E , o ,
| 1] .ll"lww] el pring

Mark Salmon

University of Warwick

No. 291

WARWICK ECONOMIC RESEARCH PAPERS

DEPARTMENT OF ECONOMICS

UNIVERSITY OF WARWICK
COVENTRY




Error correction meodels . co-integration
and the internal medel principle

Mark Salmon

University of Warwick

No. 291

The paper considers Lhe condilions under which a
system of dynamic equations will be consistent wilh some
prespecified multivariate equilibrium specification.
Connections are also drawn between recent developiments
in the analysis of mullivariate error correction models and
the theory of co-integration and what is known as "The
Internal Model Principle” in the design of robust linear
feedback rules . Apart from clarifying and generalising our
understanding of error correclion syslems and co-
integration this approach suggests a relatively simple
method for identifying the restrictions that determiue
whether a given dynarnic system salisfies lhe conditions
for being an error currection specification.

Septernber 1986
Revised:May 1987
FFebruary 1988

| would hke to thank Masanao Aoki, David Hendry |, Denise Osborn and
Ken Wallis for a number of cornments on an earlier version of this
paper which has also benefited substantially from discussion when given
at the Universities of llinois, Michigan State, California at San Diego,
Manchester , Warwick and Oxford.



I Introduction

This paper considers the following general question ,
given a multivariate dynamic model written in vector autoregressive
forrm ,

A% = €& (1)

under what conditions on the polynomial matrix A(L) will the model be
consistent with sorme prescribed set of dynamic restrictions given by

B(L)x, = ¢ , ' (2)

Where {6“} and [el} are stationary, zero mean stochastic processes

and B(L) i5 a polynomial matrix in the lag operator L.(l)

The most obvious case in which this question becornes
relevant is when (1) represents a dynamic model incorporating short
run responses and (2) represents an equilibrium specification for the
model. In general however, we may also be interested in whether the
transient response of a model satisfies certain characteristics such as
common seasonal patterns among the variables. In addition there is no
restriction in (2) that prevents us , in principle ,from considering the
analysis of unstable models with roots strictly greater than unity.
What makes the general question non trivial is , of course , that the
dynamic characteristics of a system of equations can not be determined
easily from an inspection of the properties of the constituent equations.
For instance , the poles and zeros of a system as a whole may bear
little relation to those of the individual equations given the dynarnic
cancellations that may arise in moving to a final form . Indeed 1t is
the cancellation of unit roots within such a systern that characterises
co-integrating relationships among the variables in the vector x,.
Another example , of direct interest to this paper, is where error
correcting behaviour may well be at work within the model although it
is not obvious from the specification of any individual equation. What
are the "error correction” restrictions for a system of equations ? For
instance , do all the equilibrium error terms have to occur in each
equation ?

(1)A(L) and B(L) may also be treated as rational polynomial matrices
and the analysis below thereby extended to cover vector ARMA
representations with relatively minor changes.
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An alternative way of posing the question is to ask whether
(1) contains as an "internal model” the specification given by (2).
Similar considerations have led to what is known as “The Internal
Model Principle” being put forward as a basic requirement in the design
of robust linear feedback rules ( see for instance, Wolovich (1974),
Francis and Wonham (1975), (1976), Bengtsson (1977), Callier and
Desoer (1982) and Wolovich and Ferreira (1979) ).The objective in this
case is to ensure that a feedback rule may be designed so as to be
robust against a prescribed set of disturbances with some dynamic
specification or alternatively for the model to "track" some desired
dynamic reference trajectory. While our interest in econometrics does
not lie in the design of such rules much of the recent literature on
error correction models and co-integration amounts to asking such
questions , ex post, of a given model.

What may not be immediately obvious is why the
equilibrium specification (2) is apparently both dynamic and stochastic.
We first demonstrate below why this approach does in fact allow
considerable flexibility and is consistent with the standard
characterization of equilibrium within the natural sciences and in other
areas of econornics. Although there are potentially important differences
with the existing approach adopted within the co-integration literature
in which equilibria are viewed as contemporaneous relations between
economic variables that are all required to be of the same order of
integration , typically 1(1). Yoo (1986) has also recently attemnpled to
generalise this restrictive notion of equilibrium employed in co-
integration analysis and we shall comnpare his approach with ours in
the analysis that follows.

We then describe the internal model principle and consider
how the existence of an internal model may be checked through the
determination of the right divisors for the ( potentially rational )
polynornial matrix A(L). A similar “ common factor” condition has
recently been noted by Davidson (1986) and this paper may be seen as
a complementary analysis to the more matheratical discussion of
similar issues by Davidson and also Johansen (1985). Section 4 makes
the formal connection between the internal model notion and co—
integration and draws parallels with the state space approach proposed
by Acki (1987a,1987b). In particular the conditions under which the co-
integrating regression will involve dynamic transformations are
determined and also how the degree of ambiguity in this dynamic
specification may be partially eliminated by selecting a minimal
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polynomial basis for the left null space of a particular polynomial
matrix as a “co—integrating basis” for the model.

The right divisor property is not sufficient alone to
ensure the existence of a multivariate error correction model and we
consider in section 5 what further conditions are required for the
system case after first briefly reviewing the equivalent results for single
equation error correction models. A number of examples are then given
to dermnonstrate the utility of the internal mode] approach. One
observation that follows from the examples is that although an equation
or system rnay be expressed in eryor correction form involving both
differences and levels of variables it may still not satisfy the "error
correction property” in that the equilibrium error vector is an 1(0)
process being both stationary and having zero mean.

The orientation we adopt is that of an applied
researcher who has at hand an estimated econometric model of the
form (1) and wants to consider whether this system of equations is
consistent with a set of dynamic restrictions (2) potentially
representing equilibrium behaviour. The arbitrary specification of these
restrictions reflects the possibility that he may want to consider several
different assumptions corresponding perhaps to different growth
properties of the data. Since the model at hand , (1), has already been
estimated without necessarily following the model building strategy
proposed in Engle and Granger (1987) the researcher may be
completely uncertain as to the potential equilibrium characteristics of
the model. The initial stirnulus for this work carne , in fact , by way
of a question from a colleague who was working on a small subsystem
of a large macro—-econometric model of the UK econorny. The original
model had not been constructed with any explicit regard to the degree
of integration or co—integrating properties of the data and the question
was raised of how we could determine ex post whether or not the
subsystem satisfied any error correction properties. 5o no assumptions
as to the empirical co—integration properties of the data are assumed in
what follows. One major objective was then to see how the
methodology used in Salmon (1982), which essentially considers the
same form of ex post analysis could be extended to error correction
systems.

We start by justifying why the equilibrium
specification is apparently both dynamic and stochastic.
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An example will demonstrate several of the issues to be
raised below. Consider the following two equation system

By T yy Ty, = ¢ (3i)
Ay, + Ay, = e, (311)

which are normalised by the properties of the errors ,e, and e,, which

are both assumed to be zero mean , stationary , stochastic processes,
in other words they are both integrated of order zero , 1(0). Clearly
several different configurations for the stochastic properties of y,and y,

are possible. They could for instance both be 1(1) or 1(0) processes
but a more interesting case arises when they are both 1(2). The
equations then represent two distinct co-integrating relations between
y; and y, .l we consider the second equation , given that ey 15 1(0)
implies that (y,ty,) is an 1(1) process if y, and y, are individually
1(2). Applying a first difference transformation to (3i) we find,

A%y, + Ay ty,) = Ae (4)

or
A2y1 + ey, = Ae (5)

and hence
Azy1 = Aej-e, , (6)

confirming that y, is 1(2) . Then from 3(ii) we see that
A2y2 = Dey — Aep t ey (7)

which in turn confirms that y, is 1(2).

Thus we see from 3(ii) that the variables y; and y, are
Ci(2,1) but also since Ay, is 1(1) and (y,ty,) is 1(1) and from 3(i)
their sum is 1(0) we find that the variables Ay, and (y,ty,) are
Cl(1,1).

So several co—integrating relations may exist in a model
that involve the same variable in different dynamic transformations.
Moreover within a single co-integrating relation (eg. (3i)) a variable
(y1 ) may occur in both levels and a first difference formn. The
approach developed by Granger and Engle has concentrated on the
Cl(1,1) case and attention has been focussed on contemporaneous
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equilibrium relations between economic variables. The difficulty
demonstrated by the example lies in that prior to the analysis some
form of dynamic normalisation has to be undertaken. Granger and
Engle achieve this by requiring, ab mitio that all variables entering
into the analysis are of the same order of integration. However this
would be difficult to achieve in the present example unless Ay, existed

as a different economic variable, such as the obvious relation between
stock and flow variables. £x post, having found the equilibrium
relation , (3i), it is obviously reasonable to define Ay, as a new
variable but corning to the problem from the point of view of the data
analyst with observations on Just yy and y; , it is not clear that (3i)
would be found and only (3ii) would be put forward as the equilibrium
relation between y,; and y;. The dangers of using an incornplete set of

equilibrium conditions are well known in economics and certainly if the
resulting partial equilibrium specification were used in an error
correction specilication, following the model building approach put
forward in Engle and Granger (1987), then the resulting model may be
seriously inadequate.

One response is that whenever a variable is found to be 1(2)
then a nested search should also be made over all potentially co—
integrating relations that involve first differences of the variable in
question. The approach we follow in this paper is to allow the
equilibrium relations to be described , as in (2) , by a general
dynamic system in the basic economic variables. Notice that this
approach does not deny a stalionary equilibrium between appropriately
defined state variables, but just recognises that it may be difficult to
determine empirically what the appropriate state variables should be.
The relevant state variables for a given problem should appear
naturally from a full specification of the economic theory underlying
the problem. Rationalising a dynamic model by writing it in stale space
form provides a similar dynamic normalisation to that suggested by
Granger and Engle ,moreover the state vector will frequently involve
dynamic transformations of the same variable, consider Newton's Law's
of motion where the state vector consists of position, velocity and
acceleration. Given the dynamic transformations inherent in the
definition of a state vector it is natural to define an equilibrium in
terms of stationarity of the state of the model. So the apparent
dynamics in the “equilibrium” specification, (2), are principally
intended to enable the selection of the appropriate state variables for
the economic model at hand and to relax the prior normalisation
required in the Engle-Granger appr‘oaclLYoo(l‘)Bé) adopts an approach
that suggests economic equilibria may involve non-instantaneous
relations between (state) variables and while there may be some
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instances perhaps due to temporal aggregation or other timing
considerations in which this situation may arise it is not the position
taken in this paper. Aoki (1987a,1987b) has recently provided an
important alternative view of co-integration which exploits the state
space formulation of dynamic models explicitly .

Any linear dynamic systern may be decornposed into
its fundamental modal characteristics and as such contains within its
overall dynamic response sorne linear combination of these internal
modes. Our particular interest lies with steady state behaviour but we
may also be interested in whether a model contains some frequency
specific behaviour . In the design of robust feedback rules some
information has to be provided as to the nature of the dynarnic
characteristics of the disturbances a rule is likely to face . Similarly if
the feedback rule is to be designed so as to "track” sorne reference path
then the dynamic characteristics of this path have to be specified and
built into the design of the rule . The Internal Model Principle simply
states this intuitive idea; Bengtsson(1977) puts it as follows:

1t 15 both necessary and sufficient for output
regulation to take place that the open loop path,
consisting of the plant and the compensator in
cascade, contains a suitably defined internal rnodel
of the environmment. ”

This same idea was reflected in Salmon (1982) where it was
shown that the appropriate specification of a scalar error correction
model depended on the dynamic characteristics of the equilibrium
towards which the error correction model adjusted . The developmenit
in that paper was based on the notion of model type which does not
generalise satisfactorily to multivariable error correction systems. A
more appropriate extension is based on the determination of whether
the potential equilibrium behaviour is contained as an internal model
within our dynamic systern.

There are several different routes to the internal model
principle , one based on skew symmeltric polynomials (see Wolovich and
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co—authors) and another based on the determination of right divisors of

a polynornial matrix. We follow the analysis of Bengtsson (1977) below
that requires several definitions before we can define the conditions for
the existence of an internal model.

1. The order of a rational matrix T(z—l), written as
8('[(2_1)) is defined as the sumn of the degrees of the denominator

polynomials in the Smith-McMillan form of T ).

2. A right divisor of a polynomxal matrix P(z Y is a
polynomial matrix R(z 1Y such that P(z H=p Wz YR(z Y for some

polynormial matrix Py(z° Y.

3 A left matrix fraction description (MFD) of a rational
polynomial matrix T(z Y is a panr of polynomial matrices D(z Y and
N(z ') such that f(z_ B=p(zY)" IN(z"). A right MFD would be

Tz ™")=N( )b )"

4 A rational matrix T(z'!) can be written uniquely ,
through partial fraction expansnons as the sum of two strictly proper

rational matrices T(z '), and T(z 1y and a polynomial matrix T(z' )

T(z ) T(z )++ T(z ) + T(z ) (8)

where the poles of T(zﬂ)* are all on or outside the unit circle (in a
region G') and those of T(z'')_ are all strictly inside the unit circle (in

a region G ) . The complex variable z defines the 2 transform or
generating function of a discretely indexed variable such that the stable

region is given by ()

5 A rational matrix T(z ') having all its poles within G
can be expressed as ‘I'(zﬁl)* = 0 and is said to be stable with respect

to G .

6. Let T(z'!) and W(z ") be arbitrary rational matrices.

Then T(z ') is said to contain an internal model of W(z ') if



8(r(z ™) = 8[1z™") w(zh)] (9)

Theorem 2. of Bengtsson then shows that if T(z™') and
W(z_l) are two arbitrary rational polynomial matrices with the same
number of rows such that T(z*‘):Dl(z‘l)ﬂlNl(z—l) and
w(z )= D2(2—1)~1N2(2~1) are minimal MFDs then T(z ') contains
W(z') as an internal model if and only if Dz(z_l) is a right divisor of
D, (1.

The application of these results to our original problemn is
quite straight forward and intuitive. If we equate T(z ') with the

rational polynomial matrix Az ')™'l and W) with B (2), we
see that for (1) to contain (2) as an internal model it is necessary and

sufficient for B(z_l) ta be a right divisor of A(zﬁl)A In other words
we require that

Az = A, NBGETY) . (10)

So if B(z') is an internal model of A" we may write
, A(L)x, = ¢, (11)
as

AI(L)B(L)xl = € (12)

but given that B(L)x; = ¢, , equation (12) just describes the dynarnic
adjustment in the equilibrium error e, as

A(L)e, = ¢ (13)

@) Il the original problem had been sel up in vector ARMA form then
the identity matrices in these MFDs would be replaced by the
appropriate moving average polynomial matrices.
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Given that B(z ') contains our model of equilibrium with
the specified growth characteristics in the variables appearing as unit

roots in B(z ') we will also need to ensure that A,(z '),=0, in other
words that the polynomial matrix Al(zﬁl) has no unstable roots if

adjustment towards the equilibrium specified by B(z’l) 15 to be
guaranteed. Moreover for the equilibrium error to be an 1(0) process
we need to ensure not only that It is stationary but that it has a zero
mean. We shall refer to a specification that satisfies these later two
conditions on the equilibrium error as having the "error correction
property” for the given equilibriurmn or internal model specification ,
B(Lﬂ)xl =e,.

If B(z!) were not a right divisor of Az ') so that
-1 T -1
Az ") =A2 )B(2 ") +Qz ") (14)

for some polynomial matrix Q(zﬂl) we find the equilibrium error
dynamics are determined by

A (Le, + QL)% = €, (15)

and although it may be that AI(L)1,20 the non-stationary forcing term
, Q(L)x, , would in general prevent convergence to the equilibrium.

Kailath(1980) and Forney(1975) amongst others have
considered the general conditions under which the potentially rational
polynomial matrix A(L) may factorise as described above for a given
specification of B(L). One route following Bengtsson is to check on the
orders of the A(L) and B(L) matrices as described in 6 above but since
we are only concerned with stable solutions for A,(L) the following

development from Kailath (pps 462-464) applies. To consider the
general case let A(L),AI(L) and B(L) be (NXp), (NXr) and (rXp)
rational polynomial matrices where B(L) is assumed to be of full
column rank, p<r. We may think of the problem as one with r
potential equilibrium conditions ( not necessarily independent) for a
model with N relations connecting p variables in x; . Then if and only
if
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] ABE
o R (16)
Az ) '

(V]

) [

a

there will be a solution for Al(zﬂ) with no poles at a. Where
vﬁp)[W(znl)] represents the p'th order valuation of W(z™!) at a which

is the difference between the number of poles and zeros of W(z !) at
a. To find if a stable solution then exists this condition may be easily
checked for all potential poles outside the unit circle by calculating the
Smith—McMillan form for the two matrices above. The interpretation of
condition (16) is fairly straight forward simply requiring that Az ')
contains no further "uncancelled” unstable poles than those accounted
for in the equilibrium specified by B(z_l). Note that the condition
applies regardless of whether A(L) and B(L) are polynomial or rational
polynomial matrices. Having determined whether or not a solution
exists it may be relatively easily constructed by finding a left inverse
for B(L) giving A,(L) as

ALY = AWB Q) (17)

If B(L) does not have full column rank as assumed above then there
will be no solution for A (L) unless A(L) is in the column range space
of B(L), ie. if and only if;

(18)

Notice that the apparent simplicity of the right divisor
property does in fact hide a potentially complicated set of parametric
restrictions in A (L) that depend on the equilibrium specilication. These
restrictions are then the error correction restrictions for the
multivariable system .
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Given the essentially arbitrary structure of the stable
Al(L) rnatrix it can be seen that there may in fact be a number of

internal models all of which achieve the specified equilibrium but with
differing transient adjustments . So if AI(L) itself has a right divisor so

~ that

A (L)= Ay(L)As(L) (19)
with Az(L) stable, we may write the original relation as

AL = A(L)B, (L)= A,(L)[A5WB(L)) (20)

implying a degree of non—uniqueness in the definition of an internal
model . Since B(L) is contained in B,(L) the original equilibrium
specification is automatically satisfied by B, (L). This is really saying
nothing more than that certain types of equilibrium behaviour are
implied by others. For instance , given that the internal model will
typically include the unstable modes or growth characteristics
differencing an already stationary zero mean process will still lead to a
stationary zero mean process. Adding a further equilibrium condition
to an existing set provides another example and this approach could be
used to investigate sequentially which part of a multivariate
equilibrium condition causes a failure of the error correction property.

More fundamentally since a given equilibrium condition may
be expressed in a number of different forms there is a lack of
uniqueness in the factorization that corresponds to the potential lack of
identification in error correction models noted by Granger (1986). Given
some nonsingular (unimodular) transformation ,T(L), it may be
possible to express the right division condition as

ALY = A, WTWITW)BL)) (21)

while maintaining stability of the transient or disequilibrium
adjustment. This lack of uniqueness may be partially removed by the
adoption of a minimal polynomial basis condition as we shall see in the
following section but there would still remain a degree of ambiguity in
the equilibrium specification in general that requires further identifying
restrictions to be imposed before we could determine a unique
factorization of A(L).
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4: Internal rnodels and co-integration

Three related approaches to co—integration have been
identified in the existing literature; the original “Granger” formulation
that concentrates on the implied singularity of polynomial matrices (see
Engle and Granger (1987)), the common trends idea of Stock and
Watson (1986) and the state space approach suggested by Aoki
(1987a,1987b) . The Internal Model concept simply provides a further
alternative view of the sarme inter—relationships between economic
variables and one that offers a relatively easy method of identifying
both whether a system of equations is co—integrated for a given
specification of an equilibrium and also a route for directly analysing
the error correction restrictions in a rnodel.

Co—integration implies that a set of individually non-
stalionary economic variables may appear in stationary linear
combinations ( or sorme more general transformation) of these
variables. This result comes about through the cancellation of cornrnon
factors in the dynamic interactions between the variables. In particular
although multivariable transfer functions ray in general contain poles
and zeros at the same frequency without cancellation | co—integration
implies that such cancellation does occur in such a way that the
dynamic order of the system, measured by the McMillan degree or
equivalently the order of the minimal state space representation, is
reduced. The difficulty in analysing such systermns as mentioned earlier
lies in that the poles and zeros of the systemn as a whole will not
necessarily be apparent from an inspection of the individual relations.
The simplest way to then proceed is to express the system in Smith--
McMillan form( see Kailath (1980) or Vidyasagar(1985) for exarple), a
canonical form in which the system poles and zeros may be directly
observed.

If we follow the approach put forward by Granger the
vector of N non-stationary ( integrated 1(1)) variables ,xt, rnay be
expressed in a stationary purely non—determinstic moving average
form as

ax, = C(L)e, (22)

for which co-integration implies that the rank of C(1) is N-r. This
rank reduction at the zero frequency in turn implies the presence of r
unit roots in the moving average polynorial matrix C(L). Expressing

C(L) in Smith-McMillan form yields

C(L)= U, (L)M(L)U,(L) (23)



14

where U, (L) and U, (L) are ( non—unique) unimodular matrices and
M(L) is a diagonal matrix of the form diag{e, (1) /¢ (L)} holding the
zeros and poles of the (in general rational) polynornial matrix C(L). In
the present case we may factor M(L) as

ML= DL |1 o

0 Al

r

where the second matrix has extracted the unit roots. Since
unimodular matrices are non-singular at all frequencies we may invert
UI(L) and rewrite (22) as

Ut ax, = DL fI, 0 U,(L)e, (24)

0 Alr

The cornmon factors (unit roots) can now be clearly seen in the last r
relations of this system. Cancelling in both the autoregressive and
moving average parts we find

Al
N-r -
vt Wx, = LU, (L)e (25)
0 I 1 t 2 t
r
or alternatively
Ay 0
- - N-r -
Uz‘(L)D L) ul‘(L)xl = €, (26)
0 ]

X

which is in the vector autoregressive form of equation (1)
AlL)x, = €

It can also be clearly seen from the structure of A(L) that the rank of
A(1) will in general be r rather than N. As shown in Yoo (1986) and
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reported in Engle(1987) it is now relatively easy 1o rewrite this co-
integrated system in error correction form. Since D(L) has full normal
rank we may simply combine Uz(L) and D(L) to form another
unimodular matrix U(L)=D(L)U,(L) and factoring U3 (L) and U]'(L)
conformably with the diagonal matrix containing the unit roots in the
autoregressive polynomial we [ind

| .
AlN—r 0 Ul (L)

*] - e "o
DG I s (27)
wW(L)ax, = —y(L)a (L)%, + € (28)
W(L)ax, = ~y(L)z, 4, t ¢ (29)

adopting the standard notation that the equihbrium error be written
Z, = a'(L)xt. Notice that the co—integrating rnatrix ,a'(L), in this case
is a polynomial matrix in L ; polynomial co—integrating vectors (PCIV)
are discussed extensively in Yoo(1986).

The analysis in Engle and Granger (1987) which considers
static or instantaneous co—integrating relationships i1s then seen to be a
speclal case of a more general analysis that turns on the null space
structure of polynomial matrices. In the standard case the cancellation
of unit roots implies the singularity of C(1) and co-integrating vectors
are found by determining the basis tor the left null space of C(1). In
general when we may be concerned with behaviour at other
frequencies we need to determine the minimal polynomial basis of the
null space of C(L) at some frequency ,say A;. Forney (1975) and
Kailath (1980) describe how such a null space may be characterised.

We are interested in the set of all rational (NX1) vectors

{t (zgl)] such that

(2" 1)C(z" =0

in other words the left null space of C(z—l)A Depending on the rank

deficiency of C(zﬂl) at the frequency A; the dimension of this null space
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will be N*r)\0 If this were a vector space over real numbers , as in

the static co—integration analysis, this dirnension would be sufficient
but since we are considering a vector space over rational polynormials
we need further structure to characterise the polynomial basis. This
additional structure is provided by what are known as the left minimal

indicies of C(z ). As in the case of a vector space over real numbers

any linearly independent set of vectors, {f(zﬂl)}, that span the
appropriate space will provide a basis but it turns out that in the case
of polynomial matrices that if each of these linearly independent
polynomial vectors are chosen te have minimnal degree then any
polynomial basis will have the same set of degrees for the elements

{f‘(z_l)} in the spanning set. This unique set of indices for the left

null space of C(z") is called the left minimal indices of c(z") and any
corresponding spanning set of polynornial vectors is called a minimal

polynomial basis for the left null space of C(z—l).

From the decomposition of C(z™') into Smith-McMillan form
given above we can see that

Utz e ) = Mz DU (™) (30)

and so any rows of U;l(z“l) that lead to zero rows on the right hand

side of this expression form a left null space for C(zﬂl) which will in
general be a polynornial matrix. However typically we would expect

C(z™!) and hence M(z ') to be of full normal rank in which case the
right hand side would only contain zero rows when evaluated at
particular frequencies and hence the co-integrating basis would be a
real matrix implying a fixed set of co~intgrating relations and hence a
fixed relationship belween the variables at every frequency. If c(z™h)

( and hence M(z!)) were not of full rank then a polynomial rnatrix
would represent the "co-integrating” basis implying that the set of
economic variables were "co—integrated” at all frequencies albeit with
different " co-integrating” relationships at each frequency. The set of
left minimal indices indicate when this situation exists as they would
take non-zero values. Given that it is unusual for C(z*l) not to be of
full normal rank in economic models would then suggest that static co-
integrating regressions would be the norm. However the discussion of
minimalily shows that there may well be spanning vectors of the left
null space of C(z"!) that have higher degree than zero but if the
minimal indices are zero then an instantaneous or static co—integrating
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relation will suffice. For instance if a static co—integrating relation were
implied from this analysis then it would be equally legitimate to employ
the same relation with all variables lagged to some comimon degree or
possibly some common stable filter on all the variables as a co-
integrating regression. Imposing the minumalily condition thus removes,
to a considerable extent ,the ambiguity in dynamic specification but it
should be noted that since there may still be a number of minimal
polynomial bases the lack of identification noted by Granger {1986) that
arises fundamentally from the non—uniqueness of the unirnodular
matrices used to derive the Smith~McMillan form of C(L) still remains.
An example may help to clarify the preceding argument;
Engle and Yoo (1987) have considered the following bivariate model

X l1le |

t _, j1-.8L 8L 1 K
a-uf = a- (51)

Y, 1L 1-.6L] Je

with vector AR representation,

I1—.6L —.SLII"LI |€u (32)
-.1L  1-.8L Y, €,

The Smith—-McMillan form of C(L) is given by the central matrix in the
following decompositon

1-.8L 0 -4t o |t sLa- e
AL (1-81)7" 0 (-L)fjo 1
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(1- 8L) " 0

with U;‘(L) =
~. 1L (1-.8L)

and so we find

(a-.a0)t 8L@-.8L) (-4

ute) =
(1-L)

In this case C(L) is of full norrnal rank and so the co—integrating basis
will be a real matrix thereby implying a fixed relationship between x;

and y, at all frequencies. When we evaluate U;l(L)C(L) at the zero

frequency we can see that the last row of U;l(l,) provides the co—

integrating vector (1,-2) and the rank of the co~integrating basis at
2=1 is unity. The corresponding Error Correction form of the model is
then easily derived as

(1L4,‘l-lo'4][1 ~2]\ tll+e‘ (33)
7y 0.1 Y1

To connect this analysis with the notion ol an internal
model we can see that if B{L)x, is to represent a set of equilibrium
conditions amongst the xt then B(z ') must lie in the null space of
c(z™"). In other words B(z ') rnust also form a co-integrating basis. In
the previous example the only internal model is that given by x=2y,.

In general most time series models will be more easily expressed In
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vector AR form rather than the moving average forrm used above so it
would be convenient if we were able to check whether B(.:l) fell into
the null space of C(z ') using only the vector AR representation. From
the development at the begining of this section we can see that A(znl)

and C(z!) are related in the following manner

A" = Ul YME YU E

given

where Aly = M(L)M(L).

So by taking the Smith-McMillan form of A(L) directly we can find
Ul(z_l) (or a non—singular transformation of it). Hence we can check
directly from the vector AR form whether or not B(L) is spanned by

Ul(z—l) and hence whether or not B{L) is a valid internal model of
A(L).
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5. Error correction meodels and co-integration

To demonstrate the utility of the internal model
approach we shall derive various results for the conditions for scalar
error correction rnodels from the principle before considering the
multivariate case. We start by briefly reviewing the existing results for
the single equation case (using the notation from Salmon (1982)).

9.1: Scalar ECM resulis

We consider the standard error correction form in
which the “target” or equilibriurmn behaviour is described by a model
corresponding to (2)

X .-
b(L)x, = €, (34)
Then writing the rnodel in error correction form
x
x, = a(l) (%, — x)+¢ (35)

where a(L)=a,;(1.)/a«(L) is a rational polynomial in the lag operator L
with a;(L) and a.(L) relatively prime and therefore (35) provides an
irreducible representation. The disturbances €, and ¢; are assumed to
be stationary zero mean processes. The transfer function between the
equilibriurmn error ,el:(x: — x,), and the “target” variables is given

simply as

e = aull) X, an(L) €, (36)
[al(L) *fa,(L)] [al(L)+a,(L)]

Three conditions are required to ensure the error correction property in
a single equation (apart from the zero mean assumption on the
disturbances)

i) The internal meodel or factor condition :
as(L.) must factorise such that a,(L)= a(L)b(L)
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i) Stability condition :
roots of [al(z—‘)+a,ﬁ(zﬁl)] must lie strictly inside the unit
circle.
and -
iii) ldentifiability/fcontrollability condition

none of the zeros of a(L) are also roots of b(L)

Conditions (i) and (ii) were considered in Salmon(1982) and
Osborn (1986) . The third condition has not been discussed before
perhaps because in the scalar case it will usually be trivial but since it
is not a trivial issue in the multivariable case we shall introduce It
now. The condition has in fact already been covered above by the
assumption that the polynomials a;(L) and a.(L) are relatively prime
Consider the following factorisations of the non prime polynomials a,(L),
a, (L) and b(L), where we assume that the zeros of both 6(L) cornmon

factors are unstable;

ax(L)=0, (1)0,(1) a.(L) (57)
ay(L)=6,(L)a, (L) (38)
b(L)= o,(L)6,(L) (39)

so that the transfer function from ¢, to ¢, is then given by

6,16 (L) a (1) (40)

6, (L) {6,(L) ay(L) + a (L))o, (L)6,(L)

It can then be seen that the unstable factor Bl(L) will remain after the
obvious cancellations . The presence of the common factor in the
numerator of a(L) and in b(L) leads to a “hidden mode” ,8,(L), that
can’t be ellminated from the resulting dynamic specification. The
relative prime condition ensures, together with the factor condition,
that al(L) and a,(L)8(L) will be coprime and hence any state space
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realisation of the transfer function would in this case be both
stabilisable and detectable and 1t is not surprising that under these
conditions the corresponding transfer function will deliver adjustment to
the target. '

5.2 The internal model in the scalar case

The internal rnodel approach has already been used above
with the mmodel written in ECM form to ensure the exact cancellation of
the unstable roots in the target variables. We now show ,for the scalar
case ,how the ECM restrictions themselves may be derived by applying
the internal rnodel principle to the autoregressive form.

~We take the standard first order ADL model considered by
Davidson ,Hendry ,Srba and Yeo (1978),

Y = GqYioq T Byxg ¥ Bax g o€y (41)

and consider the conditions under which this model implies a constant
proportional relationship between y and x in equilibrium when x is
itself constant at a value k. Writing the model in autoregressive form

1-a L (B 4p.L) Tt
_ (B + )
[ a, B, +6, . =€, (42)

where the desired equilibrium is specified as

y‘ (4 t —
B(L) l tl = l_l ] where B(L) = [1 1] (43)
" €at 01

with ¢, ,zero mean stationary and €, stationary but with mean equal
to the constant k.Following the internal model principle we need to see
if B(L) is a right divisor of A(L) and then find the conditions under
which ey, 15 an 1(0) process. In this case by simple calculation we can
see that B(L) is a right divisor with



An([‘) = ll*(le 1“[51*(0(11'[32)L] (44)

So given this specification of Ay (L) the equilibrium error dynarnics for

y, will be given by

(1~ L)ey, = [1-f; —(a; + BIL(k + ey) + ¢y (45)

where e,; has a zero mean. The stability condition that |a,|< 1 is
obvious but inore importantly the standard ECM restriction ,1- o) -
B, — By =0, drops directly out of the requirement that the right hand

side must have a zero mean if the equilibrium error is to be 1(0)

What would happen if the equilibriurmn specification included
some dynamics on x; ? Consider for instance

B(L) = I1 o | (16)

in which case we find the equilibrium error is determined by

(1-a L-p ~p,L)

1-y1L

(k+e,)=c (“7)

(1~o(ll‘)elt + N

clearly if ly;| < 1 then multiplying out the denominator will just leave
a stable adjustment together with the ECM restriction and a moving
average error ensuring that e s 1(0). If however I'Yﬂ 2 1 then e, can
not be 1(0) even if the ECM restriction is satisfied. So beyond the
restriction on y, that we would have expected nothing is altered in
internal model analysis by the fact that there are additional dynainics
in the equilibriurn specilication for x;. Similarly 1t can be seen that the
coeflicient of proportionality between x; and y, in equilibrium can be

non—unity without affecting the analysis
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What happens if we take a second order ADL and consider a
linear growth equilibrium for x; and again look for a proportional

equilibrium with y, ?In this case we have,
i = ogypg toagyg Byxg F Baxpg ¥ Paxyp teyy (48)

with

0 1-L

B(L) = [1 o ] (49)

as the equilibrium specification. Solving the right divisor problem again
we find

2 2
1 (le GZL ﬁl ﬂzL ﬁiL
1-L

2 —
(1"‘011.“02L )ell + (k + e‘u) =€, (50)

In this second order case it is now possible for the numerator in the
second term to factorise in such a way as to cancel out the effect of
the unit root in the denorninator and still leave an error correction
restriction. A possibility that wasn’t available in the first order case in
with y=1. What is needed then for e;; to be 1(0) is that the

factorisation
2 2 2
1"‘(11L '—021.. “ﬁl"ﬁzlJ"ﬁSL = Y(l’“L) (61)

holds , which implies the usual ECM restriction, 1=ajta,+f,1p,tp5 .
Only ADL(2,2) formns obey this restriction will then satisfy the error
correction properly.

One final comment can be made on this single equation
analysis before turning to the multivariable case. As long as the
equilibriurm error dynamics are stable in any of the cases above it is
possible to eliminate a constant offset through the introduction of an
intercept in the original dynamic model. As long as the intercept then
assurnes the value of the offset, for instance (1~ﬁ1 —ay ﬂz)k in
equation (34) it is possible for ey to be 1(0) without the error
correction restrictions holding. However as noted by Pagan (1985) this
form of adjustment would be highly non—robust to changing data sets
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delivering new estimates whereas the error correction restrictions are
obviously robust.

5.3 The Multivariate Case

The notion of model type used in Salmon (1982) for the
scalar case does not extend naturally to the multivariable case since
no single degree of integration would necessarily best describe a
system’s ability to converge on a multivariable equilibrium in which
the individual variables followed different growth patterns. The internal
model principle dose lead to three conditions for the multivariate case
analogous to those found in the scalar case.

Let x{ and x: be N vectors and write the multivariable

anclogue of (35) as

x= A(L) (X:“Kt) + €y (52)

where now we assurne that A(L) is a rational polynomial matrix with
a left matrix fraction description A(zml):[A*(zml)]_lAl(z—l) in which
Al(zhl) and Ay(z 1) are left coprime. The transfer function between
the vector disequilibrium error process e, and the larget rnay then be
written as

e =[a (L) 1A, ] A W)xy AL +a, ()] TAul)e,, (53)

If we characterise the multivariable target behaviour as
* .
BL)x, = ¢ ‘ (54)

then a natural generalisation of the univariate conditions will ensure
the cancellation of the dynamic modes in the characteristic polynomial
of B(L) by the numerator polynomial matrix in (53)( the right divisor
property).

Sufficient conditions for a multivariate error correction
system are then (assuming {fu} and {ft } are zero mean stationary
processes ) that:
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i) B(znl) is a right divisor of A,,(z—l) (55)

ii) The roots of det[A,(zul) + Al(z—l)] lie strictly
within the unit circle

iit) The transmission zeros of A(z™!) are not also zeros
of det[B(z™")] and Al(z_l) is of full normal rank.

[Formal proofs of similar conditions to these for the design problem
can be found ,for instance , in Callier and Desoer (1982), see in
particular Theorems 31 and 60 , pages 201-204) . ]

The critical operational difference as we move from the
univariate to the multivariate case lies in the problem of how to
achieve the cancellation of the target dynamics in the multivariable
case. The fact that the poles and zeros of the individual equations may
bear little relation to the poles and zeros of the overall multivariable
transfer function ensures that the issue is not completely straight
forward. The dynamic interactions within the endogenous variables of a
model may well lead to a number of intermediate cancelations of
common factors, whether they be unit roots or more general frequency
decompositions, and hence it will be difficult to determine from a
superficial examination of the multivariate transfer function whether
an equilibrium dynamic specification is implied.

Condition (i) generalises the factor condition of the scalar
case that led to the classification of the type of the adjustment
mechanism , in the present multivariate case we need methods to

check on the right divisors of A(z"Y). Condition (ii) delivers the

stability condition and cendition(iii) ensures that no “hidden modes”
remain after the internal model has taken out the nonstationary
dynamics in the equilibrium behaviour. Condition (i) is actually
stronger than is required for our problem, what is formally needed is

that B(zﬂl) and Al(zml) be right coprirne. This condition is satisfied if

rank Mz ") = = N (56)
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for all A in @ the complex plane. Since AI(L) 1s a polynornial rnatrix it
will have full normal rank if it has full algebraic rank except at
1solated values of z“1 , which are known as the transmission zeros of
A(z''). For instance the matrix Nl(z—‘) below has rank 2 throughout @
and could then appear in a MFD of a transfer function with no
transmission zeros where as the matrix Nz(zﬁl) has rank 1 when 2

takes the values 0 and -2 and would appear in a MFD with two
transmission zeros,

Clearly if Al(zﬁl) 15 of full normal rank then the rank of the 2NxN

matrix M(z—l) may fall beneath N when det[B(z_l)] has a root that

coincides with a transmission zero of A(z_l), The significance of this
coprime condition being satisfied is there will be a completely
controllable and observable realisation of the original MFD or transfer
function ensuring that no unstable hidden modes will appear in

det[A.(z7) + Az D] .

5.2.1: Sorpne examples

To dernonstrate the utility of the internal model approach to
analysing systerns we shall use the following model of consumption and
liquid asset behaviour has been developed by Hendry and von Ungern-
Sternberg (1981) . o

We consider the relationships between the three variables
consurnption , ¢, liquid assets of the personal sector, |y, and personal

disposable income y, ( where all variables are in logarithms) given by ,

2

AC( =ua AY( "‘ﬁ(yl_l“ctul) + Y(yhl“‘p]) teg, (57)
Aly = 6(y_4mc_y) teg (58)

together with a model for income growth which we assume initially to
be
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Dy= g 1 €xy (59)

The stochastic equilibrium relations we take for this model following
Hendry and von Ungern—Sternberg (1980) are

cp = kgt yy +oegy (60)
and Yi = 8T Yt oey

Although the model is already superficially in ECM form we may be
uncertain as to the exogenous growth assumptions used when the model
was constructed and so we apply the internal model principle to the
vector autoregressive form. For the moment we also assume that the
constants k; and k, are taken into the equilibrium error terms ey and

Writing the model in autoregressive form we have,

ezt .
1—a1L —a4L —(a2+a3L) c, €,
—b3L 1-b1L —sz lt = |€, (61)
. 0 o 1~-c1L Y, €5

representing A(L)thét

with the parameter restrictions a;=—f1 b, =1 ;=1

a,=a b2 =
notice that }:ai=1 be—'l )ch:l

Applying the internal model principle by taking the right divisor
specified by the equilibrium conditions from A(L) we find the
equilibrium error dynarnics are given by
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1-al -al a(L)f ﬁ
1-L ell «-.“
_ _ b(l. - (62)
bL 1-bl .1(_1) el = 1<,
0 0 *(L) 3t “3t
1-L ]
where a(L) =1—a2~(a1-l~a3-fa4)l. = 1-a —(1-a)l= (1-a)(1-L) (63)

b(L) = 1-(btbytby)L = 1-L
(L) = 1-¢l = 1-L

and the equilibrium error €,= ey + g .
For the original model to be an error correction system we need to
ensure that e;, and ey are both 1(0). Solving for eqy and ey in terrns

of €z, we find
C[@-bLa(l) valbL)] (et )

€ 64
“n ¢ (L) 1-L e (64)

and

- [ b.L a(l) + (1-a L) b(L)] (e, te) L )
2t ¢ (L) 1-L 2t

where $(L) = (1-a,L) (1-b,L) —a,bsl”

Given the factorisations for a(L) ,b(L) and ©(L) from (63) the unit
roots in the denominators of (64) and (65) cancel oul implying that
both {elt} and {ezd will be stationary (given c1=1). Next we need to

check whether they have zero means.
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Since by=1 there is one further unit root in (64) but since
a4="y we lind that E(elt):yg. Similarly since there are no further
unit roots in (65) we find that E(e,)=[6(1~a) +B]g. So if our original

equilibrium  required that both these means should be zero then the
model specification would not ensure that both {elt} and [ezt} were

1(0) ,in_other words it would not be an ECM specification for the given
equilibrium.

This may not be too surprising given that income is
following a first order growth process and the highest order of
integration in the model 1s also one. From the deterrninistic scalar
analysis we would expect there to be a constant offset in this case and
that is exactly what we find with the non—zero rneans for e, and ey,
If we now reconsider the equilibriurn specification and note that it may
have included non-zero mean values of k; and k, then whether or not

the model is an ECM turns on whether these values coincide with
E(e;)=yg and E(ey)=[6(1-a) +plg. In the present example it is
probably highly unlikely that specific values could be assigned to k, and
k, and if an intercept were included in the equalions al the time of
estimation then essentially we find another case of what Pagan referred

to as “intercept adjustment”. Given that the model specification is of
too low an order to guarantee thal e, and e, are 1(0) the presence of

the intercept will compensate for the non zero mean over the sample
period. In this case it would seem to add substantial flexibility to the
problem if we were unsure of the “correct” values for k; and k, in

equilibriumn. On the other hand the implied ECM would not be robust
to changing samples and re—estimation. Notice also that co-integration
to 1(0) requires the estimated equilibrium error to have zero mean.
The importance of this requirement may easily be forgotten in applied
work leading to error correction models that rely on intercept
adjustment rather than being independent of such constants.

Given that the original model has been found to be of too
low an order to quarantee the ECM property without the help of an
intercept adjustment the natural question to ask is whether there is a
higher order specification that will ensure the equilibrium errors are
1(0) regardless of the presence of an intecept In the equations. We look
at two alternatives that have been considered before in Davidson
(1984) and Johansen(19856)

The first alternative is simply to include the level of liquid
assets in the consumption function in place of the income/liquid asset
equilibrium error term.
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Acy = a Ay 1By g —cy-g) T ¥l (66)

Remember that we are making no assumptions as to the co-
integration properties of the data which might suggest that liquid assets
were 1(1) where as the rest of .the terms in this model are probably
1(0), making the proposed model meaningless. Proceding as above to
take the right divisor specified by the equilibrium from this new model
we find the equilibrium error equations are given by

L [(1‘—-b1L);(L) + aAB(L)] [e, te] L
1t ¢(L) . 1-L 1

and

L [ b,L a(l) + (1-a L) b(L)) (e, e) R
at ¢ (L) 1-L 2t

with changes in the parameterisation for this model given by,

1-a —y +(1-a)L. and a;= 1-p

a(l)

1l

b(L) = 1-L a,=a

g(L) = 1-L ag= —otf
a4=y
Za; =1ty

From equations (67) and (68) with these pararneters we find that
although e, is stationary , e, is not because a(L) no longer factorises

,a problem which intercept adjustment can’t cure.
The second alternative based on an apparently trivial change
15 to consider a consumption function of the form,

2 2 : *
A'cy = a7y, + ﬁA(yt—-l_ctﬁl) L (yth "Ct——z) LT (69)
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In this case the changed parameter restrictions on the vector
autoregression are given by

ay =2-p

a,= ~1tfp-y
a{=a
ag=—2a 1f

ag=a-pt+y and we see that 2a;=1
and solving once again for the error dynamics we find,

[A-bL)a@®)] (e re)  w

WU @ 70
and
(b.L a(L) +(1-a L ~a L)) (e +g)  «
e, = - 3 q,([l) 2 (1§£L) +oe, (71)

where $(L)=(1-a,i. ~a,L%) (1-b,L)
The parameler restrictions in turn imply for this model that

a(l) =1-a; —(a, +a,)L ~(aytag)L’
=(1-a) (1-L)°
and b(L) =1-L
g(L) =1-L
1-a,L ~a,lt = 1-(2-p)L —(-14p-y)L?

substituting these'into equations (70) and (71) we find that the
additional unit root(s) in the numerator of (70) ensure that ey, will

have a zero mmean without the help of intercept adjustment. However
there is still only one unit root to be canceled in (71) so we now f{ind
E(e,, )= yg. Both equilibrium errors are stationary given the

cancellation of the unstable dynamics. This relatively minor change
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between the last two models has clearly made a significant difference in
their error correcting properties.

6 : Conclusions

The internal model principle and the use of right divisors
determined by the equilibrium conditions would seem to generalise the
approach based on model type and to provide a powerful ,yet simple
framework for the analysis of error correction systerns. The examples
above have not exploited the time series properties of the data, in
particular no use has been rade of the notion of co-integration in
determining whether a given dynamic specification was consistent with
a given equilibrium specification. As such the method seermns to provide
an analysis of the structural properties of error correction systems and
the suggestion is then that this approach might be usefully employed in
conjunction with co-integration analysis. One of the basic advantages of
the error correction formulation is that the restrictions apply whatever
the underlying pararneter values and as such provide a degree of
robustness in the specification. It is however not possible to construct a
robust specfication if the equilibrium is itself misspecified. The internal
model principle requires that the equilibriurn be prespecified in some
way and the model is then constructed conditionally on that
equilibrium specification.
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