } 

(2.13) 

 

A A q 

(y* -y*) (Y*-y*)' - E 
J-o 

M j + 0 P {T-(q+l)/2} 

 

where 

e~ - 0 (T j/2) 

  

 

M~ - 0 (T-J/2). 

 

( 2.14) 

From these expansions, define asymptotic moments (to order T q/2) as exact 

expectations of retained leading terms to order T-q/2  in the appropriate 

asymptotic expansions. In particular, to order T qJ2, asymptotic bias is 

q 
AB(y*) - E( E o e ) (2.15) 

-j 

and asymptotic mean squared prediction error is 
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AMSPE(y*) s E( E M~). (2.16) 

J.0 
We say that the predictor y*  is asymptotically unbiased if AB(y*) = o(1), as T 

goes to infinity. Furthermore, relative asymptotic prediction efficiencies of 

competing predictors are measured in terms of their AMSPE's. 

2.5. Main Results for the Static Case 

All orders of magnitude are under T going to infinity and all asymptotic 

moments are to order 1/T. Throughout, we assume that 

T1/2 (6-0) > N(0, 'f)• (2.17) 

Under additional smoothness conditions on f(•) and regularity assumptions 

about the distribution of yt, as given, for example in Mariano and Brown 

(1983a)or Brown and Mariano (1984), the following results hold for the static 

case: 

1. The asymptotic biases for the various predictors have the 

following orders of magnitude: 

AB(y*d)) = 0(1) 

AB(y*c)) = 0(1/T) 

AB(y*m) 
(2.18) 

) _ 0(1/T)  

AB(y*r)) 0(1/T) 



A 

2. For any consistent e, the AMSPE for the closed-form and the 

Monte Carlo predictors-are: 

AMSPE (y*c)) Q*  + r*  Tr*•/T 

AMSPE(y*m)) = a*  + r* err*'/T + a*/S, (2.19) 

where T is implicitly defined in(2.17)and r*  is defined in (2,21) below. 

A 

3. If 0 is the maximum likelihood estimator (MLE) of e, or any 

other estimator asymptotically equivalent to MLE, then 

AMSPE(y*r)  ) A*  + r*  Y'r*' /T + {Q*  - (r*—H) 'C ( r*  H)' }/T, ( 2.20) 

where 

n*  = Q(x*;e), 

r*  = 8Y(x*;6)/ae, 

T 
H = plim E Oht(e)/ae}/T, (2.21) 

t=1 

ht(e) = h(yt, xt, x*; e) 

8(f(yt, xt; e), x*; 9). 
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2.5 The Dynamic Case 

Now, consider the model with structural equations 

f(yt, yt-1' xt' 
6) U (2.22) 

ut - i.i.d. N(0, I) for t - 1, 2, ..., T 

assumed to define a locally unique solution 

yt glut' yt-1' x
t; 8). (2.23) 

Given the same sample as before, namely observations on xt  and yt  for t s 

1,..., T, we now consider the problem of predicting 

yT+1 g(uT+l' YT' xT+1' 6) 
(2.24) 

and 

yT+2 g(uT+2' yT+1' 
xT+2' () 

g{uT+2' g(uT+1' YT, xT+l)' xT+2' 0} (2.25) 

As before, we abstract from the problem of forecasting exogenous variables and 

assume that we know the values of xT+l  and  xT+2'  In this dynamic model, 

multi-period-ahead prediction entails additional statistical complications 

beyond those encountered in one-period predictions - hence the inclusion of 

yT+2 in the discussion. 

The predictors of interest are as defined before in the case of YT+1' 



- 13 - 

yT+l - S(0' YT' XT+1' e)  

S 
yT+l = E g(us' YT' aT+l' e)/S (2.26) 

s-1 

T 

yT+l = E g(ut' yT' ~"T+1' 8)/T 
t=1 

where 

u
s 
 - independent draws from N(0, I) for s - 1, 2, S, 

A A 

ut  = f(yt* yt-1' xt' e)' (2.27) 

For a two-period-ahead-prediction (for T even), 

yT+2 - 8(0' yT+l' x'T+2' e)  

S 

yT+2 = s 1g{us2' g(usl' yT' xT+1' 8)' xT+2' 6}/g (2.28) 

T/2 A A 

yT+2 - El g{u to g(uT/2+t' YT' xT+l' 8)' xT+2' 01/(T/2), 
t  

A 

where u  is as defined in(2.27),and 

usi 
 - independent draws from N(O,I) for i=1, 2 and s-1, 2, ..., S. 

For one-period dynamic prediction, the problem parallels the static 

case. The main difference lies in the presence of YT in the reduced-form 

equation for yT+l. Since prediction of yT+l  is made conditional on the 
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observed value of yT, one way of pursuing our analysis is to consider the 

asymptotic behavior of dynamic predictors conditional on this observed value 

Of yT. Because of this conditioning process, the initial assumptions we make 

concerning the behavior of yt  and the smoothness of the structural equations 

now pertain to conditional distributions given yT. These assumptions parallel 

closely those introduced by Brown and Mariano (1984) for the static case and 

are enumerated in detail in Brown and Mariano (1985). Asymptotic moment 

expressions for the deterministic and the Monte-Carlo and residual based 

stochastic predictors are the same as their counterparts for the static case, 

as summarized in the preceding section, except for the change in the 

interpretation of quantities like Q*, `Y, and T*  in terms of conditional 

distributions given yT. 

For two-period-ahead prediction, a reformulation of the model and of the 

problem of predicting yT+21 
 given observations up to time T, allows us to 

imbed this problem in the context of one-period dynamic prediction. This 

approach allows us to infer asymptotic moments for the prediction errors in 

the deterministic, the Monte-Carlo, and, in particular, the residual-based 

dynamic predictor defined in (2.28). These asymptotic moments differ from the 

one-period, and hence static, cases only in terms of the sample halving for 

the residual-based predictor. Thus, the same qualitative conclusions follow 

concerning the relative asymptotic efficiencies of predictors, namely: 

I. The closed-form predictor, Y2(YT' xT+1' xT+2'e),where 

Y2(-) - E(yT+21YT), 

provides a lower bound for AMSPE within a class of stochastic predictors of 

yT+2 based o^ a consistent A. However, this procedure is not feasible. 

2. The Monte-Carlo and residual-based predictors of YT+2,  as 

defined previously, are both inefficient relative to the closed-form 
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predictor,in terms of AMSPEs. 

3. With sufficiently numerous replications, the inefficiency 

of the Monte Carlo predictor can be made arbitrarily small. 

4. The residual-based predictor of yT+2 is asymptotically 

efficient relative to the Monte-Carlo predictor when the Monte Carlo 

replication size (S) is less than or equal half the sample size. For m-period 

ahead prediction, the effective number of sample residuals used in the 

residual-based procedure (as defined here) would be T/m and the condition for 

the efficiency of the residual-based relative to the Monte-Carlo is S < T/m. 

S. While a ranking can be established for the closed-form, the 

Monte Carlo, and the residual-based predictors as indicated above, their 

AMSPE9 differ from each other by an amount which is small relative to total 

AMSPE. Thus, for large samples, the possible gain in AMSPE from using one of 

the three predictors rather than another is in fact small. 

The above results indicate that the version of the residual-based 

procedure we have analyzed here suffers from a deterioration in precision 

(in terms of its AMSPE) as the forecast horizon is increased. Thus, 

alternatives to sample-splitting should be explored in order to improve the 

asymptotic precision of the residual-based procedure in multi-period ahead 

forecasting. One possibility is to sample from the empirical distribution of 

the residuals, as in the bootstrap. When predicting m-periods ahead, each 

replication requires m independent realizations for the disturbances. These 

may be proxied by m independent draws from the empirical distribution of the 

residuals. An extreme case of this procedure is complete enumeration, where 

all Tm  alternative realizations are used. (The residual-based procedure as 

implemented for the static and one-period ahead dynamic cases is an example of 

complete enumeration.) 
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Alternatively, we should also consider the behavior of stochastic 

predictors, both Monte-Carlo and residual-based, when combined with variance-

reduction techniques. Some references to earlier work along these lines are 

Calzolari (1979), where dramatic improvements are obtained in the precision of 

the Monte Carlo predictor through antithetic variates; Calzolari and Sterbenz 

(1981), where control variates are used in conjunction with Monte Carlo 

simulations to improve the estimates of the second moments of endogenous 

variables; and Fisher and Salmon (1984) where antithetic variates are used for 

the residual-based procedure in stochastic simulations of the National 

Institute of Economic and Social Research and the London Business School 

models of the U.K. economy. Our preliminary formal results indicate the 

possiblity of gains in the asymptotic precision of the Monte Carlo and 

residual-based predictors when combined with antithetic or (in some cases) 

control variates. Due to the nonlinearity of model solution with respect to 

the structural disturbances, however, the gains in precision may be of a 

smaller order of magnitude than halre been obtained for estimators in linear 

models. Also, under certain conditions, the asymptotic efficiency of the 

residual-based predictor relative to the Monte Carlo is maintained when 

antithetic anj control variates are used. 



3. FINITE-SAMPLE ANALYSIS FOR THE GENERAL STATIC NONLINEAR 

In this section, we consider a general static nonlinear model as 

described in the preceding sections and derive propositions concerning 

the first two finite-sample moments of the Monte Carlo and residual-based 

predictors. We also deal with modifications of these predictors through 

the use of antithetic variates and the application of the bookstrap in 

implementing the residual-based procedure. In the bootstrap, stochastic 

proxies are generated by sampling from the empirical uniform discrete 

distribution of the residuals instead of a complete enumeration as in the 

residual-based. 

Note that any predictor, say y*, in the group mentioned above 

is independently distributed of u*. Hence, its mean-squared prediction 

error is 

MSPE (Y*)=  E  (Y*-Y*)(Y*-y*
) 

= E (Y*-Y*) (Y*-Y*) +E(Y*-Y*) (Y*-Y*) 

= Q*  + MSE (y*) 

(3.1) 

where 

MSE (y*) = E (Y  
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V (Y*) = E (y*-Ey*)  (y*-Ey*1 ' (3.2) 

B (Y*) _ (Ey*-Y*) (Ey*-Y*) ' . 

The second equality in (3.1) holds if and only if y*  and u*  are 

statistically independent and is appropriate for the static model but not 

for the dynamic model. The rest of the equations in (3.1) is a 

matter of notational definition. Measuring finite-sample 

efficiency in terms of MSPE, we can see from (3. 1), then, that the 

relative prediction efficiency of any two predictors would be equivalent 

to their relative efficiency as estimators of Y*. Furthermore, their 

relative prediction efficiency would depend only on their finite-sample 

covariance matrices, V(•), if these two predictors have the same 

finite-sample bias. 

The first two propositions we present serve to formalize the 

intuitive notion that, in relation to the closed form predictor, the 

Monte Carlo predictor introduces additional stochastic noise in the 

calculation of the estimated mean function Y*  and hence must have a 

larger mean-squared prediction error than the closed form. 

Proposition 1. The closed form predictor and the Monte Carlo stochastic 

predictor have the same finite-sample bias. 

Proof. For s = 1, 2, ..., S, 

E [g(u 
s
, x*; 8) 101 = Y(x*; 8) (3.3) 
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since u  is independent of 8. Therefore 

E (y* (m)  18) = E E [q (u , x*; 8) 18l /S 
s 

s 

= Y(x*;  8) (3.4) 

and, hence, 

E (y* ) = E[E(y*  
(m)

(m) (c) 
I8l = E [Y(x*;8)l = Ey* . (3.5) 

Proposition 2. In terms of mean-squared prediction error, 

MSPE (y*(1R) ) - MSPE (y* (c) ) = E [Q  (x*; 8)l/S] > O. (3.6) 

Consequently, for any finite sample size T, the Monte Carlo predictor 

is less efficient than the closed form predictor. However, this 

inefficiency disappears as the Monte Carlo replication size, S, tends to 

infinity. 

Proof. Since Y% (m)  and % (c)  have the same mean (by 

Proposition 1), it follows that the difference in their MSPE is equal 

to the difference in their variances. Now, 

V (p*(m)  ) = E[V(Y*
(m)  I8) ] + V[E(%

(m) I8) 
 ] (3.7) 
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From (3.4), the second term in (3.7) is 

V[E(Y*
(m)

l0)] = v[Y(x*; 8)] = V(Y*(c)) (3.8) 

Since u
s 
 and 8 are statistically independent, the second term in 

(3.7) simplifies as follows 

E[V(Y*(m) E[V(Eg(us
, x*; e)/sle)] 

s 

E[Q (x*; 0)/S1 . (3.9) 

Another way of summarizing the argument in Propositions 1 and 2 

is as follows. We can decompose the estimation error in Y*
(m)-

Y*  as 

Y* 
(m) -Y* _ (Y*(m) -Y*) + (Y*-Y*) 

_ (Y*(m)-Y*(c)) + (Y*(c)-Y*) (3.10) 

where 

Y*  = Y(x*; 0) 

Y* = Y (x*; 8) = Y* (c) . 
(3.11) 

The first term represents the additional variation due to the Monte Carlo 

approximation to the multiple integral Y*  and is the source of 

inefficiency in the Monte Carlo predictor relative to the closed form. 
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Since E(y*(m)le) = Y*, the first term has zero mean and, thus, the 

Monte Carlo and the closed form predictors have the same finite-sample 

bias. Furthermore, the cross-product of the two terms in (3.10) has 

zero expectation: 

E [ (Y*-Y*) (Y* (m) -Y*) ' J = EE [ (Y,-Y,) (y* (m) -Y) 

= E { (Y*-Y*) E [ (y* (m) -Y*) 
 , 1

6] 
 } 

M (3.12) 

with the last equality holding because E(y*(II')18) = Y*. 

Thus, we have 

MSE(y (m)) = MSE(y (c)) + E(y 
(m)-

Y ) (Y (m)_Y )' * * * * * * 

MSE(y*(c)) + E{E(y*(m)-Y*) (y*(m)-Y*) ~8} 

MSE(y*(c) ) + E[E2(x*; 8 )/S1 (3.13) 

which is a re-statement of (3.6) in Proposition 2. 
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Now, consider the Monte Carlo predictor with antithetic variates: 

Y* 
(ma)

_ [4 (us) + 4 (-us
) ] /2S 

s 

(y(m) + y m 
* * 

)/2 (3.13) 

where 

g (u) = g (u,x*; 8) , for any u, 

(3.14) 

s 

Proposition 3. The following relationships hold for the Monte Carlo 

predictor with antithetic variates: 

ma 
E(y*  () 1 8) = Y(x*; 6) = Y*  (3.15) 

V(y (ma) ) = [V(y (m) ) + COV(y (m) ,Y (m')  )1/2  (3.16) * * * * 

y MSE( * (  )) = MSE(y* (c) )+(1/2S)E[Q(x*;8) 

+ E{g(u s )g~ s 
(-u )~8}l. (3.17) 

Consequently, the Monte Carlo predictor with antithetic variates has the 

same finite sample bias as the standard Monte Carlo and the closed form 

predictors and is less efficient than the closed form predictor with 

the inefficiency converging to zero as S approaches infinity. 

Furthermore, the Monte-Carlo-antithetic predictor would be more efficient 
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relative to the standard Monte Carlo predictor if and only if the two 

terms composing it in (3.13) have a covariance which is smaller than 

the variance of the standard Monte Carlo predictor; that is, if and only 

if 

COV (Y* 
(m) 

 ,Y* 
(m  ) < V (Y* (m)) . (3.18) 

In particular, this inequality would be satisfied if y* and y*  

are negatively correlated. 

Proof. (3.15) and (3.16) follow directly from (3.13) and the 

fact that 
m) (m ) Y* and y* have the same probability distribution since 

-us  has the same distribution as us  and is also independent of 8. 

A calculation similar to (3.10) and (3.12) leads to (3.17): 

From 

Y*  () -Y*  _ (Y*  () -Y) + (Y*-Y*) . (3.19) 

we get 

(ma) (c) (ma) (ma) MSE (Y* ) = MSE(Y* ) + E (Y* -Y*) (Y* -Y*) ( 3.20) 

because of (3.15) and the result that 

(ma) EI (y* -Y*) (Y*- 8] = 0. (3.21) 
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Now, given 8, we have 

E {y* (ma) _Y*) (g*  (ma)  -Y*) ( el 

(1/4)V(y*(m) Y (8) + (1/4)V( *(m  ) 18) 

+ (1/2) COV((y* (m) ,y*(m ))l6], (3.22) 

(3.17) now follows from 

V(Y*(m) 
V(y*{m ) I6) = Q(x*;e)/S (3.23) 

and 

COVI(y*(m),Y*(m'))I0l = E(g(u s )g~ s (-u )del/S. (3.24) 

Finally, note that the third term in (3.17) is the expected value of 

ma 
(3.22) and, hence, is positive definite - thus showing that y*()  is 

inefficient relative to y*(c), 

E.D. 

Now, consider the residual-based predictor with and without 

antithetic variates: 

Y* 
zg ( u t) /T  

t 

and 
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( ra) 
.. 

Y* = E[g(ut) + g(-ut)l/2T 
t 

= Y* (r) + Y*(r1)l/2. (3.25) 

As in the case of the Monte Carlo predictor, the use of antithetic 

variates would add nothing but duplicative calculation if g(.) is an 

even function of u. In general, unlike the result for the Monte Carlo 

predictor, we now have 

E(y*(r)  8)* Y(x*;6) (3.26) 

since the conditional distribution of u  given 6 would not be the 

same as the unconditional distribution of u  with 0 =0. Consequently, 

the finite sample bias of the residual-based predictor would differ from 

that of the closed form and the Monte Carlo predictors. Furthermore, 

the finite-sample efficiency of the residual based predictor relative 

to the closed form is ambiguous. Very simply, we can write 

(r) ^ (c) ^ (r) ~ - (r) ' 
MSPE(Y* ) = MSPE(Y* ) + E(Y* -Y*) (Y* -Y*) 

+ E(Y* 
(r) -

Y*) (Y*-Y*) 

+ E(Y*-Y*)(y*
(r)-

Y) (3.27) 

and the last two terms, coming from the cross product in the error 

decomposition 

Y* Y *  _ Y* Y*) + (Y*-Y*) , (3.28) 
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are not necessarily equal to zero as in the Monte Carlo predictor. 

For the residual-based predictor with antithetics, the two 

components y*(r)  and y*(r  ) in (3.25) do not necessarily have the 

same distribution unless U  and -ut  are identically distributed. In 

general then, the use of antithetics would change the finite-sample of 

the residual-based predictor and no uniform statement can be made about 

the direction of change. However, if u  and -ut  have the same 

probability distribution, some additional comparisons can be made. 

Proposition 4. Suppose u  and -ut  are identically distributed. 

Then 

E(y*(r)  = E(y*(ra)) (3.29) 

and MSPE(y*(ra)) < MSPE(y*(r)) if and only if 

COV(y+
(r) 

,Y*
(r') ) < V(Y*( r) ) . (3.30) 

Proof. Under the assumption of identical distributions for 

11  and -u
t
, Y*(r)  and y*(r  ) would also have identical distributions 

and (3.29) then follows directly from (3.25). Furthermore, 

V(y (ra) ) _ ( 1/2) [V(Y (r)  ) + COV(y (r)  ,y (r ~ ) ) ] . (3.31) * * * * 

The second part of the proposition now follows from (3.29) and (3.31). 

.E.D. 
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Another modification of the residual-based procedure is the 

bootstrap predictor which we define as 

R 

Y*  (b) = E g(w. , x* , A) /R 
J=1 

(3.32) 

where w1, w2,..., wR  are independent random draws (without replacement) 

from the empirical distribution of the residuals. 

Proposition 5. For the bootstrap predictor,  

Y 
(b) = EY(r) 

E * * (3.33) 

and 

MSPE(y*(b)) = MSPE(Y*(r) ) + E[V(y*(b) 1A) ] . (3.34) 

Thus, in comparison with the residual-based, the bootstrap predictor has the 

same finite-sample bias and a larger mean squared prediction error. The 

difference in MSPEs is strictly positive definite for any replication 

size R but approaches zero as R approaches T. 

Proof. The conditional distribution of wj  given 8, for any 

j = 1, 2,..., R, is discrete with uniform mass of 1/T at the points 

U 
for t=1, 2,..., T. Thus 

E [g (w, , x*; A) I A] = Eg (ut, x*; 6)/T = y* (r) (3.25) 

t 

and 

Ey^ = EE(y*(b) IA) = EYtr~ 



Furthermore, 

V(y* (b) ) = EV(y*(b)  10) + V(E(y*(b)  I8)l 

= EV(y*(b)  10) + V(y*(r)  ) , by (3.35) , (3.36) 

thus proving (3.34). Finally, to prove that 

y EV-( *(b)~0) -> 0 as R } T, (3.37) 

we note that V(y*(b'10) is the variance of the mean based on a random 

sample of size R drawn without replacement from a finite population of 

size T. For R = T, this sample mean will always equal the population 

mean. 
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4. EXACT MOMENTS FOR PREDICTORS IN THE LOG-LINEAR UNIVARIATE MODEL 

We now consider, as a special case, the log-linear univariate 

model 

Log y = a+Sx
t
+e
t
, e

t 
 ~ iid N(O,G2). (4.1) 

This is one of the simplest nonlinear models which we can use to 

illustrate the analysis in the paper. For example, Wallis (1979) and 

Calzolari and Corsi (1977) have used this model in their discussion of 

the bias in the deterministic predictor. Chesher, in his comments in a 

recent conference, also derived the finite-sample biases for the 

deterministic, Monte Carlo and residual-based predictors in this model. 

This model has a closed form solution 

yt  = exp(Gut+a+sxt), 
ut = E

t/a 'L. iid N(O,1) (4.2) 

so that y  has a log-normal distribution which we denote by 

yt  `u LogN(a+6
t

,(j2) (4.3) 

and a mean function 

Yt  = Ey
t 
 = exp(a2/2  + a+Sxt). (4.4) 

The predictors of y*  are 



- 30 - 

(d) Y = exp (a+fix*) 

Y*  (c)  = exp (G /2+a+fix*) 

= Y*  (d)  .eXp(a /2) 

(m) ^ (d) S , 
Y* = Y* • I E exp(6 u

s
US] 

s=1 

Y* = Y* 
 (m) (d), [ E exp(a ut) /Tl 

{4.5) 

t=1 

- y*(d)  • [E exp(ct) /Tl 
t 

(ma) (d) 
S 

Y* = Y* • [ E {exp(a u
s)+exp(-0us) 1/(2S) l 

s=1 

T 

Y* Y* 

,. 
(ra)= (d) 

-I E {exp (Et)+  exp (-Et) }/(2T) l 
t=1 

R 
Y* Y* (b) = (d)•[ E exp(w

j
)/Rl 

j=1 

where 

u = independent draws from N(0,1) for s = 1,2,...;S, 
s 

Et  = Log yt-a-Sxt (4.6) 

ut  = Et/6 

w, = independent draws from the discrete uniform distribution over 
J 

{Et:t=1,2,...,T} for j=1,2,...R, 
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and a, S, and a are the usual least squares estimators so that 

a+Sx*'v x(a+Sx*,a2v2 ) (4.7) 

for v2  = (1,x*)(X'XX-1  1 

(x *J 

and 

(T-2) a2  /o2  'v X2  (T-2) , independent of a and (4.8) 

We see from (4.5) that 

(d) `v LogN(a+Sx*.Q2v2 Y* ) (4.9 

and hence 

EY
(d) exp(a+Sx*+62v2  * 

= /2) 

2 
E (y* (d) ) = expf 2 (a+~~s.*+a2v2) } . (4.10) 

For all the other predictions listed in (4.5), we can write each one 

of them as 

^ (d)  Y *  = Y* Z (4.11) 
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where Z changes across predictors but is always independently distributes 

of y* (d) . 

For the closed form predictor, we then have 

(c)  Ey* _ [Ey*  (d)  ] .E[eXp(62J2) ] 

_ [Ey*  (d)]•9[Q
2
/(2(T-2))] (4.12) 

E(y*(c) ) = E(y*(d)  ) 2 .01a2/(T-2) ] 

where ;6 (•) is the moment generating function of a central Chi- 

squared distribution with (T-2) degrees of freedom. 

For the Monte Carlo predictor, it can be directly verified that 

E (y* 
(m) 

 I T y (c)  ) = *  (4.13) 

so that 

Ey*
(m) 

= Ey,, (4.14) 

Also, 

E(y*(m))2 = E(y* 
s 

(d) 2. 
) /S) 2 (4.15) 

s 

= E(y*(d) ) 2 •{w[2Q2/(T-2)] +(S-1)~[a2/(T-2)]}IS 

since 
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E(Eexp (6
s E )) 2  = E [E(Eexp (

s
)) 2 1CF] 

s s 

E[Sexp (2Q2) + S(S-1) exp(C) ] 
(4.16) 

= SR (2Q2/(T-2) ) + S(S-1)~(a2/(T-2) ) 

with the second equality holding because 

exP(e
s

) ~t7 i.i.d. LogN(0,Q2) . (4.17) 

For the residual-based predictor, the vector of least squares 

residuals has a multivariate normal distribution: 

E _ (e1,E21 ... ,E ) ti  N(0,a2Q) 

Q = I-X(X~X)-1X, = (qij) 

so that 

e
t 
 ti LogN(0,62

gtt
) 

and 

2 E(y
*(r) ) = E(y (d)  ) . [£ (eG qtt/2 /T] * 

t 

E(y(r))
2
= E(y*(d))2•[Eexp(2a q.. 

Et  ) + 2 E exp(Q2p../2)] 
t i;ej 1J 

Pij = qii-2qi.+q... 
J JJ 
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With regard to antithetic variates, this is a special case 

where E 
t t 

and -E have the same probability distribution. Thus 

the use of antithetic variates will not affect the first moment of 

not only the Monte Carlo predictor but also the residual-based 

predictor. 
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