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1. INTRODUCTION AND SUMMARY

Prediction theory for stationary stochastic processes as developed by
Wiener and Kolmogorov and exposited by Whittle (1963) has a wide range of
applications in theoretical and empirical economics. Results for the fore-
casting or pure prediction problem underlie theoretical models of optimal
behaviour in dynamic and uncertain enviromments, and support empirical time series
studies in considerable number. The signal extraction problem arises when
the variable to be predicted or estimated is jointly stationary with the
observed series, specifically as a signal observed with a superimposed
error, or more generally as one component of a process comprising several
unobserved components; applications range from permanent income theory to
the seasonal adjustment of economic time series. The Wiener-Kolmogorov
theory is heavily utilized by such textbook authors as Sargent (1979) in

macroeconomic theory and Nerlove et al. (1979) in time series analysis.

The basic requirement of the Wiener-Kolmogorov theory for purely
nop-deterministic stationary processes is knowledge of the autocovariances
(?r equivalently the spectral density) of the variable to be predicted,
or‘knowledge of the auto- and cross-covariances of the unobserved
components, and hence of the observed variable, in the signal extraction
problem. Both in theoretical work and in practical implementation,
this requirement has been met by postulating models for the relevant
processes and expressing the autocovariances as functions of model parameters.
Most bften, these models are linear autoregressive-moving average (ARMA)
models. Attention is usually restricted to linear least squares (l.l.s.)
prediction and estimation, in which the unknown variable is predicted or
estimated by a linear function of observed values chosen to minimize

the mean square error. The unrestricted least squares predictor is the
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conditional expectation, but if the process is normally”distributed
this coincides with the 1.l.s. predictor. The set of observed values
is usually assumed to extend from the indefinite past, that is, to

comprise a semi-infinite sample.

Whereas the classical theory is limited to stationary processes,
applications often relate to non-stationary processes variously termed
accumulated, integrated, or difference-stationary processes. Thus
thepretical models may deliver propositions that certain variables follow
random walks, and ia empirical analysis of economic time series.it is a
common finding that series must be differenced at least once before
appearing stationary. In such circumstances the usual approach is to
apply to the differenced series the theory relevant to stationary processes.
The assumption of a semi-infinite sample céuses difficulties that havet
not been satisfactorily resolved, for example, the observed series thev
has unbounded variance. Of course in practice only a finite record is
available, and we see kelow that a relevant approach can be developed
which, by paying proper attention to initial conditions, satisfactorily

accommodates difference-stationary processes.

In this paper we present the theory of 1.l.s. forecasting and signal
extraction for autoregressive-moving average models that are free of any
parameter restriction, such as stationarity or invertibility restrictions.
The approach we adopt is recursive, in which estimates or forecasts formed
from information available at a particular point in time are sequentially
updated as each successive observation becomes available. The techniques
are those of Kalman filtering, studied more extensively in the control
theory literature, and much of the paper is concerned with extending and

adapting results from that literature to the present statistical time
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series problems. The basic requirement of the theory remains the
covariance structure of relevant variables, and this is provided by
the ARMA model, whose parameters are assumed known and time-invariant,

together with appropriate initial conditions.

In Section 2 we present two fémiliar examples of the general
problems, namely forecasting the first-order ARMA process and extracting
a first-order autoregressive signal from noise-contaminated observations.
iIn each case we develop recursions for the 1l.l.s. forecasts or signal
estimates from first principles, and the treatment is accessible to a
reader with no prior knowledge of the Kalman filter. The equivalence
to Wiener-Kolmogorov theory in the case that this is applicable is
described, but it is also seen that the 1l.l.s. recursions are applicable

to non-stationary and non-invertible cases of the same underlying models.

In Section 3 we review relevant material from the control theory
literature. The state space representation of a linear dynamic system
is presented, together with the 1l.1l.s. recursions more familiarly known
in that context as the Kalman filter. An important question is whether
these time-varying recursions eventually achieve a form which has constant
coefficients, or a steady state, and we record a number of theorems dealing
with the convergence of a key quantity in the Kalman filter equations,
namely the error variance of the one-step-ahead estimate of the state

variable.

The forecasting and signal extraction problems for general ARMA
models are dealt with in turn in Sections 4 and 5. 1In each case we first
present a convenient state space representation of the underlying time

series model, and then investigate the applicability of the apparatus of
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Section 3. The 1l.l.s. recursions are shown to converge to a steady state
from given initial conditions in circumstances more general than those
considered in the time serjes literature. As with the simple examples of
Section 2, the results cover non-stationary and non-~invertible cases of
the underlying modéls. For stationary models, to which the Wiener-
Kolmogorov theory applies, we show explicitly that the steady state of the

Kalman filter coincides with the classical time-series formulae.

A particular circumstance not covered by these general results is
one in which two components of an unobserved-component ARMA model have
antoregressive operators sharing an unstable common factor. For example,
in the seasonal time series context, the seasonal component might contain
a seasonal difference operator and the non-seasonal component a simple
difference operator. In Section 6 we return to direct consideration of a
simple example, namely one in which a single explosive common factor is
present, and show that the 1l.l.s. recursions lead to a steady state of the
expression for the estimate of the components, while its error variance
diverges. Because convergence of the error variance is sufficient for
convergence of the state estimate recursion, the control theory literature
has concentrated on circumstances in which the former is achieved. Our

example, however, provides a practical demonstration that it is not a

necessary condition.

In Section 7 we discuss the relationship between the results of this

paper and other treatments of the same, or closely-related, problems in

the time series literature, and present some concluding comments.



2. TWO LEADING EXAMPLES

2.1 Forecasting the ARMA(1l,1) process

In this section we develop from first principles recursive methods

of forecasting a variable y which obeys the ARMA(1,1l) process

(2.1) Y, = ¢Yt-l + € - eet_l

where Et is white noise with constant variance 02. It is assumed that
¢#6, but these parameters are otherwise unrestricted. At time t the
observed history is {yT; Ofot}, and the problem is to comstruct the 1l.1l.s.

forecast of Y1 denoted ?t+l,t' together with quantities such as the

2

mean square error or innovation variance E{(yt+l = ?t+l t) } =1 . It
1

t+1

is convenient to express y as the sum of two random variables, one of
which, x, is forecastable while the other, ¢, is not (other than at a value

of zero). Thus we write (2.1) as

x = by, T P&,
(2.2)
Y, = Xt g -

Then x obeys the stochastic difference eguation

(2.3) x, = ¢x., + (e=0e

and forecasts of x and y coincide.

The recursive procedure is started off at time O. Before any

observations are made, our state of knowledge about xO is assumed to

2

comprise its expectation xo -1 and variance pO,—l = E{(x0 = xO,_l) }.

’

Since € is serially yncorrelated, the 1.1.s. forecast of yo is simply

2
X with variance I = + O and the covariance between and
¥o0,-1' v o Fo,-17 "¢ Yo
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1

X, is equal to Py _1° On observing Y, we first update our initial estimate

of xO by projection on yo, giving the 1l.1l.s. estimate

A A _l A
5 = + -
(2.4 xO,O xO,—l pO,—lZO (YO yO,-l)

A -l.l
= +
*0,-1 Po,-1%0 Yo’

where 90 is the innovation in y, and PO _120 is the least squares regression
’

coefficient. The corresponding estimate of the unobserved EO is

2.~1
.5 5 = - % = hY
(2-3) 0,0 Yo 0,0 oezo o'
using Zo - po'_l = og. Since 80 - éo'o = ~(xo - io’o) their variances

are equal, to 128 o Say. which from the projection (2.4) is given as
14

2 =il 2 ot

(L Po,o0 = Po,-1 T Po,-1%0 T 9Pg, 1%

Turning to the one-step-ahead forecast, from (2.2) we have

(2.7) X1,o = Mo — 088,
with variance p = E{(x, - & )2} = 62p + so from (2.6) we have the
1,0 1 1,0 0,0
recursion
22 -1
Sl pl.O =0 oepo,—lzo :

Finally, since the forecasts of x and y coincide, from (2.5) and (2.7)

the 1.l.s. forecast recursion for y is obtained as

5 2.-1
(2.9) yl,O = ¢yo BUEZO (YO YO,—l) '

i s > = + 5
with mean square error El pl'o o

The sequence of steps leading from (2.4) to (2.9) may be repeate&

as each new observation arrives, yielding the general recursions, valid



fOI t=0,1,2, L ]

2.-1 .
(2.100(@)  §,.., . = ¢y, - 00 L ly. -F .,)
(b) z = p + 02
t t,t-1 £
2 2 !
€@ Pea,e T 9P et -

This system of equations provides the l.l.s. forecasts of y, irrespective
of the stationarity or otherwise of the process, or of the invertibility
of its moving average component, no assumption about the values of ¢ and 6

having been made, except that they are distinct.

. The coefficient of the innovation in the forecasting rule (2.10a)
varies over time, and it is of interest to study its evolution, as
described by equations (b) and (c). We note, however, that these are
independent of the data, so there is no necessary connection between the
coefficient sequence and the observation sequence: the coefficients can

be calculated "off-line". Combining equations (2.10b,c) their evolution

is described by the nonlinear difference equation

fz.ll) Peir, e ~ ezoipt't_l(oi * pt,t—l)_l = hipy ¢ ) » say.
This has fixed points at p=O and p = (62-1)02, furthermore h'(pt,t—l) > 0
and h“(pt t—l) < Q for pt,t—l > 0. In consequence

(i) if |6| < 1, then pt+l,t coﬂverges monotonically to zero and the

innovation variance to oz for all pO 1 > 0, the second fixed point being
=

non-positive,

(1i) 1if |6{ > 1, then P .1 p converges monotonically to (62-1)0§ and
. .

2

, \ 2
the innovation variance to 6 OE

for all Py _1 > 0; if, on the other hand,
& St

0,-1 " O, then Peyl,t = O for all t.



Thus in all cases, again irrespective of the value of ¢, the recursions

(2.10) deliver a steady-state forecasting rule. 1In case (1), this is

(2.12) = dy, - Oy -9, . ) .

Yiel, t

whereas in case (ii), with |9' > 1, unless pO 1 = 0, we have
, -

¢y, - 8 (Yt_yt,t—l)

il

(2.13) Yee1,t

With respect to invertibility, we note that this is immaterial to the
existence of the steady-state forecasting rule; indeed, if the process

is non-invertible, with lBl > 1, the recursions deliver an "invertible"
steady-state rule (2.13), in which the coefficient of the innovation ?t

is G‘l, corresponding to the moving average coefficient in the observationally
eguivalent invertible process. The only case in which this is not so is

|6l > 1 and pO,—l = 0. The latter requirement represents perfect

knowledge of XO' and is unrealistic: in practical situations it is

customary to assign a relatively large value to Py _y amounting to a
, -

"diffuse prior" on Xy and in the remainder of this section it is assumed

that Py 3 > 0.
,—-

The forecast error associated with the application of the steady-
state forecasting rule from the beginning can be readily described. First,
if |Ol < 1, repeated substitutions in (2.12) yield the forecast as a

function of the data and initial condition:

t
j 41,
(¢-0) ¥ eJyt_j G M SN

j=0

(2.14) Yeel,

Similarly, lagging and repeatedly substituting the relation

Lt = yt = ¢yt—l + OEt—l gives an autoregressive expression for yt+1:
t 3 t+1 t+l
- > - . + -
Yeel eyt (0-0) ] 0 Y-y R E



Subtracting, the forecast error is obtained as

9 = ¢ A T R

Yier ~ Teal,t t+l o~ %o,-1

which approaches the white noise random variable €esl if |B| < 1; the

initial error (x0 = RO —l) has a persistent effect if lel = 1, reflecting
. 14

the continuing cost of using the steady-state rule rather than the

general l.l.s. recursions (2.10) in this case. Secondly, when |e| > 1,

from (2.13) we similarly obtain

- (t+1) .
+ 8
Ye-4 ¥5,-1

-1 § -
y = (¢-8 ) ) 6 ,
t+l,t e

but now to obtain a comparable autoregressive representation for Yiq1 we
utilize the invertible ARMA(l,1l) form

-1
Ye = ®¥ ., N 0% N,

which is observationally equivalent to the original specification in the

second-moment sense. Repeated substitutions yield

t
_ a1 =5 -{t+1) _ o (t4l)
Yer gy + (970 ).X O "y 4+ 8 Yo 7 ° o -
3=0
On subtracting, the forecast error is seen to be
. _ ~(t+l) B _
Yeor " Fene = M *O0 Yo = 25,17 " ¢

which~approaches n the driving random variable in the invertible

t+1’
. . . 2 22 . .
representation, with variance on = 6 O~ This representation has been
used simply to obtain a closed form for the forecast error, and we again
emphasize that it is not necessary to work with the invertible represen-

tation in developing l.l.s. forecasts, the correct steady-state rule

(2.13) Dbeing given automatically by the recursions. The choice of

invertible or non-invertible representation is more apparent than real,

since whatever choice is made, the result is the same steady-state



forecasting rule with the same forecast mean square error.

The equivalence to the Wiener-Kolmogorov theory can be easily
analysed. Attention is usually restricted to stationary invertible
processes, and the forecast is expressed as a function of observations
extending from the indefinite past. Accordlngly we consider the limit
of the steady-state forecasting rule (2.12), which either directly or

via (2.14) can be written as the linear filter (with lag operator L)

(2.15) £(L)y,

Yer1,t
}

N

where the generating function of the coefficients of the observations is

t

(2.16) £, (z) = 775 -

Simple manipulation of this function yields

-1 -1
_ $-6 =z "(1-8z) - z " (1-¢=z)
£120 = 7Tz ° 1 - 6z
-1 -1
_ 1-9¢z z (1-8z) z—l _ 1-¢z z (1-9z)
T 1-08z 1- ¢z 1-6z 1- ¢z N

where [:a(z)]+ denotes that part of the polynomial a(z) containing non-
negative powers of z, the operator [&]+ being sometimes termed an
"annihilation" operator. This last expression is the form in which the
Wiener-Kolmogorov predictor is usually given (Whittle, 1963, Ch.3;
Nerlove et al., 1979, Ch.V). It is derived under the assumption that
|¢| = 1, and there are clearly difficulties with the term (l-—d&z)_1 if
this is not so. But this assumption has no bearing on the first form in
which fl(z) is given, which thus represents a more convenient device for
calculating the coefficients, nor has it any bearing on our derivation.

So in addition to an equivalence to the Wiener-Kolmogorov predictor in

the case for which it is defined, we see that the same expression,
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interpreted as the limit of our 1l.l.s. forecast recursions, applies to
non-stationary cases of the same process. Equally, when the Wiener-
Kolmogorov predictor 1s expressed in recursive form,2 it coincides with
the steady-state 1l.l.s. recursion (2.12), again valid more generally.
The particular case ¢=1 has received much attention; here (2.12) can be

rearranged to give the familiar "adaptive expectations” formula

Yepr,e ~ ¥ = (1*9)()(t - Yt,t—l) .

Forecasting j steps ahead (j>1) is straightforward in the present

framework, since y is simply X Returning to the general case,

t+j,t t+i,t’

this together with its forecast error is obtained from (2.3) as

2 _ 31 .
xt+j,t = ¢ xt+1,t' i=2,3,...
x - % = (4-6) (€ + $e + + ¢j—2£ )
t+3 t+j,t t+i-1 t+j-2  °°° t+l
j"l _ 3
v e (xt+1 xt+1,t) :
- B A _ .31 ‘
Thus the j-step-ahead forecast yt+j,t ] yt+1,t has mean square error
j-2 . .
o 2; 2 2i 2 23-2 2
- = -0 5
BV g~ Tyt } (¢-6) _Z ¢ 0.+ 07 Pige Y%
i=0
if |¢| < 1, we see that as j increases the forecast §t+j . tends to zero,

the unconditional mean, the observed history summarized in it+l c becoming
f

less informative; similarly the forecast error variance tends to the

! 2 2 2 .
variance of y, namely ce(l-2¢6-+6 y/(1-¢7). Conversely, if |¢| > 1,
neither the forecast nor its error variance approach limits, while if
¢=1 the forecast is constant, with error variance which increases linearly
in j, as is well known. In all cases, the steady-state forecasting rule

can be expressed as a function of past observations, corresponding to

(2.15) and (2.16), giving
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[

7 9-0)

j-1_ B
£8) = 5%z

yt+j,t = fj(L)yt ; fj(z) = ¢

It is then easily seen that this again corresponds to the usual result

for the stationary case, namely (Nerlove et al., 1979, p.92)

1- oz [ (1-6z)z ) }
+

£y02) = T4, 1~ ¢z

sustaining the same interpretation as in the previous paragraph.

2.2  Extracting an AR(1l) signal masked by white noise

In this section we consider a simple signal extraction problem and
again develop from first principles recursive methods of calculating the
1l.1l.s. signal estimate. The signal s is assumed to follow an AR(1)
process, and represents the variable of principal interest, but it is

observed subject to a superimposed white noise error, n. Thus the model is

(2.17) t=0,1,2,...

T L

where n and € are contemporaneously and serially uncorrelated, with

2
variances o, and oi respectively, and the problem is to estimate Sy from

ohservations on y.

@

In advance of the first observation, Yo knowledge about SO is

summarized in its expectation §O -1 and variance po -1 2 0. The
14

corresponding mean and variance of y0 are then

$r = & = +
yO,_1 SO,—l . L P o

and the covariance between yo and s0 is p Once the observation yo

Or—l‘

is available, the signal estimate is updated by the projection
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8 = B + P z'l(y

0,0 0,-1 0,-1°0 -9

),

(0] 0,-1

and its mean square error correspondingly updated as

a2, - 2 -1
El(sy - 8, 00} = By Po,-1%0

The l.1.s. forecast of the next value s, is now simply

and since the error in this forecast is

S ~ sl'O = ¢(s0 - SO,O) + el

its mean square errxor is given as

R 2 2 2 -1 2
= E - = -
{(sl g )7} ¢ (po'_l PO,—lzo )+ o,

p1.0 1,0

This procedure may be repeated as the cbservations yl, yz,... in turn

become available, giving the gerneral recursions

~ — a _1 -
(2.18)(a) B . = 98,y v P Iy, T8 )
(b) I = + 02
t Pe,e-1 n
2 2 -1 2
(€ Peyp,e = ¢ P g T Preafe) Y% -

Equation (2.18a) gives a recursion for the current estimate of the signal,

with coefficients that vary over time, but again independently of the

observations.

As in the previous example, we are interested in the possibility

that the error variance Py 1 approaches a limit. From (2.18b,c) we
14

obtain the nonlinear difference equation



2 -1 2
+ Un, + UE ) , say,

2 2
(219 Pryge T P10 Pyt = P e

and on setting p=h(p) we see that the fixed points are the solutions of

the aquadratic equation
2 2 2 2 22
). 2 = + - - - = 5
(2.20) £(p) p [o"( ) UE)p 0.9, 0

This has real solutions of opposite sign, since £(0) < 0, and choosing

2
the positive solution we also have p > 05, since f(oc) < 0. Moreover,

h'(p ) > 0 and h" ) < O guarantee convergence of the lteration

t, -1 Py, e1
(2.19) to p for any po -1 > 0. As in the first example, convergence of

the error variance does not depend on stationarity, that is, on the value

of 4.
The steady-state signal estimate recursion obtained by setting
pt t-1 equal to p in {(2.18) can be rearranged as
St T P,k (1 ¢) Ye

vhere b = +oil(p-&oi). Repeated substitutions then give the current
estimate as a function of the observed history and the initial estimate,
name ly

t
) ~ b 3 t+l,
(2.21) Se,e T (1 ¢) jgoh Ye.y * P S0,-17¢ -

‘the steady state of the variance recursion (2.19) gives an alternative

expression For the coefficient b, namely

¢02 p—uz
S noo_ £
. 2 ¢p '
pto,

and from one or the other we see that |b| < 1 irrespective of the value
of . The expression (2.21) may be compared with the classical formula

obtained when !¢| = 1 and a semi-infinite sample is availaole, which is
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{Whittle, 1963, §86.3; Nerlove et al., 1979, §V.5)

. _ B P
(2.22) Se,t (1 - B8/¢) (1 - BL) Y, -

Here B is found from the unique invertible factorization of the covariance

generating function of (yt = ¢yt_l); that is, f satisfies
2 2 - 2 -
(2.23) g(2) = o, + 0 (1-¢2) (1-¢z ) = o°(1-Bz) (1-Bz 1)

and is the moving average coefficient in the ARMA(1l,1) representation of
Y. The gquadratic equation to be solved for B, which has a reciprocal

pair of solutions, is obtained by setting z=f in (2.23), whence
2 2
(2.24) o + on(1—¢8)(1—¢/6) = 0 .

Making a change of variable from B to p by substituting ¢0§/(p+oi) for B
in (2.24) and rearranging yields the quadratic equation (2.20), and it

is clear that the positive solution for p corresponds to the invertible
solution for f, so b and B in (2.21) and (2.22) coincide. Thus the
classical result, derived under a stationarity assumption, again coincides

with the limiting case of the 1l.l.s. recursion, which is valid more

generally.

The principal case of this model discussed in the literature occurs
when ¢=1, so that the signal follows a ranGom walk. For example, S, might
then represent the “persisting" or "permanent" component of income, and
observed income Y, comprises this together with a purely random "transitory"
component, n,. Permanent income is then estimated from current and past
observed income via (2.22), which in this case gives the familiar
exponentially weighted moving average (Muth, 1960). Its classical
derivation is unsatisfactory, however, since apparatus developed for

stationary processes is being applied to a nonstationary process.

Nevertheless we have seen that 1l.1l.s. recursions can be readily developed
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in this case, with proper attention to initial conditions, and the sense

in which the same apparatus can be applied is made precise.

In some situations it may be desirable to update the estimate of

s, as further data arrive, that is, to obtain a sequence 8§ §
t ' ’ ’ * qUEnce S, e’ S, tel’

ét te2’ " of increasingly accurate l.l.s. estimates of Sy- This can be
14

easily handled once the present approach has been suitably generalized,

and we return to this problem, known as the "smoothing” problem, below.

Summarizing the lessons of the two examples, we first note the

similar roles of x, in the first example and S¢ in the second. Both

t

variables follow first order autoregressions, and neither is observed
directly. Secondly, the fundamental quantity required to calculate
successive estimates is in each case the error variance of the 1l.l.s.

estimate of this variable, p In effect, each of these examples

t,t-1°

has been analysed in state-space form and, as discussed below, the

recursions developed from first principles are scalar versions of the
Kalman filter. The ease with which the behaviour of pt -1 is analysed

results from the fact that the relevant state variable (xt or st) is a

scalar. To consider more general forecasting and signal extraction
problems we introduce representations in which the state variable is a
vector, with the error covariance matrix Pt,t—l replacing the scalar
variance. These representations, and the appropriate generalizations of

the 1.1.s. recursions, are presented next.
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3. STATE-SPACE METHODS AND CONVERGENCE CONDITIONS

3.1 The state-space form and the Kalman filter

We consider linear dynamic systems in which a first-order vector
autoregression describes the evolution of intermediate “state" or "proéess"
variables X, and a contemporaneous equation expresses the observations yt
as a linear combination of state variables, possibly with measurement

error. The state transition and measurement equations are, respectively,

(3.1) xt+l = Fxt + th

(3.2) Y, = H'x + v, .

The random input W and the observation noise v, are serially uncorrelated

random variables with zero mean and finite covariance matrix

wt Q S
cov =

1]
vt S' R

LY

this matrix, together with the coefficient matrices F, G and H are assumed

known and time-invariant. In our use of this model to analyse univariate

ARMA processes, yt is a scalar.
The representation (3.1)-(3.2) (or 'realization' in control theory

parlance) of the relation between W v, and the output, Yoo is not

t
unique since this relation is invariant to non~-singular transformations

of the states. Indeed, in many situations the order of the state vector
is not uniguely determined either, and these features of the set-up can be
exploited to improve the tractability of the analysis in particular
situations. In some circumstances it is convenient to date the input,

w, at t+l rather than t, but this makes no essential difference to the

Kalman filtering equations. 1In this paper we are concerned with the
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filtering problem, that is, recovery of X, from observations on y. A
mathematically dual problem is that of controlling X by varying the
input, W and a number of the concepts we employ take their names from

this dual; the duality is discussed by numerous authors including, in an

economic context, Preston and Pagan (1982).

We seek the l.l.s. estimator of Xyr say, given information ﬁp
to and including yt+k' To solve this problem we need the covariances of
x  and Y. (1=0,1,...,t+k) . These are rendered well-defined by the model

t

(3.1)-(3.2) and the assumed initial conditions that, in advance of any

observations, x_ is known to be randomly distributed with mean ﬁo 1 and
-

variance PO,—l' Thus the information aﬁéilable at time 1 is \

QT = {ﬁo,—l' PO,—l' Yoroe-v yT}. We write the l.l.s. estimate of a ;andom
variable ug given QT as ﬁt,T' and the innovation in u, is defined as the
error in the one-step-ahead 1l.l.s. forecast: ﬁt = ut - Gt,t—l' In passing,
we note that the information sets QT and QT = {io,—l' PO,—l' ?0,..., ?T}

are identical, since each can be constructed from the other. In the
statistical time series literature it has been commonplace not to indicate
explicitly the dependence of Qr on initial conditions, since the lack of
dependence is implicit in stationarity assumptions. In the present
context, where stationarity is not assumed, the nature of the initial
conditions is important not only practically, but also theoretically, to

define the underlying sigma fields (cf. Florens and Mouchart, 1982).

The 1l.1.s. estimates of the state vector and their covariances

= E[(xt .- ) (x - ) ), j=0,1

P R, . S
t+3,t +3 t+3j.t t+3 t+j, t

may be obtained recursively from the following Kalman filter equations:
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SOBURCY e T Freer Y GV
(b) % = FR + asi Ly
t+l, t £, t t Yt
(c) C = P ar L
t,t t,t-1 't
2 _ E g ~l = ] .
(d) N {ytyt} H Pt,t—lH + R

Equation (a) expresses the fact that the innovation in X, 0 which is not

observed, is estimated by its orthogonal projection on that in yt.

.

Similarly, the second term on the right-hand side of equation (b) is the

projection of Gw, on ?t; equations (c) and (d) are definitional. The

t

covariance update is the Riccati difference equation

== ' | - ]
e Pt FPy t-1F + G KeLeke

(£) K, = FC + GSZEl ;

The final term of equation (e) is the reduction in the conditional

variance of x attributable to the information in 9t, and Kt is the

t+i

Kalman gain, so called becatise it gives the amount by which the new

information affects the one-step-ahead forecast of the state: combining

(a) and (b) we have

X = FX + v.oo.
@ Xt £, -1 Ke¥e

Finally, some intermediate quantities are defined as follows:

= —_ L]
(h) Peot P, e-1 T 7 HCL )
s ~ - — [] Lo
(1) Ye Ye S |
s ™ — _ '
(3) F_ = F K.H' .

Equation (j) defines the ‘closed loop system matrix'’ ﬁt' which is
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important in the filtering context because it determines the ‘properties
of the error process, e, = x, - X% . Subtracting (3.3g) from the
t t t,t-1

state transition equation and substituting (3.3i) and the measurement

equation gives a first order vector difference equation for e, namely
(3.4) e = F,e - K v + Gw

Thus if the error variance is to remain bounded as t increases then it
is necessary in general that there exist gain matr£ces, Kt, such that
the closed loop system matrix is stable (has eigenvalues inside the unit
circle). That this condition is also sufficient to guarantee that the

error variance, converges to a steady state, P, given as a fixed

Peel, ¢’
point of (3.3e), is less obvious, however, and is discussed below in the
context of our applications. Equation (3.4) indicates that, unlike the
one-step-ahead forecast errors for the observed series, yt, which form
an innovation sequence, the errors in the one-step-ahead estimates of
the unobserved state vector follow a first-order autoregression.‘ The
difference is essentially that cbserving Ye allows the previous estimate

to be fully corrected before the forecast of Yes1 is made, but only partial

correction to the state forecast is possible, resulting in the persistence

of errors.

Forecasting the state vector more than one period ahead is veryj
"

simple in the present framework. Since w, ., jJ > O, is uncorrelated
t43

with all variables in f,, we have & _ = 0O, so that
t t+j, t

© ) g 2 .
(3.5) (a) xt+j,t Fxt+j—l,t' j=2,3,.

with error variance given by the auxiliary recursion

p = FP F' + GG’
= t+j, t ¥ t+j-1,t .
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Forecasts of y are then obtained as

. I—
(e Yieg,t 49, t

with error variance H'P H + R, which reduces to the innovation variance

t+j,t

£t+1 when j=1. Notice that the sequence of j-step-ahead forecast errors

""(yt+j = yt+j,t)' (yt+j+1 = Yt+j+1,t+1)"" is not an innovation

sequence when j >1, but exhibits autocorrelation of order j-1.

Once the concurrent estimate of the state is available at time t,
say, it may be improved as further observations arrive. This is achieved

by the smoothing recursions

. 2 = < C v =0, e e
(3.6) (a) X .oy e eak-1 7 CetekY ek k=0, L,
b P = P - C N
(b) t, t+k t, t+k-1 t,t+k£t+kct,t+k
(c) ¢ = P! art
t,t+k t,t+k-1" t4k
- - i _
(d) pt, t+k t+kpt, t+k-1
initializing (3.6d) by P =p from (3.3), with the first three equations
t,t-1 t,t-1
corresponding at k=0 to (3.3a,c,h). Here P is the covariance of the

t,t+k

-»

error in the current one-step forecast of the state and that in the estimate of X,

_ _ . . '
P tek BUO a1 ™ Boarn, e Xe Re pax) }

so that C appearing in (3.6a) has a similar interpretation to

t,t+kyt+k

C ¥. of equation (3.3a). Furthermore, the error variance of

P
t, 't t,t+k’

the smoothed estimate, is monotonically non-increasing in k (that is,

- P i ositive semi-definite) and bounded below by zero
Pt,t+k t, t+k+1 1§ pos € sem ) y !

so that Ct 4k tends to zero and revisions to. the state estimate
. I

eventually die out. Finally, (3.6b) reflects the fact that the revision,
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B

(xt,t+k = Xt,t+k—l)' is a function of the (t+k) th innovation and is thus

orthogonal to the error in % fwere this not so, % would not be

tittk- t,t+k

the 1.1.s. estimate).

That the forecasting and signal extraction problems considered in
Section 2 are examples of the application of the Kalman filter is olear
once notational equivalences are established. First, with X, scalar and

F=¢, G=¢-0, H=1, w_ =€ , v and Q=S=R=o§ the state-space form

-t Ve T &
gives the ARMA(1,1) model (2.2) and (2.3);: the l.1.s. recursions (2.10)
then correspond to (the relevant parts of) the Kalman filter equations
(3.3). Secondly, with scalar state variable xt = st and F=¢, G=1, H=1,

W, =€ v, =n Q=0§, R=072] and S=0, the state-space form gives the

[ 2% R
AR(1l)-plus-noise model (2.17), and the l.1.s. recursions (2.18) may again

be obtained as a special case of (3.3).

In our discussion of these examples and in consideration of the
Kalman filter more generally an important aspect of the recursions is
their time-varying nature, and an important question concerns their
possible convergence to a steady state. In applied work it is clearly
more convenient computationally if the recursiﬁns have fixed coefficients,

¢
and in studying the relations with the statistical time series literature
this is a central question, since in that literature most attention is
given to time-invariant forecasting or filtering formulae. In the
examples and more generally, a key role is played by the forecast error
covariance matrix Pt+l,t (written pt+1,t in the scalar examples): if

this converges, possibly rapidly, to a fixed point P of the recursion

(3-3e), or takes such a value from the beginning, then the complete

recursions (3.3) are in steady state (are time-invariant), as are the
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extended forecast recursions (3.5) and the smoothing recursions (3.6).

Conditions under which this occurs are described in the next section.

3.2 Conditions for convergence of the covariance sequence

In this section we state without proof a number of theorems concerning
the behaviour of the covariance of the one-step-ahead state-estimation

error, , associated with the system (3.1)-(3.2). In subsequent

Perl,t

sections these results are specialized and extended to cover forecasting
and signal extraction in ARMA processes. Proofs of the theorems, and an
indication of their antecedents in the control literature, may be found in
the papers by Caines and Mayne (1970, 1971), Hager and Horowitz (1976) and
Chan, Goodwin and Sin (1984) to which we refer below. The behaviour of
the filter covariance is determined by two properties of the system, first
identified by Kalman (1960), which relate to the extent to which changes
in the state vector, xt, affect the measurements or output, yt, and the
extent to which variations in the input, wt, affect the state vector. We

begin by defining these system properties.

Definition 1

The pair (F,H) is said to be detectable if F has no eigenvalue A

with corresponding non-zero eigenvector b such that |X| 2 1 and H'D = O.

If H'b # O for all A the pair is sald to be observable.

Definition 2

The pair (F.GQH) is said to be stabilizable if F has no eigenvalue

A with corresponding non-zero left eigenvector a' such that IAI > 1 and
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a‘GQ% = 0. If a'GQ% # O for all A the pair is said to be controllable.

Observability and controllability are frequently expressed as the

condition that the range space of F is contained in those of the matrices

oF,m) = (6 §Fmi...iF lw),
cF,G0Y = (60" § Fep” i...; r"lag") .

These conditions are implied by definitions 1 and 2 (Kailath, 1980, p.135).
In the context of ARMA models the eigenvalues and eigenvectors of F are
easily obtained, and so it ié convenient to work with the definiti;ns in
the form given. As noted above, these concepts take their names from

the dual control problem (see Preston and Pagan, 1982, chs.5,6).
Controllability is the ability to move the state in finite time from an
arbitrary initial point to an arbitrary terminal pecint by manipulation of the
input (control instruments); stabilizability, or asymptotic controllability
is the asymptotic version of this capability. éhereas controllability is
an existence property, observability is a uniqueness property. Interpreted
as a property of the dynamic structure of the model, it specifies that

all the natural modes of the state dynamics are contained in, or observed
by, the output dynamics. When observabi;ity fails, detectability rules

out instability of the unoﬁéerved modes. In the filtering problem,
detectability holds when movements in the state vector along directions
which do not affect the measurement have bounded variance whenever the
input, w, hés bounded variance. An important implication of detectability
is that there exists a column vector K such that the matrix {F-K#'} has

eigenvalues inside the unit circle.

If the covariance possesses a steady state, P, then there exists a

corresponding steady-state closed-loop system matrix,fi which from (3.3) is a
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function of P, F, G, H, S and R. Chan, Goodwin and Sin (1984) define a strong

k4

steady-state solution, P, of (3.3e) as one for which the eigenvalues of F lie

inside or on the unit circle, and a stabilizing solution as one for which

these eigenvalues lie strictly inside the unit circle. Usually no other

steady state exists, as is clear fram the form of the error process (3.4),

but exceptions are possible, as discussed in Section 4.4 below.

Before giving the theorem statements, it is helpful to show that a
system in which the input and measurement noises are correlated may be
converted to one in which they are not, with considerable notational savings
in the ensuing analysis of the covariance recursions. Consider the system

(3.1)~(3.2), which we rewrite here for convenience:

¥epp - FE P B
= *
Yt B xt + vt
where
Q S
' "o ' ' -
E{(wt. ve) (wr. vr)} . 8y

and Q>0, R>0 (i.e. positive semi-definite and positive definite,
respectively). Replacing wt by the residual in its projection on Ver

-1
and incorporating the matrix G into the definition, so that w; = G(wt—SR vt):

the state transition equation may be rearranged as

-1, « -1
(F - GSR H )xt + wi + GSR o

b
i

t+l

S
= * *
F xt + wt + GSR yt .

also using the measurement equation. The covariance of w; and v, is

GOG' - GsR Ys'G' o
E{(wz', Vt'__)'(wz', Vt‘__)} =
0 R



Since at time t, GSR_lyt is known, the covariance Pt+1 £ is unaffected
’
by the presence of this term, and its properties may be obtained by

reference to those of the system

t+1 t
(3.7)

Y, = H'x + v
with the covariance matrix given above, in particular with w: and Ve
uncorrelated. For convenience we factorize the positive semi-definite
1

covariance of wz in the form DD' = G(Q - SR "S')G'. The following results

now relate to the model (3.7) .

Theorem 3.1 (Chan, Goodwin and Sin, 1984)

If the pair (F*,H) is detectable and F* is non-singular, then

(i) there exists a unique strong solution

(ii) if the pair (F*,D) is stabilizable, then the strong solution is
the only non-negative defialte solution
(iii) if the pair (F*,D) his no uncontrollable eigenvalues on the unit
circle, then the strong solution is also stabilizing

(iv) if the pair (F*,D) has an uncontrollable eigenvalue on the unit
circle, then there is no stabilizing solution

(v) if the pair (F*,D) has an uncontrollable eigenvalue inside or on
the unit circle, then the strong solution is not positive definite

(vi) if the pair (F*,D) has an uncontrollable eigenvalue outside the
unit circle, then there is at least one other solution besides the strong

solution.

sufficient conditions for convergence of the covariance Pt+1 t to
r

the strong solution are given in the following theorems. The first, due
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to Hagar and Horowitz (1976), generalizes a result for controllable systems,

obtained by Caines and Mayne (1970), to the stabilizable case.5

If (F*,D) is stabilizable and (F*,H) is detectable, then the sequence

of covariance matrices P P eaoy P ... converge onentiall
a 0,-1' F1,0° Pt nverges (exponenti y

fast) to the unique stabilizing solution, P, from all initial conditions

Theorem 3.3 (Chan, Goodwin and Sin, 1984)

If (F*H) is observable and Po 1 P > 0, then the sequence of
14

i P P ceep P 00 G - h
covariance matrices o,-1' 1,0’ * T, t! converges to the strong

solution, P.

Theorem 3.4 (Caines and Mayne, 1970, 1971)

If R>0, DD'>0, (F*,D) is controllable and (F*,H) is detectable, then

P P eeey P ... converges to the unique
the sequence 0,-1" F1,0' ¢ Pt g q

positive semi-definite stabilizing solution, P, from all PO 1 > 0.
e



4. FORECASTING THE ARMA(p,q) PROCESS

4.1 Setting up the problem

As is apparent from the previous discussion, once the problem in
hand has been cast in state-space form corresponding to (3.1)-(3.2), the
construction of 1.1l.s. forecasts is straightforward. Our principal
objective in this section is to show how the Kalman filter framework may
be used to extend the well-known theory of forecasting stationary series
to more general cases. That this is possible has often been stated; the
recent results of Chan, Goodwin and Sin (1984) are required, however, to

treat the non-invertible moving average case in any generality.

We consider a scalar variable y which is generated by the ARMA(p,q)

process

(4.1) $(L) y, = B(L) e - :

where ¢{(L) and 6{(L) are polynomials in the lag operator L of degrees p
and q respectively, and Et is white noise. A state-space representation
in which the first element of the state vector is the forecastable part

of yt, that is x(l)t = yt - et,is obtained from the following equivalences.

Define r = max(p,q), and ¢p+l = ., = ¢r = Q0 if p<q, or 0q+1 = L. = Gr =

if p>q. Let

, ) 1 A
¢ 1 0...0 6, 1 o0...0
¢2 0] ) : 92 o . é
F = : : 0 5 Fe = E
1 o 1
¢ o .. 6] 6 o ... 0 O
L x ) S )
— — '
G = ($; =0 by =B e b= 0)
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Then defining the state transition and measurement equations as
(4.2) X = Fx + Ge

(4.3) yt = H'X + et 7

the latter gives x(l)t =¥, - et as above. Using this repeatedly, and

substituting in turn from the rth, (r-1)th,... rows of (4.2) to the first

gives

r~1i
<

x(1) = X ¢ - €
- -k
t 3 t 3 k=1 k 't
as required. A simple relation between the transition matrices and the ARMA
coefficient polynomials is |I—le = ¢(z), |I—Fezl = 6(z). The system (4.2)-

(4.3) corresponds to (3.1)-(3.2), withw, = v = €y and Q = § = R = oz {(all

t t
scalars). 1In the alternative form (3.7) the matrix F* = F - GSR-lH is equal

to Fe, defined above, in this case, and cov(w;) = G(Q—SRgls')G‘ = Q.

To express the forecast as a function of the observations and to
consider the steady-state filter we examine the form taken by equations
(3.3) in the present case. First, the covariance recursion can be greatly
simplified. From (3.3c,e,f) applied to the alternative form (3.7), as

specialized in the preceding paragraph, we obtain

= — '
(4.4) Perl, e Fe{Pt £-1 P, t—let H'E, t—l}Fe ’

Furthermore, the closed-loop system matrix is now

~ _ : _1_ .
(4.5) F, = Fe{I Pt t_luzt H'}

We note that these expressions do not involve the autoregressive parameters
so that, for example, in computing the one-step-ahead forecast error
variance we need only consider the ‘nitial conditions and the moving

average operator; specifically, the stationarity or otherwise of the
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process is irrelevant. The limiting behaviour of (4.4) depends on the

location of the eigenvalues of Fe, which are the roots of 6(L). We
consider the various possibilities case by case, using the convergence

and existence thecovems given in section 3.2. To apply these to the

ARMA (p,q) form (4.2)-(4.3) we note first that (F*,H) is observable since

for any vector b, F*b = Ab and H'b = O together imply b = O. Secondly,

it

{F*,D) is not contrcllable since D = O; it is stabilizable if and only

if all roots of 8(L), the eigenvalues of F*, lie inside the unit circle.

In the statement of Theorem 3.1, F* is restricted to be non-singular,
which in this context requires r=q>p. In fact the restriction to non-
singularity is inessential in the general theorem, but the details of a
proof for the singular case have not yet appeared. In the present problem
we can obtain the cesult we require for the case p>q, as follows. Let
m=p - q, and factor the autoregressive operator as ¢(L) = ¢1(L)¢2(L).
where ¢2(L) is of order m. Then defining the quasi-differenced series

* =
yt ¢2(L)yt, we have

¢, L)yt = B(Le_, ,

and in the corresponding reduced order system r=q so that Fe is non-

singular. The forecast of Y41 is then obtained as

+ ... F ¢2 Y

Yee1,t et T oYy mY t-m+1

from which it is clear that the variance of 9t+1 . is just that of 9;+1 ¢’
r ’

once tzm-1. Thus we need only consider the case g2p in what follows.



4.2 The invertible moving average case

If the roots of 6(L) lie inside the unit circle, it follows from
Theorems 3.1 and 3.2 that the sequence of covariance matrices

p peeer P ,... converges to the unique non-negative

P
O'—l t,t"l' t+1,t
definite fixed point P of (4.4) from all bounded non-negative definite

P Since, as 1s clear by inspection, P=0 is such a fixed point, and

0"'1'
the associated steady-state gain (K), innovation variance (£) and closed

loop system matrix (E) are G, R and Fe respectively, the steady-state

filter takes the simple form .

2 = Feﬁ

t+l,t + Gy, -

t, -1

Repeated substitution in this equation gives

t
i t
# = F G + F_ %
t+l,t 120 0 Yt-1 6"0,-1

and from (3.5) the j-step ahead forecast of y is given as

= H'ijlﬁ 3=1,2,... .

Yeryot t+l,t

Combining these two equations, we obtain a generating function for the

weight on yt-i in the forecast of yt+j as

(4.6) fj(z) = H'Fj—l[l = zFe}—lG J=1,2, ... .

The forecast error variance is

= ! R
Vj H Pt+j,tH +

where, using (3.5b) and noting that QO=R,

j-2
= ) rlerc' (F9) 1 .

P
2% PRI
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If the eigenvalues of F (that is, the roots of ¢$(L)) lie inside the unit
circle, we see from (4.6) that as the forecast horizon, j, increases so
the observed history ceases to be informative, and the forecast ?t+j,t
tends to the unconditional mean, zero. Similarly, Vj tends to the variance

of y. Conversely, if ¢(L) is not invertible, neither the forecast, nor its
error variance in general approach limits as j increases. We note further that

since P=0, we must have et=(L and % = X , hence ¥ the innovation

t+l,t t+1 t+1’

is equal to € comparing (3.4) we have Kvt = th since K=G and vt=vv =€

t+1’ t ot

Finally, we can relate (4.6) to the conventional formulae as follows.
First, an expression appearing in (4.6) can be written in terms of the

ARMA polynomial operators as
-1 -1 -
H'(I - zFe) G = =z 1o l(z){e(z) - $(2)} ,

hence we also have

(1 - zav(1 - zFe)—lG) = #2086 T(z) .
Next, since FG = F - GH' we may write
-1
I -zF = {I - zGH'(I - zF,) 1 - zFp) -

I1f ¢(L) is invertible, so that (I - zF)-1 exists for |z|=l, this gives

(I - zFe)_lG = (1 -2F) M1 - zeH' (I - zFe)—l}G

(1 - 2F) Ye{r - zH' (I - zFe)'lc}

so that on substituting into (4.6) we obtain
- - -1
£(2) = w'P NI - 2mTle L g6 ()

Since (I - zIE‘)_l may be expanded as a power series, we may write the right-



hand side as

n'(z’(j'l’(x = zr)"lc] ¢(z)e"1(z)
: -

which using results above may be written

[Z_j ¢-1(z){9(z) - ¢(2)}] ¢(z)9—l(z)
+

to give, finally,

- -3 8(z)
(4.7) fj(z) [z ¥ (2)

] ¢(z)9—l(z)
+

which is the formula to be found in Whittle (1963, ch.3). It is clear
from its definition at (4.6) that fj(z) has a convergent power series

expansion even when (I - zl?)-1 does not exist, and for this reason (4.6)

is to be preferred to (4.7), in general, as a basis for calculating the

coefficients.

4.3 Moving average with roots on the unit circle

If 8(L) has roots inside and on the unit circle, then by Theorems
3.1 and 3.3, the covariance sequence again converges to P=0, the unique
non-negative definite fixed point of (4.4). 1In this case, however, the
closed loop system matrix, §=Fe, has at least one unit eigenvalue if 6 (L)
has any unit roots. Then (4.6) no longer holds in the usual sense, that
is izoziFé # (I—z}.“a)—l f?r |z| = 1, but if it is regarded primarily as
shorthand for the power series in FB' we may think of taking |z| < 1 and
deriving (4.7) as before. To avoid such heuristic devices, however, it
is clearly preferable to write the generating function of the coefficients
on past observations in the forecast of yt+j in the explicit form

t
(4.8) £y(2) = H'Fj"l[ ) ziF;]G ,
1=0



34

which indicates how its coefficients should be calculated.

4.4 Moving average with roots outside the unit circle

If 0(L) has any roots outside the unit circle, it follows from
Theorem 3.1 that there are at least two steady states, but that only one
of these yields a closed-loop system matrix with eigenvalues inside or on
the unit circle. As shown below, the matrix F then has eigenvalues which
Are the roots of 6(L) inside or on the unit circle together with the

complex conjugate inverses of those roots outside |z| = 1. Furthermore,

if P0 -1 is positive definite, which is the case of practical relevance,
4

it follows from Theorem 3.3 that the sequence of covariance matrices tends

to this *strong' solution.

Obviously, P=0 is again a solution of (4.4) with a filter z-transform

again given by (4.8), but it is not the strong solution. To find the

strong solution we first note that § = Fe{I = PHZ_IH'} is of the same form

as FB' To see this, note that the matrix PHZ—IH' has a single non-zero
column followed by r-1 columns of zeros, so that F differs from FB only in
the first column. Thus if we let 6*(L) denote the lag operator which
corresponds to F in the same way that 6(L) corresponds to Fe, the steady-
state filter in question has z-transform

. t ..
(4.9) £(z) = H'{Fj'l ) le;*]G :

i=0

This filter has one-step-ahead variance I (the innovation variance) which

is given by the solution to the invertible factorization of the c.g.f. of

¢(L)yt, namely

(4.10) £0%(z)0%(z 1) = Re(z)e(z"l)



To establish this result, first observe that since I is independent
of the autoregressive operator, we can take this to be invertible without

loss of generality. Since Q=R=S, the c.g.f. of Yy is then

1

(4.11) gyy(z) = {1+ z8'(1-2F) YeIric (1-z TF) Taz 4 1),
and, as shown in the Appendix, this may be written

- ' -1 ' -1 ' -1..-1
(4.12) gyy(z) = {1 + zH'(I-2zF) K}{K'(I-z "F') "Hz =~ + 1} .

~ Now gyy(z) is a scalar, and is thus egual to its determinant, and using

the result that if Ty is nxm, T2 mxn, then lIn + T1T2| = lIm + T2T1 , We
have, for example
v -1 g
|1 + zu'(1-2F) G| = |T + z(1-zF) "GH'|
_.1 .
= |(1-2zF) 7| . |1 - zF + zGH']

I(I-zF)'ll - eFgl

Similarly, ]1 + zﬂ'(I—zF)_IKI = |(I—zF)-1| 5 II = zﬁl; hence equating (4.11)

and (4.12) and cancelling common factors gives

A RN NN PN 2 .

But |I - zFel = 8(z), and |I - zF| = 0*(z), so this gives (4.10), as

asserted.

This treatment provides a generalization of the discussion of the
ARMA(1,1) example in Section 2.1, and the same general considerations
apply. As with the example in equation (2.13), and seen to be true more
generally, for a non-invertible moving average process the 1.1l.s.
recursions deliver a steady-state forecasting rqle of an "invertible”

form, automatically parameterized in terms of the coefficients of the
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observationally equivalent invertible moving average. This coincides with
the Wiener-Kolmogorov predictor in the case in which the latter is defined,

but is also valid if the process is non-stationary.

5. SIGNAL EXTRACTION IN ‘UNOBSERVED-COMPONENT ARMA MODELS

5.1 Setting up the problem

We now assume that the observations, yt, are the sum of two or more
unobserved components, each of which is an ARMA process of known form.
Such specifications are frequently employed in studies of seasonal
adjustment, where we find decompositions of time series into either two
components {one seasonal, the other not) or three components (seasonal,
cyclical, irregula;), one of which is white noise. In either case the
problem of interest is to estimate the seasonal component, in order to
subtract it from the observed series to give a "seasonally adjusted" series.
A three-component specification can always be reduced to two components by
absorbing the white noise into one of the other components. Since the
converse is not true unless at least one of the (non-white) processes has
MA order greater than or equal to its AR order, the two-component
specification is more general. From the point of view of state-space
representations, however, it is more natural to think of the two-component

specification as a special case of three components that arises when the

B

noise in the measurement equation, Vt' has zero variance (R=0). Since

results for two-component processes can be recovered from those for three

components by taking R=0, we prefer to work with the three-component

specification.



In this section we apply the general resulté of Section 3 to

indicate the circumstances under which the well-known theory of signal
extraction for stationary components may be extended to cover difference~ '
stationary or explosively non-stationary cases. Some of the results for
difference-stationary processes have appeared elsewhere (Cleveland and

Tiao, 1976; Pierce, 1979) or been foreshadowed by results for similar,

but not identical, specifications (Hannan, 1967; Sobel, 1967), but have

not, in our view, rested on firm foundations. The treatment of explosively
non-stationary processes that the Kalman filter makes possible appears to
be new, at least in the present context. Again we seek equivalences

between the Kalman filter and classical results, in the cases in which the

latter are defined. A non-detectable example is reserved until Section 6.

We consider the following three-component model
(5.1) v, = S, + ¢Cc_ + 1 t=0,1,2,...

where St and Ct are ARMA processes, and It is white noise. That is,

s s c c v
¢ (L)st =0 (L)wlt, ¢ (L)Ct =0 (L)w2t, and It = vt, where the four lag

polynomials are of degree m, n, p and g respectively, and the uncorrelated

white noise variables w__, w and v, have variances 02 5 02 and ov.

1t 2t t wveow,

We seek the 1.l.s. estimate of St given obse;vations on y and appropriate
initial conditions. To do this we employ the general results in Sectieon 3,
having first cast the problem in a suitable state-space form. The
representation of an ARMA process employed in the previous section is no

longer appropriate, and instead we employ the following equivalences, which

have the incidental merit of retaining the original variables of (5.1) in

the state vector:
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= ¢ ] :
Xe (Xjer *¥5¢)
= ]
1t (Spr Sep7oo+r Semer’ Y16 ¥1,6-1° """ Y1, t-nt1)
=] [}
*5e Cor Comrroor Coprr’ Y2, Y2,6-1° 77" Y2, peqe1!
F = Dblock diagonal (Fl' F2]
( - - - ]
¢s,l 4)s,2 ¢s,m—l ¢s,m H es,l es,2 Tt es,n
1 O ves O (o]
0 1 800 (0 o o)
0 (o] eeo 1 (8]
(5.2) o et
8] (o) O (o]
1 (s 880 (¢}
o 0 1 .o (0]
! o 0 P B ¢ }

F_ is similarly defined by matching coefficients in the model

2

for Ct to elements of x2t,
l10...010...000...000...0

G' =
00...000...010...010...0

' = (10... 010 ... o)

= U = dij
L (wlt' w2t) Q dlag{ow ' 9, ]
1 2

2

R = ov {(scalar) S = 0.

Although there are other representations, similar to that used in the
previous section, which are of smaller order, the representation (5.2) is
convenient to use, given our objective of connecting the Kalman filter
results to the usual results for stationary ARMA processes; an empirical

application of this representation is given by Burridge and Wallis (1985).



Our first concern is to establish conditions under which the
covariance generated by (3.3e) goes to a steady state. Before applying
relevant theorems from Section 3.2 we need to check the detectability ‘
and controllability of the system (5.2). Since S=0, the matrices
defined in (3.7) are F* = F and DD' = GQG'. The eigenvalues of F are the
union of those of Fl and Fz, which are obtained from the characteristic
Y

equations |F, - AI] = -0""5 07 ana lF, - az| = 0P %S0T . Thus

s m
the eigen;alues of F are {lsi} and {ch} where ¢ (L) = igl(l - XSiL) and
,¢C(L) = j21(1 - chL), together with n+q zeros.

(1) Detectability: in the system (5.2), the pair (F*,H) is detectable if

and only if the polynomials ¢S(L) and ¢C(L) contain no unstable common

factor.
Proof. Suppose b is a right eigenvector of F. Now H'b = b1 + bm+n+1' and

if ) is an eigenvalue of either Fl or F_, but not of both, then

2
either bm+n+1 or b1 must be zero. However, it is easy to check
that since the top left blocks of Fl and F2 are companion matrices,

thelr corresponding non-trivial eigenvectors cannot have zero first

elements. Thus if F, and F_, have no eigenvalues in common, then

1 2
H'b # O for all A and the pair (F,H) is observable. Conversely, if
A is an eigenvalue of both Fl and FZ' the vector b = {1,A—1,...,
A'(m'l), Oy..., O, -1, oL, e, o} is a right

eigenvector of F, and satisfies H'b = 0. Finally, Fl and F2 have

common eigenvalue XA if and only if (1-AL) is a factor of both ¢S(L)

and ¢C(L).

Proof. Noting that D = GQlz has the form
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o O...0 ¢ 0...0 0 0...0 O O...0
w Wl

(0] 0O... 0 (0] 0 ... 0¢ 0... 00 0... 0
Y2 Y2

we see that a'D = O implies that a, + a = 0O and a + a
3 1 m+1l m+n+l m+n+p+l

but then a' cannot be a non-trivial left eigenvector of F, as is clear

by inspection.

From Theorem 3.4 it thus follows that the covariance, Pt+1,t'
converges to the unique positive semi-definite stabilizing solution to
(3.3) from all PO,—l 2 0 if and only if ¢S(L) and ¢C(L) have no common
factor (1 - AL) with lA| > 1. Furthermore, this convergence is exponentially
fast, by Theorem 3.2, and so the result is of practical use in the non-
stationary case, as in the examples of Burridge and Wallis (1985). The
ensuing discussion falls naturally into three parts, dealing with first the

case in which @s(L) and ¢C(L) are both invertible, then the general

detectable case, and finally the undetectable case in which a common factor

of (1-1) is present.

5.2 The stationary case

1f St and Ct are stationary processes, the classical 1l.l.s. theory
presented, for example, by Whittle (1963, ch.6) may be applied to cbtain

the estimate of St given observations up to yt+k in the form

~ _ s
8¢, ek - kMY

where the coefficient of yt—j’ j>-k, is the coefficient of zJ in the first

clement of the power series expansion of
s - -1 + -1
(5.3) £ (z) = (2){g__(z)} ] { z)} 7.
K (gxy gyy ) N gyy(

In this expression the covariance generating function of y, obtained

directly from (3.1)-(3.2) with S=0 as

(5.4) g, (2 = R+ HUI- 2F) Yeoe (1 - 2 ) T H

0;



is to be factored in the form

+ -
qyy(z) = gyy(z)gyy(z) 5

In the classical approach this factorization problem is solved by

expressing the c.g.f. of ¢5(L)¢C(L)yt, which is

o2 ¥ (26°@e% %Y + ol @@t
1

+ o2 5206 (285 (z Hezh)

2

-1
in the invertible form GZB(z)B(z ). In the present framework the
corresponding result is obtained via the steady-state filter and the

innovations, ?t. The steady state version of (3.3q) is

Re,e T FRy g YK

and repeated substitution, and the definitien (3.3i), yields yt as a linear

combination of the innovations

t-z-l i

{5.5) y, = ¥ _+ R'F Ky .

t -1-

t i=0 t-1-1

Since ?t is a white noise process with constant variance I, and F has

eigenvalues inside the unit circle, we obtain the c.g.f. of yt directly

from (5.5) as
(5.6) gyy(z) = {1+ zH'(I-zF)—lK}Z{l + 2 k-2 tey Tty

which is the required factorization. We show that (5.4) and (5.6) are

identical by an algebraic argument in the Appendix.

The remaining quantity in (5.3), the covariance of Xy and Yy is again

obtained directly from (3.1)-(3.2) as
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(5.7) g (z) = (1~ zF)_lcQG'(I e

Xy

Since g;y(z) is a scalar, attention can be restricted to the first element
of gxy(z). To express this in a more familiar lag polynomial fo;m we
first note that the inverse of (I - 2F) is block diagonal; denoting these
blocks by Al and A2, and those of (I - z‘ll?')_l by Bl and B2 it then
follows from the form of G, H and Q in (5.2) that the first element of

(5.7) is
2
{5.8) gsy(z) = owl{Al(l.l) + A (Lmtl) HB,(1,1) + B (mtl, 1} .
M1 My
Writing Fl in the partitioned form Fl = + Wwe see that
(0] M22
-1 -1 -1
-1 (I—lel) ~(I-2M,,) (-2M, ) (T-zM,,)
Al = (I—zFl) = -1
o] (I-2M,,)

22

Now Al(l,l) = {¢s(z)}-1, and a little further algebra shows that
Al(l,m+1) = [¢s(z)}_1{es(z)-l} so that, with a symmetric treatment of B,
the right-hand side of (5.8) is 031{¢s(z)¢s(z"l)}“1eS(z)es(z'l). Using
this expression in (5.3), and writing {5.6) as 028(2)8(2_1), we obtain
(5.3) in the form of Whittle's (6.1.13), and equation (4.5) of Pierce
(1979), whose treatment admits difference-stationary camponents. On the
other hand, substituting from (5.6) and (5.7) gives (5.3) in terms of the

system matrices as

lF')_lH{l + z—lK'(I—z—lF')—lH}_l

£ (z) = [(I—zF)-lGQG'(I—z_
k X

(5.9)
x £ 1{1 + zH' (I-2F) lK} 1 .
and to complete our account of the equivalences we show that the steady-

state Kalman filter does indeed lead to this expression.



Let us suppose, then, that PO 1 ” P, a fixed point of (3.3e), so
.-

that all the resulting quantities in (3.3) and (3.6) are time-invariant,

.

that is Ct,t+k = Ck for all t and k=0,1,2,..., Z£ = I, Kt = K, and Ft =F,

with the eigenvalues of F inside the unit circle. The one-step-ahead

estimates of the state, & , may then be expressed, by making repeated

t+1,t
substitutions in (3.3g), in the non-recursive form

= E Py + Fig
Ye g .

i=0

(5.10)

xt+1,t 0,-1

This estimator is, strictly speaking, affine, rather than linear in y,

because of the presence of the initial conditions. In the classical

theory, ﬁo 1 would be set to its unconditional value, zero, resulting in
-

a linear form, as it were fortuitously. Since F converges to zero, however,

~

the effect of ﬁo 1 on the estimate of xt+l dies out as t increases and
)=

for simplicity we take ﬁo 1= 0 from here on. The coefficient of Ye_y
r= =

in (5.10) is given by the coefficient of zi in the generating function

it

(5.11) £_,(2) {1 - 2#) 'k ,

from which it follows that the innovation, ?t. may be expressed as a

linear combination of the observations with generating function

(5.12) §(z) = 1 - z8'{1 - zﬁ}'lx )

9

In steady state the smoothed estimate of X, given nt+k takes the form

(cf. 3.6a)
k
C Re,tek ~ kel T izo Ci¥eei

which may be expressed in terms of the observations by substituting for

A

X using (5.10)-(5.12), from which we obtain the generating

t,t-1 a4 Y4

function, centred at t:
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k

(5.14) £(z) = zf _(z) + ) z ic.a(z) .
k -1 i

i=0

Here the coefficient of Yt—j' j2-k, is given by the coefficient of zj, and
~ i -1
Ci = P(F')lﬁl - Again all that is required for (5.14) to be a convergent
power series in z is that the eigenvalues of ﬁ have modulus less than
unity, which is the case. Substituting for f_l(z) and Ci gives
~. =1 -1~ .~ -1
(5.15) fk(z) = z{I-zF} Kk + P[{I—z 1F‘} lHZ ] w(z)
-k

As yt is stationary, w(z) is invertible, and this can be written as

(5.16) £ (2) = (z{x—zﬁ}'lxﬁ"l(z)z + p{x-z’lﬁ-}'lu] 2—1ﬁ(z)
-k

We wish to show that the coefficient of zJ in (5.16) is the same as
that in (5.9). First we note that their last factors coincide. From

{5.12) we have
. e | L .-1
W(z) = |1 - 28'{1-2F} k| = |1 - 2{1-2F} "km'|

B I P gy

]

. - — - N N . = .
since F = F - KH', again using IIn + T1T2| |Im + T2T1|. Similar
operations on the last term in (5.9) give
-1 .-1 ~ -1
{1+ zH'(I-2F) lK} = |1 - 2zF|.|1 - 2F|
- - -1 .,-1 -1 -1~,.-1
as required. Likewise {1 + z lK'(I—z 1F') lH} = {1 - z "K'(I-z "F') "H},
so that
- = - = = Sl S |
B{1 + z 'K’ (1-2 ey m ™t - 1 -, Yok (1-27YF ) Thm

{1 - z_lF'}{I - z—lﬁ'}-lﬂ .

Substituting this gives the expression inside the annihilation operator
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in (5.9) as

looi (1 - 2 Yt

s

(5.17) (1 - zF)

Turning finally to (5.15), in a similar fashion we have

21 - 28 T Nz = 2(1 - 2PV R(L 4 z8" (1-2zF) YK)3

= z{I - zﬁ}—l(I + zKH'{I—zF}_l)KZ

= z(I - zF)_1KZ .

Taking out a left factor of (I - 2zF) =, a right factor of (I - z"1 ?')-lH
and noting that KI = FPH, the expression in the annihilation operator in

(5.16) becomes

(5.18) (xr - zF)‘l{sz(I—z'lﬁ') + (I-zF)PM(I - e

The middle term in this expression is then just P - FPF', which is equal

to GQG' (see 3.3e). Thus (5.17) and (5.18) coincide, and we have shown
explicitly that the classical and steady-state Kalman filters are identical.
oOother authors have considered this equivalance. but so far as we are aware
the precise connection between expressions such as {5.9) and (5.16) has

not been made explicit (cf. Anderson and Moore, 1979, p.257; Whittle, 1983,
p.151). The discussion in Section 2.2 concerns the same equivalence in
respect of the filter fo(z), in the present notation, in a simple two-

component example of the unobserved-component ARMA model.

5.3 The non-stationary detectable case

I1f ¢C(L) and/or ¢S(L) are not invertible, but contain no non-

invertible common factor, then the covariance Pt+1 ¢ attains a steady
r

state, P, and F has all eigenvalues inside the unit circle. 1In this case,
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therefore, there is still a steady-state filter of the form (5.15), and
the question that then arises is how much of the analysis in the preceding
section survives? 1In particular, is there an expression corresponding to
(5.9) in this case? To make progress, it is necessary to be clear abou;
the practical significance of the various z-transforms manipulated above.
Although we replace the series I + 2F + zzﬁz + ... by its limit {1 - zﬁ}_l,
at (5.11), and also I + zF + 22F2 + ... by (I - zF)—l at various points,
the practical reality is that only a finite record is ever analysed, so

that we could equally proceed with, for example, (5.11) written as

and (5.12) as

t 7
wo(z) = 1- zH'{ Z zlﬁlx} 5
i=0

Now an 'inverse' of ﬁt(z) could be defined as

wiz) = 14 zH‘{ ) ziFiK} .
1=0

This is the z-transform for the coefficient on ?t i when Ye is written as

a linear combination of the innovations, as in (5.5). It is the inverse

of ﬁt(z) in the sense that

w(z)ﬁt(z) = 1 + terms resulting from truncation at any
finite power of z.

However, in order to apply (5.15) in practice, all we need ensure is that

coefficients on powers of z from -k to t are correct. With this in mind

(5.15) can be written as

koL
(5.19) £ (2) = {z{1+z§+z2E2+...}xw(z) +p{ ] 2z 3 (Flux 1}}ﬁ(z) + U(z)
3=0

where U(z) is a remainder involving powers of z greater than t (it is assumed

that the first term inside the braces is expanded far enough to give the
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first term of (5.15) exactly, before the remainder is taken). Now by
direct calculation the first term inside the braces of (5.19) can be seen

to be z(I + 2zF + z2F2 + ...)X plus a remainder due to truncationj the same

argument applies, however, and so we can write
2.2 k i ~..1 -1
{5.20) fk(z) = {z(I+zF+z F'+...)FPH + P{ { z (FY) H}} £ w(z) + U*(z)
i=0

Pursuing the same line of reasoning, we might seek to obtain fk(Z) by

expanding the following z-transform, obtained from.(5.9) by replacing

(f - zl?')”1 and (I - z-_lﬁ")-1 by the divergent power series (I 4 zF + zze + ...

and (I + z—lF° ¥ z-z(t")2 4+ ...) respectively:

(5.21) £2(z) = [(1+zr+z2r2+...}GQG'(1+z’1r'+z'2(F')2+...)na'(z'ly] £ Y (2)
-k

The requirement here is that the polynomial in negative powers of
b

2z inside the annihilation operator converges more rapidly than F

diverges. Recall that

ﬁ'(z_l) = 1 - z'lx'(a LTI z“z(ﬁ')2 + .. )H .

By direct calculation f{(z) can be written as

(5.220  ffz) = {[1+zy+z2r2+...1GQG'(x+z'1§'+z'2(§')2+...)n] r Ytz
_x

in which the coefficients on finite powers of z inside the annihilation
operator are as follows:

o
coeffictent of 20 : ) Flepe' (F1)ln
1=0
- ® - + *
coefficient of 2z ] s Z FIGQG'(F')1 jH
1=0

[ J
coefficient of zj : Z F1+jGQG'(E')1a .
1=0

That these coefficients are bounded 1if F has eigeﬁvaiues on or inside the
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unit circle follows from the fact that those of F are then strictly inside

the unit circle. A simple rearrangement of (3.3e) in steady state gives

GQG' =P - FPF', so the coefficient of zo is then PH, and so on. We thus

see that fﬁ(z) coincides with fk(z) in (5.20) up to any desired power of z.
The interest in this result is that formulae analogous to (5.21) for the

case in which F has eigenvalues on or inside the unit circle have appeared

in the literature, and although these provide a means of correctly caiculating
the coefficients, as we have shown, they have not been derived directly, as
here. As a basis for calculating the coefficients, (5.15) is obviously to be
preferred, however, since the intervention of rounding errors is thereby

minimized. Whether any meaning can be attached to (5.22) in the explosive

case remains an open question.

5.4 The non-detectable case

The model of (5.1) and (5.2) fails the detectability‘condition if
the polynomials ¢S(L) and ¢C(L) have a common factor (l-AL)} with 'Alz 1.
Although cases with IA[ >1 might be considered to be coincidental situations
of little practical relevance, in the next section we consider a particular
example whose main interest is in showing that Zt and Kt may converge to
finite limits even when Pt+1,t increases without limit. In the seasonal
adjustment literature cases with A=1 arise, through specifications in which

¢S(L) has a factor (l—Ld) where d is the seasonal period, and ¢C(L) has a

factor (1-L), and we briefly consider this case here.

Burridge and Hall (1986) show that convergence of the filter gain
to a steady state, K, does occur when a common factor of (1-L) is present.
The matrix F has an eigenvalue of unity, however, and so we must consider
carefully what meaning, if any, is to be attached to expressions such as

(5.20) and (5.22) in these circumstances. The time-invariant Kalman

filter can still be written as



% ii
(5.23) £ (z) = =zf (z) + z CW (z) ,
120 t+k

with the understanding that power series expansions are to be retained:

t+k

t
i -
£4 02 = ] 2 #x , Wz = 1 - e ) 2 K
! i=0 i=0
and Ci = Pt t_l(f‘)iH. That Ci is time invariant when K is follows from
2

the convergence proof of Burridge and Hall (1986). Now exactly the same
argument can be applied as in the previous section, except that

GQOG* = pt+l,t - Fpt,t—lﬁ' and a time subscript on P needs to be retained

in obtaining the equivalence of (5.22) and (5.20), since Pt+1,t # Pt,t—l
here. Again it is clear that (5.23) provides a better means of calculating
the coefficients than (5.22). 1In the limit this filter coincides with that
considered by Pierce (13979), who shows that if this filter delivers the

conditicnal expectation of St (in the infinite-sample case) then the

estimation error is non-stationary in the presence of a common factor (1-L).

6. A NON-DETECTABLE EXAMPLE

In this section we consider a particular example of the unobserved-
component ARMA model analysed‘in the previous section. By direct argument

we show that it is possible that Kt and ﬁt converge to constants, even

when Pt+1 . does not, a case that has received relatively little attention
1

in the control theory literature.

In the three-component model of Section 5, namely

it is now assumed that St and Ct are first-order autoregressive processes,



50

with the parameters ¢s and ¢c respectively. Thus in the general

representation
¥epp T FXe P G
= '
yt H xt + vt
¢ 0
s 2 2
we have F = o o |’ G = 12, H' = (l 1) and Q = diag(os, oc). The

c
previous discussion deals with the cases in which ¢S # ¢c or ¢s = ¢c = ¢,

say, with |¢| < 1. We now assume that ¢s = ¢c = ¢ with |¢| 2 1, thus the
system fails the detectability condition. For a two-component vector

K* = (k}, k§)', it is easily verified that the eigenvalues of {F - K*H'} are
¢ and ¢ - k¥ - k*, thus if |¢| 2 1 there is no K* which renders this matrix

1 2
stable. As a result, with Q>0, Pt+l t increases without limit. It is of
’
interest to answer two questions, however: (i) What functions of the state

vector can be estimated with bounded variance; (ii) Does the quantity Kt

still appreach a limit so that a time invariant rule of the usual form

eal, t FR -1 .t Kly, Hﬁt,t—l}

may eventually be applied? So far as we are aware, the latter possibility
has not previously been formally investigated in the Kalman filter

literature.

Both questions are most easily addressed by applying a non-singular
transformation to the state vector which, as noted in Section 3.1, leaves

-1
the y process unaltered. Consider, then, the transformation xé =T xt

1 1 -
with T = [O —l] =T l, so that the system becomes
x* = F*x* + w*
t+1 t t+1
(6.1)
y = H*'x* + v

t t t



2
with F* = T YFT = F, H*' = H'T = (1, 0), and Elwt wi'}=o* = s 2° ;
C

Writing the variance of x* as the recursions (3.3)

- &® *
T MLt LI

applied to the transformed system give

: * * it *
(2 Pt+1,t Fpt,t—lFt ot
~ h _1
F* = F -~ KfHg*' = F -~ FP* Ay K L L
t t J t,t—lH Et H

Noting the particular form of H* in the present case we have

p* (1,1)
t,t-1
* = * * * - 4
I T PhLea (e R P et N
t,t-1"°1

so that (6.2) may be written out element-by-element to give

. _ -1 '
(6.3)(a) P¥ . (1,1) = ¢} ,(L1) (¢ bpp , (LLRE (L1 +R]) M) +0*(1,1)

- . -l e
(b) BY L (2,1) = ¢P¥  ,(2,1) (¢ ¢pr (LR ) (1,1) +R] ) +9*(2,1)

- ] - : -1
(2,2) = ¢fpr (2,2 -Bp  2,D{RY (LD +RPE (2,104

*
(C) P t't"‘l

t+1,t

+

Q*(2,2) .

Now (6.3a) is of the same form as equation (2.19) of Section 2.2, so

P (1,1) converges monotonically to a positive constant P*(1,1), say,

*

t+1,t

from all Pa l(1,1} > O by the argument used there. In the more general
’- -

setting of Section 3, the transformation gives a decomposition of the

original system into two sub-systems, the first of which is observable

(cf. Preston and Pagan, 1982, §6.3). By the application of Theorem 3.2 to

this sub-system, (1,1) converges, exponentially fast.

*

Turning to the second element, we first condense the notation by
-1 ~
i = - Pp* * ’ + its steady-
writing $t ¢[1 pt,t—l(l'l){Pt,t—l(l 1) + R} ), and ¢ as its steady
state value. Then (6.3b) possesses a fixed point if and only if ¢¢ # 1.

The steady state of equation (6.32) and the fact that P*(1,1) > O implies
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that O < ¢$ < 1, hence (6.3b) possesses a unique fixed point for any ¢.

If |¢| =1, then|¢$t| = |$t| < 1 for t21, and the recursion (6.3b) converges
to this fixed point. If l¢| > 1, the same conclusion, less obviously, can
be established as follows. The condition for l¢$t| to be less than unity

is simply that P¥ (1,1) > (¢2 - 1)R. From (6.3a) we have

t,t-1

P*(1,1) > (¢2 ~ 1)R, so even 1if PS _l(l,l) < (¢2 - 1)R, the convergence

r
2
i * * 1,1) > - 1)R

properties of Pt+1,t(l'l) are such that we must have Pt+l,é 1) (¢

after a finite number of steps. It thus follows that P;+l t(2,1) converges,
[

since either O < ¢$t < 1 for all t, or ¢$t > 1 for at most a finite

number of steps.

Finally we see that P£+l t(2,2) diverges, with a coefficient
v

¢2 2 1 in the recursion (6.3c), the second term in parentheses on the

right-hand side converging to a finite limit, as established above.

Returning to the original problem we note that Pt t lH
Lt

H* converges to a unique steady state

by virtue of the preceding results. Clearly, then, Kt = FPt " 1HZ;l
,t-1

= TP, 1T () e = 2L, -1
converges to a limit in all cases, and we have an example in which Kt
converges even though pt+l,t does not. That is, there is a well-behaved
l.1.s. recursion, producing estimates whose variance is diverging. However,
as the discussion of the transformed model makes clear, the sum St+Ct can

be estimated with bounded error variance. Since both St and Ct have the

same autoregressive structure in this example, so does their sum, and
considering only this composite signal reduces the problem to the case
considered in Section 2.2, which is well-behaved whatever the value of the
autoregressive parameter. Despite having an estimate of St+Ct with bounded
error variance, however, 1l.l.s. estimation of the separate components in the
nonstationary case is subject to unbounded errors, which are offsetting in the

sense that their sum is bounded, or their correlation coefficient approaches -l.
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7. DISCUSSION

In the preceding sections we have shown how the theory of forecasting
and signal extraction for stationary ARMA time series can be extended to
cover non-stationary processes. While some new results have been ‘
obtained, it has been equally important to place some long-standing
results on rigorous foundations. The techniques we employ have been
hitherto most widely used in the control theory literature, and a parallel
objective has been to relate that literature to the statistical time
series literature. 1In particular, the connections between the Kalman
filter apparatus and Wiener-Kolmogorov filters have been made explicit.

It remains to comment briefly on a number of earlier treatments of non-

stationary processes in the time series literature.

The prediction of a difference-stationary process, possibly masked
by stationary noise, is discussed by whittle (1963, ch.8.5). He cobtains
the z-transform of the 1l.l.s. predictor in the case where the AR operator
contains a (possibly repeated) factor of (1- ¢L), with |¢| <1, and then
allows ¢+1 in this z-transform. Whittle (p.95) does not claim that the
resulting predictor is the l.l.s. predictor, but that this is true, with

appropriate assumptions on initial conditions, is shown above.

The extraction of non-stationary signals with roots on the unit
circle observed in stationary noise where an infinite sample is available
is also considered by Hannan (1967) and Sobel (1967). These two papers
are closely related in éhat they address the same problem, but they use
different methods. Hannan finds that filter in tLe class of linear

ﬂ.l [y
filters which pass a polynomial trend generated by the same m  order

difference equation as the signal, which minimizes the m.s.e. His result
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is a straightforward generalization of Whittle's. Scbel, on the other
hand, proves by Hilbert space arguments that in this class of process
the projection of S_ on {yt =5+ Nt} tends to a limit as given by
Hannan. Sobel's argument requires the noise to be stationary, and the
variance of St to be bounded at time 71, say, by taking as 'initial’
conditions ST_m,..., ST_2, ST-l with finite variance. This device, which
is used also by Bell (1984), makes the resulting estimates sensitive to
the choice of 1, a fact which neither of these authors discuss. Sobel
was aware of Kalman's work, but seems to have dismissed it on the
(mistaken) grounds that only autoregressive processes could be handled

- with the benefit of hindsight this seems to have been unfortunate,

perhaps contributing to the slow diffusion of state-space methods into

statistical time series analysis.

Cleveland and Tiao (1976) consider the extension of Whittle's result
to situations in which signal and noise processes may have shared and
repeated unit roots. That is, ¢s(L) may have a factor (l—Ld) and @n(L) a
factor of (1-L), giving a non-detectable model as discussed in Section 5.4.
They assert that the 1l.l.s. estimator (in théir case, the conditional
expectation) takes tﬁé same form as in the stationary case. However,
their argument allows no proof of convergence of the filter to steady
state, and no initial conditions which would.bound the variance of St' Nt

or y. at some point in the sample are given.

More recently, Bell (1984) extend§ Sobel's result to situations in
which the signal and noise processes have unrestricted autoregressive
operators of finite order. As nbted above, his results depend on the
arbitrary treatment of some part of the record as 'initial' conditions.

In particular, his claim (pp.660-661) that the signal extraction error in



the non-detectable case discussed by Plerce (see Seciion 5.4) has finite
variance, contrary to Pierce's result, rests on the use of initial

conditions in the middle of an infinite record, which seems to conflict

with what is usually intended when writers in this field discuss such a
record. Bell suggests that the Kalman filter, which he does not use, is
a convenient device for solving the data processing problem in finite

samples, to which his results do not apply.

That a variety of signal extraction problems:may be usefully cast
in the state-space framework is recognized by several authors. For ‘example,
Pagan (1975) displays the steady-state filter for a simple unobserved-
components model with autoregressive components, and Engle (1978) and
Kitagawa (1981) discuss both practical signal extraction and parameter
estimation for various ARMA components models. In. fact, the most common
applications of Kalman filtering in econometrics are to be found in the
estimation context, where the prediction error decomposition facilitates
evaluation of the likelihood function for models with state structure .
(Harvey, 1984; Engle and Watson, 1985). Parameter estimation problems
are not discussed in the present paper; rather the emphasis is on the
use of state space methods in prediction theory. In that context, the
techniques applied above have been seen to be powerful and direct, and
their application to further problems, such as those of specification

error and parameter uncertainty, will undoubtedly be equally rewarding.



APPENDIX

Alternative forms for the covariance generating function of Y

In Sections 4.4 and 5.2 the c.g.f. of Yoo defined only in the
stationary case, is expressed in two different forms. 1In this Appendix

we show their equivalence by a direct algebraic argument.

First, from the general system (3.1)-(3.2) we obtain

(A.1) gyy(z) =R + H'(I-zF)—lGQG'(I-z—lF')—lH + zH' (1-2F) TGS
+ z—ls'G‘(I—z-lF')_lH )

The second form is obtained from the steady-state relationship between
yt and current and past innovations as

(A.2) gyy(z) = {1 + zﬂ'(I-zF)"lx}z{l + z_lK'(I—z—lF‘)—lﬂ}

In this expression we have

L =H'PH + R, K= (FPH + GS)Z—l, P = FPF' + GQG' - KIK'

Expanding (A.2) and substituting for K and L then gives

-1
(a.3) gyy(z) = H'PH + R + zH' (I - 2zF) ~(FPH + GS)

+ 2 L('PF' + 5'G') (I - z—lF')—IH

+ H'(I - ZF)—l(FPF' + GQG' - P)(I - z_lF')—IH .

Subtracting (A.l) from (A.3) leaves the remainder

- -1 -1, -1
H'PH + zH'(I - zF) lFPH + z H'PF'(I -2z F') H

+ H' (I - zF)—l(FPF' - P)(I - z'lF')_lﬂ ,



and on rearranging this in the form H'(I - zF)-lA(I - z-lF')-lﬂ it is
readily seen that A=0, as required. This algebra both generalizes and

simplifies the discussion of Anderson and Moore (1979, §4.5), who treat

the case §=0.

In the state-sgpace representétion of the ARMA model that is used in
Section 4 we have Q=S=R, and using this in (A.l) gives equation (4.11) of
the main text. In the representation used in Section 5 we have S$=0, and
again specializing (A.l) gives equation (5.4); the alternative form (A.2)

is obtained as (5.6) of the main text.
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FOOTNOTES

The suggestion of Harvey (1981, pp.37, 129, 161) that forecasts.
using a non-invertible MA are unattractive because they are
inefficient seems to rest on the mistaken assumption that a% and 0%
are equal. Granger and Newbold (1977, pp.l144-145), working with
conditional expectations, emphasize the equivalence of forecasts from
the two representations, and comment that "the invertible form is
inevitably used in practice since the computation of coefficient
estimates and of forecasts from the fitted model is considerably

easier for invertible than for non-invertible models." The computation
of forecasts through the recursions (2.10) is unaffected by this choice.

For the present model this is given (with a typographical error) as
Exercise 3.3.12 of Whittle (1963, p.35).

In his presentation and discussion of Muth's result Sargent (1979,
p.310) notes "... a technical difficulty that arises because our {Yi}
process is (borderline) nonstationary. In particular, the variance
of Y is not finite, making application of least squares projection
theory a touchy matter.”

For a derivation see Anderson and Moore (1979, ch.7) or, for the
Gaussian case from a slightly different perspective, Jazwinski
(1970, pp.215-218).

This result is sometimes incorrectly attributed to Caines and Mayne,
whose original proof of their theorem was in error. The confusion
arises because in a subsequent correction {Caines and Mayne, 1971)
the condition that (F¥*,D) be stabilizable had to be strengthened to
controllability, and this change has been overlooked by some authors.

Burridge and Hall (1986) show that the filter coefficients converge
to a steady state in this case using an argument along the lines of
that in Section 6.



