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I ]n rDductton 

This paper considers the following general question 
given a multivariate dynamic model written in vector autoregressive 

form , 

A(L)xt = Eft 	j 	 (1) 

under what conditions on the polynomial matrix A(L) will the model be 

consistent with some prescribed set of dynamic restrictions given by 

B(L)xt  = et 	 (2) 

Where telt} and let} are stationary, zero mean stochastic processes 

and B(L) is a polynomial matrix in the lag operator L (t)  

The most obvious case in which this question becomes 
relevant is when (1) represents a dynamic model incorporating short 
run responses and (2) represents an equilibrium specification for the 
model. In general however, we may also be interested in whether the 
transient response of a model satisfies certain characteristics such as 
common seasonal patterns among the variables. In addition there is no 
restriction in (2) that prevents us , in principle , from considering the 
analysis of unstable models with roots strictly greater than unity. 
What makes the general question non trivial is , of course , that the 
dynamic characteristics of a systern of equations can not be determined 
easily from an inspection of the properties of the constituent equations. 
For instance , the poles and zeros of a system as a whole may bear 
little relation to those of the individual equations given the dynamic 
cancellations that may arise in moving to a final form . Indeed it is 
the cancellation of unit roots within such a system that characterises 
co-integrating rele tionships asnong the variables in the vector xt  . 

Another exarriple , of direct interest to this paper, is where error-
correcting behaviour may well be at work within the model although it 
is not obvious from the specification of any individual equation. What 
are the "error correction" restrictions for a system of equations ? For 
instance , do all the equilibrium error terms have to occur in each 
equation ? 

(t)A(L) and B(L) may also be treated as rational polynomial matrices 
and the analysis below thereby extended to cover vector ARMA 
representations with relatively minor changes. 
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An alternative way of posing the question is to ask whether 
(1) contains as an "internal model" the specification given by (2) . 
Similar considerations have led to what is known as "Tree Internal 
Model Principle" being put forward as a basic requirement in the design 
of robust linear feedback rules ( see for instance, Wolovich (1974), 
Francis and Wonharn (1975), (1976), Hengtsson (1977), Callier and 
Desoer (1982) and Wolovich and Ferreira (1979) ).The  objective in this 
case is to ensure that a feedback rule may be designed so as to be 
robust against a prescribed set of disturbances with some dynamic 
specification or alternatively for the model to "track" some desired 
dynamic reference trajectory. While our interest in econometrics does 
not lie in the design of such rules much of the recent literature on 
error correction models and co-integration arnounts to asking such 
questions , ex post, of a given model. 

What may not be immediately obvious is why the 
equilibrium specification (2) is apparently both dynamic and stochastic. 
We first demonstrate below why this approach does in fact allow 
considerable flexibility and is consistent with the standard 
characterization of equilibrium within the natural sciences and in other 
areas of economics. Although there are potentially important differences 
with the existing approach adopted within the co--integration literature 
in which equilibria are viewed as con ternporaneous relations between 
economic variables that are all required to be of the same order of 
integration , typically I(1.). Yoo (1986) has also recently attempted to 
generalise this restrictive notion of equilibrium employed in co-
integration analysis and we shall compare his approach with ours in 
the analysis that follows. 

We then describe the internal model principle and consider 
how the existence of an internal model may be checked through the 
determination of the right divisors for the ( potentially rational ) 
polynomial matrix A(L). A similar " common factor" condition has 
recently been noted by Davidson (1986) and this paper may be seen as 
a complementary analysis to the more mathematical discussion of 
similar issues by Davidson and also Johansen (198b). Section 9 makes 
the formal connection between the internal model notion and co-
integration and draws parallels with the state space approach proposed 
by Aoki (1987a,1987b) . In particular the conditions under which the co-
integrating regression will involve dynamic transformations are 
determined and also how the degree of ambiguity in this dynamic 
specification may be partially eliminated by selecting a Min' l~?al 
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polynomial basis for-  the left null space of a particular polynomial 
matrix as a "co-integrating basis" for the model. 

The right divisor property is not sufficient alone to 
ensure the existence of a multivariate error correction model and we 
consider in section 5 what further conditions are required for the 
system case after first briefly reviewing the equivalent results for single 
equation error correction models. A number of examples are then given 
to demonstrate the utility of the internal model approach. One 
observation that follows from the examples is that although an equation 
or systern may be expressed in erf-or correction form involving both 
differences and levels of variables it may still not satisfy the "error 
correction property" in that the equilibrium error vector is an 1(Q) 
process being both stationary and having zero mean. 

The orientation we adopt is that of an applied 
researcher who has at hand an estimated econometric model of the 
form (1) and wants to consider whether this system of equations is 
consistent with a set of dynamic restrictions (2) potentially 
representing equilibrium behaviour. The arbitrary specification of these 
restrictions reflects the possibility that he may want to consider several 
different assumptions corresponding perhaps to different growth 
properties of the data _ Since the model at hand , (1) , has already been 
estimated without necessarily following the model building strategy 
proposed in Engle and Granger (1987) the researcher may be 
completely uncertain as to the potential equilibrium characteristics of 
the model. The initial stirnulus for-  this work carne , in fact , by way 
of a question frorn a colleague who was working on a small subsystem 
of a large rriacro--econometric model of the UK econorny. The original 
model had not been constructed with any explicit regard to the degree 
of integration or co-integrating properties of the data and the question 
was raised of how we could determine e.v post whether,  or not the 
subsystem satisfied any error core ection properties. So no assumptions 
as to the empirical co--integration properties of the data are assumed in 
what follows. One major objective was then to see how the 
methodology used in Salmon (1982). which essentially considers the 
same forrn of e.v,  1)os-t analysis could be extended to error correction 
systems. 

2: They ifis~ti~nQL_I:~u+ilil i rr~" 3ehaviQur_ 

We start by justifying why the equilibrium 
specification is apparently both dynamic and stochastic. 
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Art example will demonstrate several of the issues to be 
raised below. Consider the following two equation systern 

Ay, i-  Y1 + Y2 = e1 	 (30 
Ay, + AY2 	= e2 	 (iii) 

which are normalised by the properties of the errors , el  and e2, which 
are both assumed to be zero mean , stationary , stochastic processes, 
in other words they are both integrated of order zero , 1(0) . Clearly 
several different configurations for the stochastic properties of yland y2  
are possible. They could for instance both be I(1) 	or 1(0) processes 
but a more interesting case arises when they are both 1(2) . The 
equations then represent two distinct co-integrating relations between 
yl and y2  , If we consider the second equation , given that e2  is 1(0) 
implies that (yl+y2) is an 1(1) process if yl  and y2  are individually 
1(2). Applying a first difference transformation to (31) we find, 

A2yi -r  A(yli-y2) = Ael 	 (11) 
or 

A 2 Y + e2  = Ael 	 (b) 
and hence 

A2Y1 _ Ael-e2 , 	 (6) 

confirming that yl  is 1(2) . Then from 3 (ii) we see that 

A y2  = Ae2  - Ael  -t_ e2  
2 	

(j) 

which in turn confirms that y2  is 1(2), 

Thus we see from 3 (ii) that the variables y, and y2  are 
CI (2,1) but also since Ay, is 1(1) and (yl-1-y2) is I(') and from 3 (i) 
their s►tm is 1(0) we find that the variables Ay, and (yr -t-y2) are 
Cl (1, 1) . 

So several co-integrating relations may exist in a model 
that involve the same variable in different dynamic transforrriations. 
Moreover within a 	jg co-integrating relation (eg. (3i)) a variable 
(yi  ) may Occur in both levels and a first difference form . The 

approach developed by Granger and Engle has concentrated on the 
CI (1,1) case and attention has been focussed on contemporaneous 
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equilibrium relations between economic variables. "the difficulty 
demonstrated by the example lies in that prior to the analysis some 
form of dynamic normalisation has to be undertaken. Granger and 

Engle achieve this by requiring, ab Mitlo , tilat dh variables entering 

into the analysis are of the ,i m order of integration. However this 

would be difficult to achieve in the present example unless Ay, existed 

as a different economic variable, such as the obvious relation between 

stock and flow variables. Ex post , having found the equilibrium 

relation J31), , it is obviously reasonable to define Ay, as a new 

variable but corning to the problem from the point of view of the data 

analyst with observations on just y, and yL  , it is not clear that (31) 

would be found and only (iii) would be put forward as 1h~ equilibrium 

relation between yl  and yl . The dangers of using an incomplete set of 

equilibrium conditions are well known in economics and certainly if the 
resulting partial equilibrium specification were used in an error 
correction specification, following the model building approach put 
forward in Engle and Granger(1987), then the resulting model may be 

seriously inadequate. 
one response is that whenever a variable is found to be 1(2) 

then a nested search should also be made over all potentially co-
integrating relations that involve first differences of the variable in 
question.The approach we follow in this paper is to allow the 
equilibriurn relations to be described , as in (2) 	by a general 

dynamic system in the basic economic variables. Notice that this 
approach does not deny a stationary equilibrium between appropriately 
defined std variables, but just recognises that it may be difficult to 
determine empirically what the appropriate state variables should be. 
The relevant state variables for a given problem should appear 
naturally from a full specification of the economic theory underlying 
the problem. Rationalising a dynamic model by writing it in state space 
form provides a similar dynamic normalisation to that suggested by 
Granger and Engle , moreover the state vector will frequently involve 
dynarnit transformations of the same variable, consider Newton's Law's 
of motion where the state vector consists of position, velocity and 
acceleration. Given tire dynamic transformations ir►herent in the 

definition of a state vector it is natural to define an equilibrium in 
terms of stationarity of the s-41e of the model. So the apparent 
dynamics in the "equilibrium specification, (2), are principally 
intended to enable the selection of the appropriate state variables for 
the economic model at hand and to relax the prior normalisation 
required in the Engle-Granger approach.Yoo(1986) adopts an approach 
that suggests economic equilibria may involve non-instantaneous 
relations between (state) variables and while there may be sorne 
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instances perhaps due to temporal aggregation or other timing 
considerations in which this situation may arise it is not the position 
taken in this paper. Aoki (1987a,1987b) has recently provided an 
important alternative view of co-integration which exploits the state 
Space formulation of dynamic models explicitly. 

the Initmal Model Principk 

Any linear dynamic system may be decomposed into 
its fundamental modal characteristics and as such contains within its 
overall dynamic response some linear combination of these internal 
modes. Our particular interest lies with steady state behaviour but we 
may also be interested in whether a model contains some frequency 
specific behaviour . In the design of robust feedback rules some 
information has to be provided as to the nature of the dynamic 
characteristics of the disturbances a rule is likely to face . Similarly if 
the feedback rule is to be designed so as to "track" sorne reference path 
then the dynamic characteristics of this path have to be specified and 
built into the design of the rule . The Internal Model Principle simply 
states this intuitive idea, Bengtssori(1977) puts it as follows; 

'Yt is both necessary and sufficient for output 
regula tion to take place that the open loop path, 
con.515ting of the plant arid the corrlperlsator in 
cascade, contains a suitably defined internal model 
of the environrnerlt. " 

This same idea was reflected in Salmon (1982) where it was 
shown that the appropriate specification of a scalar error correction 
model depended on the dynarnic characteristics of the equilibrium 
towards which the error correction model adjusted . The development 
in that paper was based on the notion of model type which does not 
generalise satisfactorily to rnultivariable error correction systerjis. A 
more appropriate extension is based on the deterriiination of whether 
the potential equilibrium behaviour is contained as an internal model 
within our dynamic system. 

There are several different routes to the internal model 
principle , one based on skew syrnrnetric polynornials (see Wolovich and 
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co-authors) and another based on the determination of right divisors of 
a polynomial matrix. We follow the analysis of bengtsson (1977) below 
that requires several definitions before we can define the conditions for 
the existence of an internal model. 

1. The order of a rational rnatrix TV), written as 

8 (T (z-1)) is defined as the sure of the degrees of the denominator 

polynomials in the Smith-McMillan form of T(z 
1) 

 . 

2. A right divisor of a polynomial matrix P(z-1) is a 

polynomial rnatrix R(z-1) such that P(z 
1)=P1(z 1)R(z t) for some 

polynomial rnatrix P1W 1) . 	 ' 

3. A left matrix fraction description (MFD) of a rational 

polynomial nnatrix TV) 1) is a pair of polynomial matrices D(z 
1) and 

N(z 
1) such that T(z 1)=D(z-)-III 

(Z-1). A right MFD would be 

T(z-1)=NV1)D(z 
1) 1. 

 

9. A rational rnatrix T(z 
1) can be written uniquely , 

through partial fraction expansions, as the sum of two strictly proper 

rational matrices T(z-1)_t  and T(z 1)_ and a polynomial matrix T(z 1)p 

as 

T(z-l) = T(z 1)t + T(,,-')- + T(z-1)p 	 (8)  

where the poles of T(z_1)t  are all on or outside the unit circle (in a 

region X;')  and those of T (z-1) _ are all strictly inside the unit circle (in 

a region G^ ) . The complex variable z defines the z transform or 
generating function of a discretely indexed variable such that the stable 

region is given by G . 

5. A rational matrix T(z-1) having all its poles within G 

can be expressed as T(z 1)t = 0 and is said to be stable with respect 

to G 

6.  let T(z
t) and W (zy1) be arbitrary rational matrices. 

Then T(z, 
1)  is said to contain an internal model of W(z1) if 
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a(T(z-i)) = 
a[T(z-i) W(z-i)) 
	

(9) 

Theorem 2. of Bengtsson then shows that if 'T (z-ij and 
W (z-i) are two arbitrary rational polynomial matrices with the sarne 

number of rows such that T(z-i)-D1(z_) iNt (z-1) and 

W(
t 	 t -t 	i 	 i z )= D2 (z } N2 (z ) are minimal MFDs then 	contains 

W(z-I) as an internal model if and only if D2 (z-1) is a right divisor of 

D, (z-  ~) . 

The application of these results to our original problern is 

quite straight forward and intuitive. If we equate T(z-1) with the 
rational polynomial matrix A(z-i)-il and W(z-1) with B(z-i)-i l {2~, we 
see that for (1) to contain (2) as an internal model it is necessary and 

sufficient for 	B(Z- 1) to be a right divisor of A(z-') . In other words 
we require that 

A(z i) = A1(z i)B(z i) . 	 (10) 

So if B(z-i) is an internal model of A(z-1) we may write 

A(L)xt = Elt 	 (11) 
as 

A1 (L)B(L)xt  = Elt 	 (12) 

but given that B(L)xi  = et  , equation (12) just describes the dynarnic 
adjustment in the equilibrium error et  as 

A1(L)et - "it 	 (13) 

(2) 
If the original problem had been set up in vector ALMA form they; 

the identity matrices in these MFDs would be replaced by the 
appropriate moving average polynomial matrices. 
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Given that B(z 1)  contains our model of equilibrium with 
the specified growth characteristics in the variables appearing as unit 

roots in B(z -1) we will also need to ensure that A1 (z-1) -,.=0, in other 

words that the polynomial matrix A1(z-1) has no unstable roots if 

adjustment towards the equilibrium specified by B(z-1) is to be 
guaranteed. Moreover for the equilibrium error to be an 1(0) process 
we need to ensure not only that it is stationary but that it has a zero 
mean. We shall refer to a specification that satisfies these later two 
conditions on the equilibrium error as Having the "error correction 
property" for the given equilibrium or internal model specification , 
B(L)xt  =et . 

If B(z-1) were not a right divisor of A(z-1) so that 

A(z 1) =A1(Z 1)B(z-1) + Q(z 1) 	 (14) 

for some polynornial matrix Q(z-1) we find the equilibrium error 
dynamics are determined by 

A I (L)et  + Q(L)xt  = Elt 
	

(15) 

and although it may be that A1(L) t.=0 the non—stationary forcing term 

Q(L)xt  , would in general prevent convergence to the equilibrium. 

Kailath(1980) and Forney(1975) amongst others Have 
considered the general conditions under which the potentially rational 
polynomial niatrix A(L) may factorise as described above for a given 
specification of B(L). One route following Bengtsson is to check on the 
orders of the A (L) and B (L) matrices as described in 6 above but since 
we are only concerned with stable solutions for A1(L) the following 

development from Kailath (pps 462--464) applies. To consider the 
general case let A(L),A1(L) and B(l.) be (Nxp), (NXr) and (r-Xp) 

rational polynomial matrices where B(L) is assumed to be of full 
column rank, p S r. We may think of the problem as one with r 
potential equilibrium conditions ( not necessarily independent) for a 
model with N relations connecting p variables in xt  . Then if and only 
if 
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o(p) 	 ( 
-i = up B(z-i) 

A (z ) 
(16) 

there will be a solution for A1(z-1) with no poles at a. Where 

u,(P)[W (z-1)] represents the p'th order valuation of W (z-1) at a which 

is the difference between the number of poles and zeros of W (z_1) at 
a. To find if a stable solution then exists this condition may be easily 
checked for all potential poles outside the unit circle by calculating the 
Smith-McMillan form for the two matrices above. The interpretation of 

condition (16) is fairly straight forward simply requiring that A(z-1) 
contains no further "uncancelled" unstable poles than those accounted 

for in the equilibrium specified by B(z-1) . Note that the condition 
applies regardless of whether A(L) and B(L) are polynomial or rational 
polynomial matrices. Having determined whether or not a solution 
exists it may be relatively easily constructed by finding a left inverse 
for B(L) giving A1(L) as 

	

A, (L)  = A 
(L)  13-L (L) 
	

(17) 

If B(L) does not have full column rank as assumed above then there 
will be no solution for A1(L) unless A(L) is in the column range space 

of B(L),  le. if and only if ; 

-1 

rank ~g(z-i)] 	rank  

1b  i) 

Notice that the apparent simplicity of the right divisor 
property does in fact hide a potentially complicated set of par-arrietric 
restrictions in A1(L) that depend on the equilibrium specification . These 

restrictions are then the error correction restrictions for the 
multivariable systern . 
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Given the essentially arbitrary structure of the stable 
A, (L) matrix it can be seen that there may in fact be a number of 

internal models all of which achieve the specified equilibrium but with 
differing transient adjustments . So if AI (L) itself has a right divisor so 

that 

A I (L)= A2  (L) As  (L) 	 (19) 

with A2  (L) stable, we may write the original relation as 

A (L) = A2  (L) B, (L) = A2  (L) [A3  (L) B (L) ] 	 (20) 

implying a degree of non—uniqueness in the definition of an internal 
model . Since B (L) is contained in B1(L) the original equilibrium 

specification is automatically satisfied by B, (L) . This is really saying 

nothing more than that certain types of equilibrium behaviour are 
implied by others. For instance , given that the internal model will 
typically include the unstable modes or growth characteristics 
differencing an already stationary zero mean process will still lead to a 
stationary zero mean process. Adding a further equilibrium condition 
to an existing set provides another example and this approach could be 
used to investigate sequentially which part of a multivariate 
equilibrium condition causes a failure of the error correction, property. 

More fundamentally since a given equilibrium condition may 
be expressed in a number of different forms there is a lack of 
uniqueness in the factorization that corresponds to the potential lack of 
identification in error correction models rioted by Granger (1986) . Given 
some nonsirigular (unimodular) transformation ,T(L), it may be 
possible to express the right division condition as 

A (L) = A, (L) T (L) [T-1(L) B (L) ] 	 (21) 

while maintaining stability of the transient or disequilibrium 
adjustment. This lack of uniqueness may be partially removed by the 
adoption of a minimal polynomial basis condition as we shall see in the 
following section but there would still remain a degree of ambiguity in 
the equilibrium specification in general that requires further identifying 
restrictions to be imposed before we could determine a unique 
factorization of A(L) . 
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~1t1S~r  11a i rr~c_1 Q 1 ~ at1 i~_.S~iil>`~~r s~ 1~14~i 

Three related approaches to co-integration Have been 
identified in the existing literature,-  the original "Ciranger" forrnulation 
that concentrates on the implied singularity of polynomial matrices (see 
Engle and Granger (1987)) , the common trends idea of Stock and 
Watson (1986) and the state space approach suggested by Aoki 
(1987a,1987b) . The Internal Model concept simply provides a further 
alternative view of the same inter--relationships between economic 
variables and one that offers a relatively easy method of identifying 
both whether a system of equations is co-integrated for a given 
specification of an equilibrium and also a route for directly analysing 
the error correction restrictions in a rnodel. 

Co-integration implies that a set of individually non-
stationary economic variables may appear in stationary linear 
combinations ( or some more general transformation) of these 
variables. This result comes about through the cancellation of common 
factors in the dynamic interactions between the variables. In particular 
although multivariable transfer functions may in general contain poles 
and zeros at the same frequency without cancellation , co--- integraLlorI 
implies that such cancellation does occur in such a way that the 
dynamic order of the system, measured by the McMillan, degree or 
equivalently the order of the minimal state space representation, is 
reduced. The difficulty in analysing such systems as mentioned earlier 
lies in that the poles and zeros of the system as a whole will not 
necessarily be apparent from an inspection of the individual relations. 
The simplest way to then proceed is to express the system in Stnith- -
McMillan form( see Kaila th (1980) or Vidyasagar (198b) for example) , a 
canonical form in which the system poles and zeros may be directly 
observed. 

It we follow the approach put forward by Grainger the 
vector of N non--stationary ( integrated 1(1)) variables , xt, may be 
expressed in a stationary purely non-deterministic moving average 
form as 

Axt  = C(L)Et 	 (22) 

for which co-integration implies that the rank of C(1) is N--r. This 
rank reduction at the zero frequency in turn irrrplies the presence of r 
unit roots in the moving average polynorial matrix C(L), Expressing 
C (L) in Smilb -McMillan form yields 

C(L)--- UI(1..)M(L.)U2(L) 	 (23) 
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where U1(1_) and UL (L) are ( non-unique) unimodular matrices and 
L 	the 

M(L) is a diagonal rnatrix of the form diag{Ek(L)/~k( 
)} hoi

ldi x 

C(L) . the  In 
zeros and poles of the (in general rational) polyriurnial matr  

the preserit case we may factor M(1_) as 

M (L) = D (L) 1 r 	0 

0 	Alr  

where the second matrix has extracted the unit roots. Since 
unimodular Matrices are non-singular at all frequencies we may invert 

UJL) and rewrite (22) as 

` 
U11(L)Axt  = D(L) 114_r 	0 	

U.~(L)et 	 (24) 

0 	Al r  

The common factors (unit roots) can now be clearly seen in the last r 
relations of this system. Cancelling in both the autoregressive and 

moving average parts we find 

AI 	0 

0 

 r 	
U1 k (L)xt  = D(L}U2 (L)Et  

u 	I
r 

 

(25) 

or alternatively 

N_r  
2  U t 	

AI 

(L) D 1(L) 
0 

0 
U~ t (L.}xt  = Et 

1 
Y' 

('26) 

which is irk the vector autoregressive form of equation (1) 

A(L)xt  = et  

it can also be clearly seen frorn the structure of A(L) 
in 

that 
Yoo 

tyke rank of 
(1986) and 

A(1) will in general be r rather than N. As shown 
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reported in Engle(1987) it is now relatively easy to rewrite this co-
integrated system in error correction form. Since D(L) has full normal 
rank we may simply cornbine U2 (1) and D(L) to form another 

unirrrodular matrix U2(L)=D(L) U2 (L) and factoring U2-' (L) and 111  '(L) 

conformably with the diagonal matrix containing the unit roots in the 
autoregressive polynomial we find 

*1 
	 Al 

r  0 U1(L) 
U2 (L) -y (L)

.. 	 xt = Et 	 (27) 
0 	I

r   

or 
W(L)Axt  = -y(f.}a'(L}xt_1  + Et 	 (28) 

W (L)Axt  = -- Y(L.)zt-1 + Et 	 (29) 

adopting the standard notation that the equilibrium error be written 
zt  = a' (L)x,. Notice that the co-integrating matrix , u' (L) , in this case 

is a polynomial matrix in L ; polynomial co--integrating vectors (1'Cly) 
are discussed extensively in Yoo(1986) . 

The analysis in Engle and Granger (1987) which considers 
static or instantaneous co-integrating relationships is then seen to be a 
special case of a more general analysis that turns on the null space 
structure of polynomial matrices. In the standard case the cancellatior, 
of unit roots implies the singularity of C(1) and co-integrating vectors 
are found by determining the basis for the left null space of C(1) . In 
general when we may be concerned with behaviour at other 
frequencies we need to determine the rninimal polynomial basis of the 
null space of C(L) at some frequency ,say Ao . Forney (1975) and 

Kailath (1980) describe how such a null space may be characterised. 
We are interested in the set of all rational (Nx1) vectors 

such that 

f (z- I )C(L-1)=0 

in other words the left null space of C(2-1) . Depending on the rank 

deficiency of C(z t) at the frequer-icy ho  the dimension of this null space 
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will be N-r., At this were a vector space over real numbers , as in 

the static co-integration analysis, this dimension would be sufficient 
but since we are considering a vector space over rational polynomials 
we need further structure to characterise the polynomial basis. This 
additional structure is provided by what are known as the left minimal 

indicies of C(z-i) . As in the case of a vector space over real numbers 

any linearly independent set of vectors, {f (z 1)}, that span the 
appropriate space will provide a basis but it turns out that in the case 
of polynomial matrices that if each of these linearly independent 
polynomial vectors are chosen to have rninirnal degree then any 
polynornial basis will have the same set of degrees for the elements 

(f j(z-1)} in the spanning set. This unique set of indices for the left 

null space of C(z-1) is called the left minimal indices of C(z-1) and any 
corresponding spanning set of polynomial vectors is called a rninirnal 

polynomial basis for the left null space of C(z 
1)  . 

From the decomposition of C(z-1) into Smith-McMillan form 
given above we can see that 

lJi i (z-1)C(z-1) = M(z 1)vi(z 1) 	 (30) 

and so any rows of U11(z 
1)  that lead to zero rows on the right hand 

side of this expression form a left null space for C(z-1) which will in 
general be a polynomial matrix. However typically we would expect 

C(z-j) and hence M(z-1) to be of full normal rank In which case the 
right hand side would only contain zero rows when evaluated at 
particular frequencies and hence the co-integrating basis would be a 
real matrix implying a fixed set of co-intgrating relations and hence a 

fixed relationship between the variables at every frequency. If C(z-1) 

( and hence M(z-1)) were not of full rank then a po y-aMtjal rnatrix 
would represent the "co--integrating" basis implying that the set of 
economic variables were "co-integrated" at all frequencies albeit with 
different " co--integrating" relationships at each frequency. The set of 
left rninirnal indices indicate when this situation exists as they would 

take non-zero values. Given that it is unusual for C(z-1) not to be of 
full normal rank in economic models would then suggest that static co-
integratirig regressions would be the norm. However the discussion of 
rninirriality -}hows that there may well be spanning vectors of the left 

null space of C(z-1) that have higher degree than zero but if the 
minimal indices are zero then an instantaneous or static co-integrating 



.IIL t t►  

1 	.6L 
Ea►  

(31) 
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relation will suffice. For instance if a static co-integrating relation were 
implied from this analysis then it would be equally legitimate to employ 
the same relation with all variables lagged to some common degree or 
possibly some common stable filter on all the variables as a co-
integrating regression. Imposing the minimality condition thus removes, 
to a considerable extent , the ambiguity in dynarnic specification but it 
should be noted that since there may still be a number of minimal 
polynomial bases the lack of identification noted by Granger (1986) that 
arises fundai-nentally from the non-uniqueness of the unirnodular 
matrices used to derive the Smith-McMillan form of C(L) still remains. 

An example may help to clarity the preceding argument; 
Engle and Yoo (1987) have considered the following bivariate rnudel 

with vector AR representation, 

I_. 6L 	-.81- 	xt 	eit 

1  -.1L 1-.8L 
yt e2►  

(32) 

The Smith-McMillan form of C(L) is given by the central matrix in the 
following decornpositon 

C(L) 	
1-.8L 	0 	(1-.4L)-t 	0 	1 	IIL(1-.IIL)-►  

.1L (1-.8L)-t 1 	0 	(1-L) 0 	1 



M 

-~ 	0 

with U1  0) = 
-AL 	(1-. 8L) 

and so we f Ind 

U
1 

 
-1 

 

 (L)C(L) _ 

In this case c(1.) is of full normal rank and so the co-integrating basis 

will be a real rr►atrix thereby implying a fixed relationship between xt  

and yt  at all frequencies. When we evaluate U~ 1 (L)C(L) at the zero 

frequency we can see that the last row of Ul  t  (f.) provides the co- 

integrating vector (1,-2) and the rank of the co-integrating basis at 
z=1 is unity. The corresponding Error Correction form of the model is 

then easily derived as 

xt 	-0.9 	 xt--1 	 (33) 

y
e, 
	0.1 	 yt _I  

To connect this analysis with the notion of an internal 
model we can see that if B(L)xt  is to represent a set of equilibrium 

conditions amongst the xt then B(z-) rnust lie in the null space,  of 

C(z 1) . In other words B(z 1) must also forty, a co-integrating basis. In 
the previous example the only internal model Is that given by xt=2yt . 

In general most time series models will be more easily expressed in 
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vector AR form rattier than the roving average form used above so it 

would be convenient if we were able to check whether B(z -1) fell into 

the null space of C(z-1) using only the vector Aft representation. From 

the development at the begining of this section we can see that AW 1) 

and C(z-1) are related in the following manner 

U21(~ )U1-1(G-1) 

given 

C(z-1) = U1(z-1)M(z-1)U2(z-1) 

where AIN  = M(L)M(L), 

So by taking the Smith-McMillan form of A(L) directly we can find 

U1(z-1) (or a non-singular transformation of it). Hence we care check 

directly from tl-ie vector AR form whether or not B(L) is spanned by 

U1(z-1) and hence whether or riot B(L) is a valid internal rnodel of 

A(L). 
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5: Eri or correction models and co-jntea- tdjj ►  

To demonstrate the utility of the internal model 
approach we shall derive various results for the conditions for scalar 
error correction rnodels from the principle before considering the 
multivariate case. We start by briefly reviewing the existing results for 
the single equation case (using the notation from Salmon (1982)) . 

Scalar_E M resulU 

We consider the standard error correction form in 
which the "target" or equilibrium behaviour is described by a model 
corresponding to (2) , 

b(L)xi = E2t 	 (39) 

Then writing the model in error correction form 

x t  = a(L) (x* - x t )+Et 	 (35) 

where a(L)=a1(L) fa*(L) is a rational polynomial in the lag operator L 

with a l (L) and a:.(L) relatively prime and therefore (35) provides an 

irreducible representation. The disturbances E2t  and ct  are assumed to 

be stationary zero mean processes. The transfer function between the 

equilibriurn error , et= (x* - xt) , arid the "target" variables is given 

simply as 

et  = 	a, (L) 	xt 
	

a, (L) 	Et 	(36) 

tat (L)-1a*(L)] 	 la  (L)+a,(L)] 

Three conditions are required to ensure the error correction property in 
a single equation (apart from the zero mean assumption on the 	 u 

disturbances) 

i) 	]h 	 condition  
a,(L) must factorise such that ax (L)= a(L)b(L) 
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ii) afai>ility conditian 

roots of [a~(z-1) ta~(z t )] must lie strictly inside the unit 

circle. 
and 

iii) c eft' iability~c~or 4roila~ilit~ condition 
none of the zeros of a(L) are also roots of b(L) 

Conditions (i) and (ii) were considered in Salmon(1982) and 
Osborn (1986) . The third condition has not been discussed before 
perhaps because in the scalar case it will usually be trivial but since it 
is not a trivial issue in the rnultivariable case we shall introduce it 
now. The condition has in fact already been covered above by the 
assumption that the polynomials al(L) and a.(L) are relatively prime . 

Consider the following factorisations of the non prime polynornials a,,(L), 

a1(L) and b (L) , where we assume that the zeros of both O(L) cornrnon 

factors are unstable; 

a1(L) =a1(L) a1(L) 	 (38) 

b(L)z: 81(L)02(1-) 	 (3`)) 

so that the transfer function from e2(  to et  is then given by 

61 	02  (L) 	(L) 	 (`Id) 

6t(L)102(L) a*(L) + at(L))01  (L)02(L) 

It can then be seen that the unstable factor 01 (l) will remain after the 

obvious cancellations . The presence of the cornrnon factor in the 
numerator of a(L) and in b(L) leads to a "hidden mode" ,01 (l), that 

can't be eliminated from the resulting dynarnic specification. 1'he 
relative prin ►e condition ensures, together with the factor condition, 
that a l  (L) and a*  (L)O (L) will be coprime and hence any state space 
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realisation of the transfer function would in this case be both 
stabilisable and detectable and it is not surprising that under these 
conditions the corresponding transfer function will deliver adjustment to 
the target. 

5.2 The  IrILL--mal model in the sL at case 

The internal model approach has already been used above 
With the model written in ECM form to ensure the exact cancellation of 
the unstable roots in the target variables. We now show , for the scalar 
case , how the ECM restrictions themselves may be derived by applying 
the internal model principle to the autoregressive form. 

We take the standard first order ADL model considered by 
Davidson , liendry , Srba and Yeo (19,18), 

y t  = atyt_1 -t- 01x t i-  02"t-1 
_i 
 fit 	 (41) 

and consider the conditions under which this model implies a constant 
proportional relationship between y and x in equilibrium when x is 
itself constant at a value k. Writing the model in autoregressive form 

yt  
1-a

1 L -(pi~-I32L) 
x 	

= e
it 
	

(42) 
t 

where the desired equilibrium is specified as 

yt e'c 	 1 —1 
B (L) 	where B (L) _ 	 (4 3) 

xt 
e2t 	

0 1 

with e t  , zero mean stationary and e2t  stationary but with mean equal 

to the constant L Following the internal model principle we need to see 
if B (L) is a r iglit divisor of A (L) and then find the conditions under 
which elt  is an l(0) process. In this case by simple calculation we can 
see that B (L) is a right divisor with 

n 



A t (11)  _ ! 1-a1L 1-fl (a1 402)L1 	 (44) 

So given this specification of Ai  (L) the equilibrium error dynamics for 

yt  will be given by 

(1-ail-)elt `- 1- i -(a1 + 02)1.1(k _t e2d -'- Eft 	 (45) 

wl ►ere e2t  has a zero mean. The stability condition that Ia t j< 1 is 

obvious but rnore importantly the standard ECM restrictior►  ,1- al  -- 

pt - fJ2  =0, drops directly out of the requirement that tie right hand 

side must have a zero mean if the equilibrium er ror is to be l(0) 

What would happen if the equilibriur specification included 
Borne dynamics on xt  ? Consider for instance 

1 	--1 
B(L) = 

	

	 (46) 
v 1-YLj  

in which case we find the equilibrium error-  is determined by 

(1-a L-P -f3 L) 
(1-all)eIt + 1-y L

-~--- (k + 
e  2 

= E
tt 	(4!) 

I 

clearly if ly,l < 1 then multiplying out the denominator will just leave 

a stable adjustment together with the ECM restriction and a moving 
average error ensuring that ett  is l (U) . If however lyll ;-> 1 then ell  can 

not be l(0) even if the ECM restriction is satisfied, So beyond the 
restriction on y1  that we would have expected nothing i:: altered in 

internal model analysis by the fact that there are additional dynamics 
in the equilibrium►  specification for xt . Sirnilarly it can be seen that the 

coefficient of proportionality between x t  and yt  in equilibriurn can be 

non-unity without affecting the analysis 
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What happens if we take a second order ADL and consider a 
linear growth equilibrium for xt  and again look for a proportional 

equilibrium with yt  ?In this case we have, 

yt = 111yt_1 + a2yt_2 -t- P1x t  t 02"t_1  + 03xt-2  f it 	(48) 

with 

13(1.) _ 
1 	-1 1 

(49) 
0 1-L 

€ f̀ 	as the equilibrium specification. Solving the right divisor problem again 
we find 

2 	1-a L-a L2-~ -~, L-0 L2  
(1 	a

1L-a2L )eft + 	
1 	 l 	— (k + e

at) 
=4E it 	(50) 

1-L 

In this second or-der case it is now possible for the nurnerator in the 
second term to factorise in such a way as to cancel out the effect of 
the unit root in the denominator and still leave an error correction 
restriction. A possibility that wasn't available in the first order case in 
with y-1. What is needed then for eft  to be I(0) is that tine 

factorisation 

1-cx1L -021.2-P1-02L-P31,2  = y(1-L)2  

holds , which implies the usual ECM restriction, 1=ai  t a2  t (31-1 02-fN  . 

Only ADL(2, 2) tot-iris obey this restriction will then satisfy the error 
correction property. 

One final cornrrient can be rnade on this single equation 
analysis before turning to the multivariable case. As long as the 
equilibr-iurn error dynamics are stable in any of the cases above it is 
possible to eliminate a constant offset through the introduction of an 
intercept in the original dynarnic model. As long as the intercept then 
assumes the value of the offset, for instance (1-01 -('i - 02)k in 

equation (34) it is possible for eit  to be 1(0) without the error 

correction restrictions holding. However as noted by Pagan (1985) this 
form of ad ji tAftlent would be highly non-robust to changing data sets 



25 

delivering new estimates whereas the error correction restrictions are 
obviously robust, 

6. 3: The MultivariatCask  

The notion of model type used in Salmon (1982) for the 
scalar case does not extend naturally to the multivariable case since 
no single degree of integration would necessarily best describe a 
systern's ability to converge on a multivariable equilibrium in which 
the individual variables followed different growth patterns. The internal 
model principle dose lead to three conditions for the rnultivariate case 
analogous to those found in the scalar case. 

Let xt  and xt  be N vectors and write the multivariable 

anologue of (35) as 

(J2) 

where now we assurne that A (L) is a rational polynomial matrix with 

a left matrix fraction description A(z-t)=[A*(z-t)]-'At (z-i) in which 

Ai (z-i) and A,r (z-1) are left coprirne. The transfer function between 
the vector disequilibrium error process et  and the target may trier be 
written as 

et =[A*(L)+A1(L)]-'A.«(L)xw 1-[A, (L) t- A1(L)]^'A.(L)tilt  (53) 

If we characterise the multivariable target behaviour as 

B(L)xt _ It 	 (54) 

then a natural generalisation of the univariate conditions will ensure 
the cancellation of the dynamic modes in the characteristic polynomial 
of B(L) by the nur-nerator polynomial rnatrix in (53) ( the right divisor 
property). 

Sufficient conditions for a multivariate error correctior►  
systern are then (assurning {eld and {et  ] are zero rnean stationary 
processes ) that 
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i) 13(z-')  is a right divisor of A*  (z a) 	 (65) 

ii) The roots of det[A (z 1) + A1(z 1)] lie strictly 

within the unit circle 

iii) The transmission zeros of A (z ') are riot also zeros 

of det jb(z-t)] and At  (z t) is of full normal rank. 

[Formal proofs of sirr,ilar conditions to these for the design problem 
can be found , for instance , in Callier and Desoer (1982) , see in 
particular Theorems 31 and 60 , pages 201--204)11 

The critical operational difference as we move from the 
univariate to the multivariate case lies in the problem of how to 
achieve the cancellation of the target dynamics in the multivariable 
case. The fact that the poles and zeros of the individual equations may 
bear little relation to the poles and zeros of the overall multivariable 
transfer function ensures that the issue is not completely straight 
forward. The dynamic interactions within the endogenous variables of a 
model may well lead to a number of intermediate cancelations of 
common factors, whether they be unit roots or more general frequency 
decompositions, and hence it will be difficult to determine from a 
superficial examination of the multivariate transfer function whether 
an equilibrium dynamic specification is implied. 

Condition (i) generalises the factor condition of the scalar 
case that led to the classification of the type of the adjustment 
mechanism , in the present multivariate case we need methods to 

check on the right divisors of A..(z-t). Condition (ii) delivers the 

stability condition and condition(iii) ensures that no "hidden modes" 
remain after the internal model has taken out the nonstationary 
dynamics in the equilibrium behaviour. Condition (iii) is actually 
stronger than is required for our problern, what is formally rieeded is 

that B(z-1) and A1(z ") be right coprirrie. This condition is satisfied if 

rank M(z
-1 
 ) 	1  = N 	 (56) 

A1(z ) 



27 

for all l\ in Q the complex plane. Since A1(0 is a polynomial matrix it 

will have full normal rank if it has full algebraic rank except at 

isolated values of z
-1 

 , w) iicti are known as the transmission; zeros of 

A(z-1) . For instance the matrix N1(z 1)  below has rank 2 throughout (L 

and could then appear in a MFD of a transfer function with no 

transmission zeros where as the matrix N2 (Z-1) has rank 1 when 2-1  

takes the values 0 and -2 and would appear in a MFD with two 
transmission zeros, 

-1 
	
z- 

1 	0 	z
-1 ~ 1 	

' 
	

l 
 -- l 	0 

Nt(L ) 
	0 _-1 	-t 	

Nz(z ) 
	p 	-1--2 c 4-1 z 	 2 1 

Clearly if A j  (z 1) is of full normal rank then the rank of the 2NxN 

matrix M(z-1) may fall beneath N when det(B(z
-1)] 

 has a root that 

coincides with a transmission zero of A(z-1). The significance of this 
coprime condition being satisfied is there will be a completely 
controllable and observable realisation of the original MFD or transfer 
function ensuring that no unstable hidden modes will appear in 

det[A*(z-1) t A1(2-1  

5.2.1: Sorne exat bales  

To demonstrate the utility of the internal model approach to 
analysing systerr►s we shall use the following model of consumption and 
liquid asset behaviour has been developed by Nendry and von Ungern--
Sternberg (1981) 

We consider the relationships between the three variables , 
consumption , ct, liquid assets of the personal sector, lt , and personal 
disposable income yt  ( where all variables are in logarithms) given by 

Act  = a Ayt  t~(yt_1—~t_1) -+ Y(yt--l—lt-1) -icIt 	(5-i) 
At = &(yt_1 ct-1) _1~2t 	 (bd) 

together with a model for income growth which we assurne initially to 
be 



Ayt—  g -1  Eat 

The stochastic equilibrium relations we take for this model following 
Hendry and von Ungern—Sternberg (1980) are 

C  = kil- yt -1 	ett 
I t  = k 2  i-  yt  + e2i 

and 	yt = g + yt-1 + e3t 

Although the model is already superficially in ECM form we may be 
uncertain as to the exogenous growth assumptions used when the model 
was constructed and so we apply the internal model principle to the 
vector autoregressive form. For the rnornent we also assume that the 
constants k1  and k2  are taken into the equilibrium error terms ett  and 

e2t . Writing the model in autoregressive form we have, 

1—a1L —a,L — (a2-i-a3L) 	c 	Elt 

—b3L 1—b
I
L 	—b2L 	it  = 

E21 	 (61) 

0 	0 	1--c1L 	
yt 	E   

representing 	 A(L)x t=E t  

with the parameter restrictions a1=-f3 i 1 

a2=a 

a3=p-t-y—a 

a4=-y 

bi  =1 	c1=1 

b2  =6 

b3  =—b 

notice that 
	

F.ai=1 
	

Ibi=1 	F.ci=1 

Applying the internal model principle by taking the right divisor 
specified by the equilibrium conditions from A(L) we find the 
equilibrium error dynamics are given by 

28 

(b9) 

(60) 
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1-a1L -a4 L 
1-l. 	eft 	tlt 

	

-b3L 1-b1L bW- 
e 2 

= 
E2t 	

(62) 

1-L 

0 	
0 	

c L 	eat 	Est 

1-L 

where b(L) =1-a2-(a, 1 a +aq)l, = 1-a -(1-a)L= (1-u) (1-L) 	(63) 

b (L) = 1- (bl+b21-b3) L = 1A 

c(L) = 1-ciL = 1--L 

and the equilibrium error en- eat  + g . 

For the original model to be an error correction system we need to 
ensure that ett  and e2t  are both l(0). Solving for eft  and elt  in terrns 

of eat  we find 

e = - [(1-l,L)a(L) -i-a4Lb(L)j (eat{  g) 
+ e 	(b4) 

1-L 	It 

and 

b L a(l) 	(1--a L) b (L) J (e, +g) 

	

+g) 	, 
t._ + E. 

2t 	(65) 
2t 	 ~, (L) 	 1-la  

where +(L) = (1-a1L) (1--b1L) -a4b3l.2  

Given the factorisations for a(L) , b(L) and t(l) from (63) the unit 
roots in the denominators of (64) and (65) cancel out implying that 
both {eit) and {e2d will be stationary (given ci=1) . Next we need to 

check whether they have zero means. 
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Since b1=1 there is one further unit root in (69) but since 

a9=—y we find that E(elt)=yg. Similarly since there are no further 

unit roots in (65) we find that E (e2d _ 141-A 'Ag. So if our original 

equilibrium required that both these means should be zero then the 
model specification would riot ensure that both {elt) and [e2t) were 

1(0) , in, other words it would not be an ECM specification for the given 
equilibrium. 

This may not be too surprising given that income is 
following a first order growth process and the highest order of 
integration in the model is also one. From the deterministic scalar 
analysis we would expect there to be a constant offset in this case and 
that is exactly what we find with the non—zero rneans for ett  and e,,. 

If we now reconsider the equilibriurn specification and note that it may 
have included non—zero rnean values of kl  and k2  then whether or not 

the model is an ECM turns on whether these values coincide with 
E(elt)=yg and E(e21)=1b(1—cx) 419- In the present example it is 

probably highly unlikely that specific values could be assigned to ki  and 
k2  and if an intercept were included In the equations at the time of 

estimation then essentially we find another case of what Pagan referred 
to as "intercept adjustment". Given that the model specification is of 
too low an order to guarantee that eit  and e2t  are '(0) the presence of 

the intercept will compensate for the non zero mean over the sample 
period. In this case it would seem to add substantial flexibility to the 
problern if we were unsure of the "correct" values for kl  and k2  in 

equilibriurn. On the other hand the implied ECM would not be robust 
to changing samples and re--estimation. Notice also that co--integration 
to 1(0) requires the estimated equilibrium error to have zero mean. 
The irnportance of this requirement may easily be forgotten in applied 
work leading to error correction models that rely on intercept 
adjustment rather than being independent of such constants. 

Given that the original model has been found to be of too 
low 4n. order to quarantee the ECM property without the help of an 
intercept adjustment the natural question to ask is whether there is a 
higher order specification that will ensure the equillbrrLtrn errors are 
1(0) regardless of the presence of arr intecept in the equations. We look 
at two alternatives that have been considered before in Davidson 
(1984) and Johansen(1985) . 

The first alternative is simply to include the level of liquid 
assets in the consumption function in place of the incomelliquid asset 
equilibrium error term. 
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Act  = a Ayt  i-P(Yt_1 -ct_1) -i-  ylt 	 (66) 

Remember that we are making no assumptions as to the co— 
►ntegration properties of the data which might suggest that liquid assets 
were l(j) where as the rest of the terms in this model are probably 
1(0), making the proposed rnodel meaningless. Proceding as above to 
take the right divisor specified by the equilibrium frorn this new rnodel 
we find the equilibrium error equations are given by 

L 	
S t

) a (L) + a b (L) [e. -1-81 
e =— 	~ 	 4 _^ 	-1-  E 

	
(67) 

and 

e 	
C b 

5  L a(L) + (1-a IL) b(L)I  (est  1-g)  + f* 	(68) 
2t 	 ,~, (L) 	 1-L. 	3t 

with changes in the parameterisation for this rnodel given by, 

+(1-a)L and a1= 1-0 

b(L) = 1--L 	 a2=a 

c(L) 	1-L 	 as- -a-UP 

a4~y 
Iai  =1-1-y 

From, equations (67) and (68) with these pararrieters we find that 

although eft  is stationary , e2t  is not because a(L) no longer factorises 

a problem which intercept adjustment can't cure. 
Tile second alternative based on an apparently trivial charge 

is to consider a consumption function of the form, 

A2ct  = a A2Yt  t O A (Yt--t-ct-1) -1- -Y (Yt-2 -ct--2) + 'I *t (69) 



32 

In this case the changed parameter restrictions on the vector 
autoregression are given by 

Z11  =2-0 

a2= -1-tR-Y 
a3=a 

a4=-2a +0 
a5=a-(1+y and we see that Yai=1 

and solving once again for the error dynamics we find, 

e 	
- ((1-bIL) a (L) 

= 	 t 
 (e3  g} 

e
** 

it 	+ (L) 	(1-L) 	It 	
(.10
) 

 

and 

e 	= - (b3L a(L) +(1
-a1L --- a2L2)b(l-)] ~t+g) 	

E* 	(71) 
2l 	 (0  

where ~► (l.}=(1-alL -a2L2) (1-b1L) 

The parameter restrictions in turn imply for this model that 

a(I) =1-a3  -(ar  +a4)L -(a2+ay}L2  

and 	b(L) =1-L 

c(L) =1-L 

1-aiL -a2L2  = 1-(2-P)L -(-1+P-y)L2  

substituting these' into equations (70) and (71) we find that the 
additional unit root(s) in the numerator of (70) ensure that eft  will 

have a zero rrrean without the help of intercept adjustment. However 
there is still only one unit root to be canceled in (71) so we now find 
E(e2t)= yg. Both equilibrium errors are stationary given the 

cancellation of the unstable dynamics. This relatively minor change 
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between the last two models has clearly made a significant difference ir, 
their error correcting properties. 

~L__;_S r lusioir s 

The internal model principle and the use of right divisors 
determined by the equilibrium conditions would seem to generalise the 
approach based on model type and to provide a powerful , yet simple 
framework for the analysis of error correction systerns. The examples 
above have not exploited the time series properties of the data, in 
particular no use has been made of the notion of co-integration in 
determining whether a giver, dynamic specification was consistent with 
a given equilibrium specification. As such the method seerns to provide 
an analysis of the structural properties of error correction systems and 
the suggestion is then that this approach might be usefully employed in 
conjunction with co--integration analysis. One of the basic advantages of 
the error correction formulation is that the restrictions apply whatever 
the underlying parameter values and as such provide a degree of 
robustness in the specification. It is however not possible to construct a 
robust specfication if the equilibrium is itself rnisspecified. The internal 
model principle requires that the equilibrium be prespecilled in some 
way and the model is then constructed conditionally on that 
equilibrium specification. 
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