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Abstract 

We seek to provide fairly general conditions that may be imposed on 

parameters in order that any empirical consumer demand system is 

consistent with utility maximization. In standard demand systems the 

imposition of these regularity conditions is less essential than in more 

complex situations, like when there is rationing or when there are 

endogenously switching regimes. The paper starts out by giving a number of 

examples where the failure to properly take into account restrictions 

following from neoclassical theory leads to models that are not internally 

coherent. 

Let 0 be the space of parameters which generate internally coherent 

models. We show that even if the true parameter vector belongs to 0, 

failure to constrain the parameter estimates to 0 in "maximum likelihood" 

estimation may yield inconsistent estimates outside of 0. 

Next a general framework is provided in which it is possible to 

formulate parameter restrictions which guarantee utility consistent 

models. For various cases (standard demand systems, rationing, endogenous 

regimes) we suggest general conditions that can be imposed in order to 

guarantee coherency of the empirical model. Since random parameter 

variation is allowed for, to capture non-systematic differences in 

preferences across individuals, the conditions also imply restrictions on 

the stochastic specification of an empirical model. For a number of 

familiar demand systems we show what the parameter restrictions amount to 

in practice. 
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1. Introduction 

Empirical researchers in the field of demand theory are becoming 

increasingly aware of the tight structure that may be imposed on their 

models by neoclassical theory. In the somewhat older literature on demand 

systems a typical approach would be to choose a particular representation 

of preferences and derive the corresponding demand functions. After 

tacking on an error term, the system would next be estimated. In the 

estimation, restrictions from neoclassical theory might or might not be 

imposed. In either case authors often have tested the various Slutsky 

conditions for their particular empirical specification, with mixed 

results. As noted by McElroy (1987) the attention for consistency with 

neoclassical theory has mostly been limited to the systematic part of the 

demand equations, with a rather cavalier treatment of the error structure. 

Her own work is a notable exception in this respect. 

Whether or not authors would severely test neoclassical restrictions 

for their data set, it seems fair to say that in a standard demand system 

the empirical specification is rather loosely connected with the 

underlying theory. If the estimation results turn out to be inconsistent 

with a utility maximization hypothesis, one can still regard the empirical 

model as an adequate description of reality. This is no longer true in 

more complicated situations where the theory is used more intensively. In 

models dealing with rationing, corner solutions, nonlinear budget 

constraints, or endogenously switching regimes, utility theory plays a 

more crucial role than in traditional demand systems. If in these models 

Slutsky restrictions are violated they will in general not be coherent, in 

the sense that probabilities of mutually exclusive events do not sum to 

unity or that an endogenous variable is not determined unambiguously by 

the model (c.f. e.g. Gourieroux et al., 1980 and Schmidt, 1981). 

To avoid these types of problems one has to place appropriate 

restrictions on the parameters appearing in the model. Furthermore, 

special care has to be taken with the specification of the error 

structure. In this paper we provide various examples of problems arising 

if neoclassical restrictions are not imposed properly. Next we propose 

conditions that guarantee coherency of the model given the phenomenon one 

wants to model (a standard demand equation, rationing, or switching 
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regimes). We apply the conditions to a number of frequently used 

specifications of preferences and show how the conditions can be imposed 
in practice. 

In most of our analysis concavity of the expenditure function plays 

an important role. (We will alternatively denote this as concavity of the 

cost function or simply as "negativity"). The vast majority of the 

specifications of preference structures considered in the literature only 

satisfy concavity of the expenditure function locally. Those that are 

capable of satisfying concavity globally, are in general quite 

restrictive. The only flexible form that can satisfy negativity globally 

is the generalized McFadden cost function proposed by Diewert and Wales 

(1987). See also Barnett and Lee (1985) and Barnett (1983). 
Of course, the importance of concavity for the behavior of a 

neoclassical model in non-standard situations has been noted before. For 

example, Ransom (1987a) has noted that the Wales and Woodland (1983) model 
of a stochastic consumer demand system with binding non-negativity 

constraints is well-behaved if the parameters satisfy certain regularity 

conditions, which are closely connected to concavity of the cost function. 

However, as will be seen in Section 4 below, the imposition of concavity 
for the quadratic utility specification of Wales and Woodland in a 

relevant area of the price space requires a rather intricate stochastic 

specification. Similarly, Hausman (1985) notes the importance of 

negativity to have a well-behaved model of behavior under a kinked budget 

constraint. In his case imposition of concavity is rather simple. See 

Section 2. Van Soest and Kooreman (1986, 1987) have noted that the 
approach of Lee and Pitt (1986) to stochastic consumer demand systems via 
the use of shadow prices leads in general to incoherent models unless 

certain conditions are imposed on the parameters. These conditions are 

closely related to concavity of the cost function. 

In Section 2 we give three examples of, respectively, kinked budget 

constraints, rationing, and endogenous regimes, which all highlight the 

crucial role played by concavity to obtain an internally coherent model. 

To stress the importance of coherency we conclude Section 2 with an 

example of a simultaneous probit model where failure to impose coherency 

conditions in "maximum likelihood" estimation yields inconsistent 

estimates of the parameters, even though the true parameters satisfy 
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coherency conditions. Section 3 introduces notation and some basic 

concepts. It also provides three conditions that can be imposed on 

standard demand systems. The conditions are applied to some often used 

preference specifications. It is argued however that such conditions can 

often be ignored if one is willing to make sufficiently general 

assumptions about the errors in the model. 

Section 4 considers the case of rationing and provides conditions 

that can be imposed on the parameters in order to guarantee an internally 

coherent model. The conditions are elaborated for the same specifications 

of preferences as considered in Section 3. In Section 5 we consider 

internal coherency of models with endogenous regimes. The conditions are 

quite similar to the ones given in Section 4. Again applications to some 
popular demand systems are given. Section b concludes. 
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2. Concavity and Coherency. Four examples 

2.1 Kinked budget constraints 

Figure 2.1 illustrates the simplest possible case of a standard model 

of individual labor supply in the presence of kinked budget constraints. 

as developed by Hausman in numerous papers (see, e.g.. Hausman, 

1981.1985). Given the budget constraint, the individual chooses the number 
of hours which maximizes utility (h* in the figure). 

income 
(c) 

2 

1 

T 	h* 	 h0 	 0 
<— labor supply 

Figure 2.1 individual labor supply and kinked budget constraints 

A typical utility specification used in this kind of work is 

U(h,c) = (/3h-a)exp(13(h-y-)3c)/(a-)3h)) , 
	 (2.1) 

where h is the number of hours worked per period and c is total 

consumption. Note that U is an increasing function of c if )340. Along each 

linear segment of the budget curve, this utility function implies linear 

labor supply functions of the form 

hi  = awj+ Ayj+ Y 	(J=1,2). 	 (2.2) 
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where w  is (minus) the slope of the j-th segment, y  is the intercept of 

the j-th segment with the line h=0, and h  is the desired number of hours 

if the wage rate is w  and non-labor income is yj. 

With (2.2) corresponds an indirect utility function of the form 

V(wj.Yj) = exp(R wj)(p2yj+ apwj- a + YjB) 

If the direct utility function is strictly quasi-concave on the whole 

budget set, then the optimum h* can easily be found with (2.2). There are 

five possibilities: 

A. hl  <0 	h* =0 

B. 0 < hl  < h0  h* = hl  

C. h2< h0  < hl 	h* = h0 	 (2.3) 
D. h0< h2  < T 	h* - h2  

E. T < h 2 	h*=T. 

To allow for unobserved preference variation, assume that p is a 

random variable defined on the real line. Hausman (1981) and Blomquist 

(1983) assume that )3 is negative with probability one. For 00 this 

guarantees quasi-concavity of U at all points of the budget set. In this 

example we show what can happen if the concavity problem is neglected and 

S is allowed to be positive but nevertheless (2.3) is applied. The 

following probabilities to the five cases in (2.3) can be assigned: 

Pr[A] = Pr[)3<(-awl-X)/Y1] 
Pr[B] = Pr[(-awl-Y)/yl<j<(-awl-r + ho)/Yl] 
Pr[C] = Pr[(-awl-fir + h0)/Y1<)3<( -aw2-y + ho)/Y2] 
Pr[D] = Pr[ (-aw2-ar + h0) /Y2<)3 (-aw2-fir + T) /Y21 
Pr[E] = Pr[(-aw2-Y' + T)/Y2<)3] 

Let the parameter values be a=20, Y=0 and let the budget constraint 

be characterized by w1=1, w2=1/2, y1=1, y2=11, T=40, so h0=20 and c0=21. 

Then we can identify the five cases with segments of the )3-axis as 

follows. 
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A 	 B 	 C 	D 	 E 
.>I<— > < 	> < 	> < 

------------- I -------------------,------- --------- ---------------- 
-20 	 0 	10/11 	30/11 	 g 

Thus, given a distributional assumption regarding p, the calculation of 

the probabilities is straightforward. 

Now consider a second set of parameter values: a=10, ,r=0 with the 
same budget constraint as in the example above. The corresponding segments 

of the p-axis are as follows. 

B 

A 	< 	 >) 

> ~ 	 D 	 E 

~< 	> < 
------,--------------- -------- ---------------- ---------------------- 

-10 	 15/11 	35/11 	 10 	 p 

(C = 0) 

Clearly, the model is now not coherent, in the sense that probabilities 
do not sum to unity. In other words: From (2.3) it is not possible to 
write h* as a function of JB. To see the root of the trouble, notice that 
quasi-concavity of the direct utility function (or equivalently 
negativity, i.e. concavity of the expenditure function) requires a > phi. 
Using (2.2) it is easy to verify that concavity is satisfied at the kink 

point for both hl  and h2  for the first set of parameter values but not for 

the second. In fact, the inequality 

(h0- aw1- r)/yI< (h0- aw2- )r) /y2  . 	 (2.4) 

which is required to avoid the incoherency, is equivalent to concavity at 
h0  for both line segments. This can be shown straightforwardly as follows: 

Assume that y  and y2  are both positive and use the relation 

y1+ h 0 w  1 = y2+ h0w2= c0. Then (2.4) can be simplified to 



-8- 

ay2  > (h0- (Xwl- y)h0  . 	 (2.5) 

If, being on segment 2, the individual chooses h0, this implies 

= (h0- (X w2- fir)/y2. Inserting this in (2.5) yields a > p h0, which is 

the concavity condition at h0  (with )3 such that h0  is the optimum in case 

of the linear budget constraint characterized by w2  and y2). A completely 

similar argument shows that if 8  is such that h0  is the preferred point 

along segment 1, the same condition follows from (2.4). One can also work 

backwards from the concavity condition to (2.5) which establishes the 

equivalence. In conclusion, concavity at the kink point is necessary and 

sufficient to avoid problems of incoherency. 

This example can be seen as a simple example of a model with 

endogenous regimes due to a set of inequality constraints. The general 

framework is discussed in Section 5. One of the goals of this paper is to 

discuss methods of avoiding the problems with internal coherency as 

encountered in the example. In this specific example there are two 

apparent ways of avoiding problems. 

The first option is the restriction of the range of possible 

realizations of the random variable )3 and the value of the fixed parameter 

M. If p is negative with probability one and a is nonnegative, the 

problems do not arise. The reason for this is the fact that in this case 

the concavity condition a > )3h is satisfied for all nonnegative h. 

Another possibility, which avoids truncation of the distribution of 

P, is to impose (2.5) for all 'relevant' values of h0  and c0. Notice that 

(2.5) can be rewritten as 

CXc0 > (h O_ y)h0 
 

Thus, if the fixed parameters a and r are restricted such that (2.51) 

holds for all relevant (h0,c0) (e.g. all (h0,c0) in the sample), the 

coherency problem is avoided. In a sense, the latter method is less 

restrictive than the first one, because it does not necessarily imply 

quasi-concavity of the direct utility function at all points of the budget 

set. 
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2.2 Non-negativity constraints in the Translog demand system 

Lee and Pitt (1986) consider a Translog demand system with binding 
non-negativity constraints: 

where 

n 
si = (ai+ X )3ij  log vj} 	D 	(i=l,...,n), 	 (2.6) J=1 

n n 
D =-1 +1 1 p ij  log vj  

i=1 j=1 

)3 ij  . parameters (i,j=1,...,n) 

n : number of goods 

vj  : pj/y with p  the price of j-th good (j=1,...,n) and y income 

si  : budget share of good i 

ai : random parameters (i=l,...,n), representing random preferences, 

al+....+ a
n 
 = -1. 

The demand regime where the first t goods are not consumed is 
characterized by the conditions 

ni(v) < vi 	(i=1...... 

(2.7) 

where 

FTi (v) : virtual price (or 'shadow price') of the i-th good 

v vector of market prices of the goods consumed in positive amounts 

xi: demand for the i-th good given that the first t goods are not 

consumed. 

The various regimes correspond to different values of the a. 
i 

(i=l,...,n). Lee and Pitt (1986) characterize the regimes by solving the 
a  from (2.6) and (2.7). 

Van Soest and Kooreman (1987) construct examples for n=3. Figure 2.2 
gives one such example. 
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a_=-tat 	a~ 	a =2(x 

Figure 2.2 Incoherency in the Translog demand system 
with binding non-negativity constraints 

Let B = [Sij~i,j=1,..,3 = 	2 4 0 	and v = ( 1,1,1 0 0 1 

Figure 2.2 shows the number of solutions of (2.7), for each realization of 
the vector a = ((x1,a2,-1-a1-a2)' of random variables. Each solution is 

characterized by some regime, i.e, a subset of (1,2,3) indicating which 

constraints are binding. 

The figure indicates for each vector a those regimes that yield a 

solution. For a with al>0 and a2<2a1, no solution is found and for other 

a's (except for some set of probability zero) there are two solutions, 

implying that different regimes occur simultaneously. This would imply 

that the probabilities with which each regime occurs do not sum to unity. 



For other parameter values, i.e. different values of Bij, such 

problems need not arise. Van Soest and Kooreman give sufficient conditions 

to avoid the incoherency. It turns out that these same conditions also 

guarantee concavity of the cost function for all feasible values of the 

budget shares of the n goods. Thus, a strong connection is suggested 

between concavity of the cost function and internal coherency of the 

demand system. 

2.3 Rationing 

Consider the following Gorman Polar Form cost function for a case 

with three goods. 
3 

C(u,p1,P2,p3)=-1/2(p21P3)exp(pl/p3)-p3exp(p2/P3)+l 
l
aipi+ up3 	(2.8) 

(pi  >O,a.>O). 

The 2x2 submatrix of second order derivatives with respect to p1  and p2  is 

1 	1/2 v2 exp(vl) v2exp(vl) 

P3 	v2  exp(v1) 	exp(v1)+exp(v2) 

where vl=pl/p3, v2=p2/P3• 

This matrix is negative definite for vI<v2. 

The demand functions, derived by application of Shephard's Lemma. are 

ql  = -1/2 v2 exp(vl) + ai 	 (2.9a) 

q2  = -v2exp(v1  - exp(v2) + a2 	 (2.9b) 

Suppose now that q1  is rationed at qi= qi. We know from rationing theory 

(c.f.. e.g., Deaton and Muellbauer, 1980), that q2  is then obtained by 

first solving v1  from (2.9a), for given v2  and q1=q1, and inserting the 

solution (vi, say) in (2.9b). Let us assume that qi= -1+ ai. This is a 

perfectly feasible value; it is generated by, for instance, v1=log 2, 

v2=1, so that v1<v2  and negativity is satisfied. 

Now assume however that ql=-1+ai  and v2=1/2. Then vl=log 8 > v2. 

Hence there does not exist a shadow price v1  for which the cost function 
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is concave. even although both q 1 	2 and v are perfectly feasible. It is the 

combination q1=-1+a1  and v2=112 which causes problems. 

This example shows that the relationship between negativity and the 

existence of a well-behaved solution of the rationing problem is not 

straightforward. The basic reason is that concavity is defined on a 

certain set of prices and income. But in order to solve the rationing 

problem one first has to compute the shadow prices, and it is only after 

the solution has been obtained that one can check whether concavity is 

satisfied at the rationing point. 

a 

At this point we want to make a number of observations. First of all, note 

that if the usual conditions for utility maximization (convex budget sets, 

convex preferences) hold, then endogenous variables are uniquely 

determined. This follows from standard Kuhn-Tucker theory. Thus, 

'regularity' implies coherency. Secondly, the reverse does not hold. An 

example is given in Figure 2.3. 

~l  

To-c-Veas 

\ \ 

Figure 2.3. Coherency without regularity 

Th unique point of tangency with the budget line satisfies first order 

conditions for utility maximization, but obviously does not represent a 

utility maximum. Yet, demand functions, being the solutions of first order 

conditions may very well be coherent. 

In the third place, almost any specification used in practice will 

satisfy regularity conditions for utility maximization only locally. The 
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main reason for this is the quest for flexible forms. Usually, flexibility 

is only possible if global concavity properties are sacrificed (e.g. 

Diewert and Wales, 1987). In itself this is reasonable, as generally 

economic models only aim to describe behavior of agents for a certain 

range of exogenous variables. See for instance Figure 2.4, where the 

indifference curves are convex in a certain part of the commodity space, 

but not everywhere. As long as we restrict attention to this 'regular 

area' no problems arise. Alternatively, and this is the approach in this 

paper, preference parameters can be restricted in such a way that 

indifference curves are convex in a given area of interest. 

Figure 2.4. Locally Drell-behaved preferences 

Although the requirement that a model should be coherent may appear self-

evident, one may still ask whether imposition of coherency conditions is 

strictly necessary. After all, if the true data generating process is 

coherent then parameter estimates might converge to values which satisfy 

coherency conditions automatically. Also, one may ask whether it is 

possible to test coherency conditions imposed on parameters. The next 

subsection addresses these issues by means of yet another example. 

2.4 Incoherency and ML-estimation 

We consider the following simultaneous Probit-model (See e.g. Schmidt. 

1981). 

yl = Hix  + ylY2 + E1 
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y2 = S2x + Y y + E2 	 (2.10) 

yi  = 1 if yi > 0 and yi  = 0 if yi C 0 (i=1,2) 

Here x denotes an (observable) exogenous variable. yi and y2 are latent 

endogenous variables, y  and y2  are observed endogenous variables and E1  

and c2  are random variables following a bivariate normal distribution: 

lE2J ~ H(  [01 ~[ 
1 0) 
01  ) 

It is straightforward to derive the probabilities of the four 

different outcomes which are possible: 

Pr[y1=0, y2=0] = f(-)31x) 4(-)32x). 

Pr[y1=0, y2=1] = t(-)31x-Yl) 4(-p2x). 	 (2.11) 
Pr[y1=1, y2=0] = 0(-)31x) 4(-JB2x-Y2), and 

Pr[y1=1, y2=1] = 0(-)3lx-Y1) f(-)32x-Y2). 

where t denotes the standard normal distribution function. 

In general, these four prof—bilities do not sum to one. In fact, 

their sum equals 

1 + [§()31x+Y1) - 0()31)] ["2"Y2) - 1(132)1 	(2.12) 

so that a condition for coherency is that Ylr2=0. This renders the model 

recursive (cf. Schmidt. 1981). The condition given here is just a special 

case of the coherency conditions given by Gourieroux et al. (1980). 

Let us now assume that the 'true' parameters of the data generating 

process are given by 

)31=1. Yl=-1, p2=0, and Y2=0 
	

(2.13) 

Note that Y2=0  implies that the true model is coherent. Furthermore, we 

assume that the exogenous variable x is a dummy variable with value 1 for 

half of the observations and value 0 for the other half. Inserting the 

true parameter values in (2.11) yields 
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Pr[y1=O,y2=01x=0]=0.250; Pr[y1=O,y2=01x=1]=0.079; 
Pr[y1=O,y2=11x=0]=0.421; Pr[y1=O,y2=11x=1]=0.250; 
Pr[y1=1,y2=01x=0]=0.250; Pr[y1=1,y2=01x=1]=0.421; 	 (2.14) 

Pr[y1=1,y2=11x=0]=0.079; Pr[y1=i,y2=11x=1]=0.250; 

For a sample of 2T observations, T with x=0 and T with x=1, let K(i,j,k) 

be the number of observations with y1=i, y2=j and x=k (i,j,k E {0,1}). 

Note that 

plim (K(i,j,k)/T} = Pr[y1=i,y2=jlx=k] (i,j,k E {0,11). 
T-- 

Although the meaning of the concept 'Maximum Likelihood Estimator' is 

cumbersome in a model which is not coherent, application of the ML-

technique is possible without imposing coherency. Our purpose is to show 

that the resulting estimator for the parameter )3
2  is inconsistent. Because 

of the assumption that E1  and E2  are independent, the log-'likelihood' 

function based on (2.11) can be written in the following form: 

L()311g21Yl,Y2) = L1
(g11Yl) + L2()32,Y2)• 

where 

	

1 	 1 
L1()31.Yl) _ 	K(O.J,k) log 0(-)31  k-Y1j) + 	K(l,j,k) log O(R1k+Y1j) j,k=0 	 j,k=0 

and 

	

1 	 1 

	

L2()32,Y2) _ I 	K(i3O.k) log 4(-)32k-Y2i) + I 	K(j,l.k) log f()32k+Y2j)• 
i,k=O 	 i,k=0 

Maximization of L is thus achieved by maximizing L1(with respect to Aland 

Y1) and L2  (with respect to gland Y2) separately. This means that the two 

simultaneous Probit-equations are treated as if they were separate Probit-

equations, i.e. application of the ML-technique implicitly assumes that y2  

is exogenous in the first equation and y1  is exogenous in the second 

equation. Since the true value of Y2  is 0, y2  is independent from E1  and 

there is nothing wrong in estimating the parameters of the first equation 

in this way, i.e. the estimates for 
g1  and Y1  are consistent. The 

estimates for g2  and Y2  however are inconsistent, as can be shown by a 

straightforward computation of their probability limits: In the limiting. 
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case (T-*-), the sample fractions K(i,j,k)/T equal the probabilities given 

by (2.14) and L2/T can be written as 

L2(J32,Y2)/T= 0.250 log CO)  + 0.079 log C-p2) + 0.250 log C-Y2) + 

0.421 log 1~(-p2-r2) + 0.421 log 0(0) + 0.250 log It(32) + 

0.079 log t42  )  + 0.250 log t(p2+r2). 

Since L2  has the form of a Probit-likelihood, it is globally concave. Its 

unique maximum can easily be found numerically; it is attained for 

p2=0.5726 and X2=-0.8405. Thus we have 

plim p2  = 0.5726 * o = p2  and plim r2  = -0.8405 * 0 = r2. 
T4- 	 T-)-  

Finally, note that if the restriction r2= 0 is imposed (such that internal 

coherency is guaranteed) then the estimate for p2  is consistent: 

L2(132,0) is maximized for 

p2= -0 1({x(0,0,1)+K(1,0,1)}/{K(0,o,1)+x(0.1,1)+K(1,0,1)+x(1,1,1)}) 

so 	plim p2  = -I 1(0.5) = 0 = p2. 
T4- 

The example shows that Maximum Likelihood estimation is not 

appropriate if coherency is not guaranteed for all values in the parameter 

space on which the likelihood function is to be maximized. Even if the 

model is coherent for the true parameter values, the ML-technique may 

yield inconsistent estimates and can lead to the conclusion that the model 

is not coherent: For a large enough sample, the null hypothesis y1I12=  0 

would be rejected using standard methods of statistical inference. 

Moreover, the example shows that even the estimates of parameters which 

have no direct relation to the coherency condition (p2  in the example) can 

be inconsistent. It thus makes clear that coherency is a conditio sine qua 

non for the use of Maximum Likelihood.. 

C 
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3. Well-behaved demand functions 

This section provides a description of a general framework for the 

estimation of a demand system which is consistent with utility maximizing 

behavior. We first introduce some notation and standard regularity 

conditions. Next we consider restrictions on the parameter space that may 

be imposed in estimation in order to ensure that the estimated system 

satisfies the regularity conditions. Finally, examples are given of the 

imposition of the parameter restrictions in the estimation of some well-

known demand systems. 

3.1 Regularity conditions 

We assume that each individual maximizes some direct utility function 

subject to a linear budget constraint. Topics such as rationing and non-

negativity constraints are discussed in later sections. We start from an 

indirect utility function v$  given by 

u = v8(p,A 	( (p,y) E Vg  C Rn  x R ), 

where p = (p ,...I p
n)' is a vector of prices of n commodities, 

y denotes income (or total expenditures on the n commodities), 

u is the utility level, and 

R E 0 C R  is a vector of (fixed or random) parameters. 

Standard regularity conditions for given S £ 6 are: 

Al. vg  is homogeneous of degree 0: 

for all (p,y) E V8  and a E R+ , (Xp.ay) E VS  and v8(Ap.ay) = vg(p.y)• 
A2. v8  is twice continuously differentiable with respect to prices and 

income and for all (p,y) E Ve, (3v8/3y)(p,y) > 0. 

Assumption A2 implies that vg  is strictly increasing in y and allows for 

the introduction of the expenditure or cost function e8  on the set 

E8= ((p,v8(p,y)); (p,y) E V.I. e9  is implicitly defined by 



va(P,ea(P.u)) = u 	((P.u) E E9)• 

The dual approach is only consistent with utility maximizing behavior if 

'strict' concavity is guaranteed. More precisely: e$  is said to be regular 

at given (p,u) E E  if the nxn matrix (3
2
ea/3p3p')(p,u) is negative semi-

definite and of rank n-1. vg  is said to regular at (p,y) E V9  if e$  is 

regular at (p,va(p,y)). With these definitions the third regularity 

condition can be formulated: 

A3. vg  is regular at all (p,y) E Val. 

In what follows we work with a convex subset Vg  of VS, where for all 

points in Vg  the conditions Al-A3 are satisfied. V$  is referred to as the 

regular set in (p,y)-space. 

Uncompensated demand functions on V$  are derived using Roy's identity: 

q = Fa(P.A 	( (P.A E V8)- 

Here 	q=(gl  .... ,gn)' is a vector of (not necessarily non-negative) 

quantities and the components of the vector-valued function FS  are given 

by 

F8r.i(P.Y) = 
-(7va/3Pi)(P.Y) / Pv8r/3y)(P.Y) 	(i=l,...,n). 

The regular set in q-space, Qg  C Rn, is defined as 

QY = {Fa(P.Y)t (P.Y) E Vs). 

If v$  satisfies Al and A3, then FS  is homogeneous of degree zero and one-

to-one from {(p,l) E Vg) onto Q$. (See, e.g., Gale and Nikaido, 1965) 
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3.2 Parameterization and restrictions in the parameter space 

Preference variation between different individuals (or households) 

can be incorporated in the parameter vector 8. For each individual t, we 

write 

8t  = gt(Y,nt) 

Here Y is a vector (or matrix) of fixed parameters (with the same value 

for all individuals) and the vectors n  are independent drawings from some 

probability distribution which does not depend on t. The (vector-valued) 

function g  may depend on t through a vector x  of observed individual 

characteristics. The most obvious example is 

at = gt(Y.nt) = Y X  + nt  . 

where V  is a matrix of Vij's. Thus, systematic preference variation is 

allowed for if g  depends on t, whereas the presence of the nt's implies 

random variation of preferences. 

In estimating the system of demand equations, the following 

conditions may be imposed on the admissible values of y and/or on the set 

4 of all possible realizations of the nt's. 

B1. (Regularity in a minimal subset of (p,y)-space) 

For all t, for all admissible Y and n E 4: Vgt(Y.n) 
D Vmin" 

This condition states that for all parameter values (and thus for all 

possible individual preference structures) the model must be able to 

explain behavior for at least some minimal subset of (p,y)-space. It 

implies that the parameter space 9 cannot be too large; otherwise there 

might be values of Y  or  At  such that at some points of Vmin  the regularity 

conditions Al-A3 are not all satisfied. Vmin  can, for instance, be 

rectangular: 

Vmin= {(p,y) E Rnx R ; (p. y) < (p. y) < (P.Y)). 

for given values p,y,p,y. 
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This condition is illustrated in Figure 3.1. Here a chosen set Vmin 

in (p,y)-space and (for some given V  and t) the regular area's V 
gt(Y.n) 

are given for two different values 
q   and n2 of n. If preferencesw are 

characterized by nl, behavior cannot be explained if, e.g. 

(p'y)=(pO'y0)EVmin* Therefore nl is excluded, i.e. n1Z Q. For 4=n2, 

the model can explain behavior for all (p,y)Umin' so 42  may be allowed. 

Thus for given y and t condition B1 implies a restriction on Q. Together 

these restrictions imply that Q and 9 cannot be too large. 

Figure 3.1. Condition B1 in (p,y)-space 

B2. ('External coherency' 

Let, for all t, VQt  be a given subset of ((p.y,q) E RnxRxRn; p'q = y}. 

Then for all t, for all admissible V  and (p,y,q) E VQt, there is an n 
E Q such that Fgt(Y,n)(p,y) = q.  

One can think of VQt  as the set of prices, incomes and quantities which 

may arise for observation t. For example, if no measurement or 

optimization errors are involved, VQt  must at least contain the observed 

(p,y,q)-vector for individual t. In fact, VQt  may then consist of just one 

point. Condition B2 states that the parameter space cannot be too small. 

The random preferences must allow so much flexibility that for all 

admissible y and at least one possible value of n a given (observed) 
quantity vector is optimal for given prices and income. This motivates the 

term "external coherency": The model has to be coherent with available 

data, or in other words the likelihood contribution of any given data 
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point should be strictly positive. If the model allows for measurement 

errors, the condition may be omitted. 

Figure 3.2 gives an example for one data point (i.e. a particular 

budget line and a point A on it). For each value of y there must be at 

least one value of n  E Q which produces an indifference curve tangent to 

the budget line at A. 

Figure 3.2. Condition 82 in q-space 

B3. (Regularity in a minimal subset of q-space) 

For all t. for all admissible W  and  n E Q: Qgt(V.n)] Qmin ' 

This condition states that. for given (fixed and random) parameter values, 

certain quantity vectors must be optimal for some prices and income. As 

with B1 this means that the parameter space cannot be too large. As long 

as the issue of rationing (and shadow prices) is not addressed, we might 

do without this condition. 

This condition is illustrated in Figure 3.3. For given parameter 

values gt(y.n). the commodity space consists of three parts: The area 

where the direct utility function is not defined (because shadow prices do 

not exist) (QN), the area where indifference curves exist but are not 

convex (QI) and the regular area Qgt(Y.n). The condition states that 

parameters have to be restricted such that Qmin is contained in Qg 
 t(yin). 



-22- 

R,z 	QT 
\ 

/ 	L ) 

QN 	 ~ 

~ 	 L 

Figure 3.3 Condition B3 in q-space 

Conditions B1 and B3 look similar since they both appear to define an 

area in q-space where indifference curves are convex. However, since 

restrictions are imposed a priori, before parameters are estimated, it is 

not possible to tell which point in q-space corresponds to a particular 

(p,y)-combination. Thus, if we choose a particular Vmin 
 and estimate the 

parameters imposing B1 it may turn out that indifference curves are convex 

in an area quite different from the 
Qmin  we had in mind. Similarly, a 

choice of Qmin  and imposition of B3 may actually imply concavity on an 

area in (p,y)-space quite different from 
Vmin.  This point is illustrated 

below with respect to the quadratic utility function. 

Even if Vmin  and Qmin  are chosen such that they contain all observed 

price-income combinations and quantities, condition B2 cannot be dispensed 

with. B1 and B3 may for instance place such severe restrictions on Q that 

a particular point in (p,y)-space is mapped on the corresponding observed 

vector in q-space for no 4EQ. This is why it has been said that for B1 and 

B3 the parameter space should not be too large, whereas for B2 it should 

not be too small. 



-23- 

3.3 Examples 

Example 1: Linear Expenditure System (LES) 

The indirect utility function is defined for positive prices: 

v$(P,y) = (y - P'r) R Pk  
k=1 	 t31)  

n 
with 	ac   = 1, aci> 0 (i=l,...,n), P = (pig ... 9Pn)', Y _ (r l . ... ,rn)'. i=1 

The expenditure function is 

n 
ea.r(P,u) = P'r + u 	Pk  k=1 

A typical element of the matrix of second order derivatives is 

{P eg/3P3P')(P.u)}i.j = P P ( ff Pk
% 

 } (aiaj  
i 	k=1 

with 6ij=1 ifi=j, 6
ij
=0 ifi* j. 

Given the assumptions on the ai, this matrix is negative semi-

definite if and only if u > 0. In view of (3.1) this requires y - p'r  > 0 

so that a maximal choice for the regular set is given by 

V«,x 
{(P,y); P > 0 and y - p'r  > 0). 

The uncompensated demand functions are 

qi= Fg,i(P,y) = ri+ (ai/Pi)(y - P'Y) 
	

(3.2) 

From the definition of Q$  it is easy to see that the corresponding regular 

region in q-space is given by 

Qa.r = {q £ Rn' q > r}. 
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Random preferences can be incorporated as follows: 

Yt = rt,0+ Tit 

where 
rt.0 	(rtl,01" " 7tn,0)' is fixed (and may depend on personal 

characteristics of individual t) and qt 
(-tl' " ''qtnP is random (with a 

distribution that does not depend on t). 

We elaborate the conditions B1 through B3: 

B1. The random variable n  should be restricted such that y - rip > 0 for 

all (p,y) E Vmin.  If, for instance, we take Vmin  to be the rectangle 

Vmin 	{(PAY); 0 <- P  <- P, 0  < Y < Y}, 

then the 4's have to satisfy 

max p'q < -max max_ p'r 	, 	 (3.3) 
0<p<p 	t 0<P<p t,0 

which then defines the largest possible Q for given r 's. 
t,0 

B2. Solving r from (3.2) yields 

ri = q   - X ai/Pi 	(i=1,...,n), for some arbitrary h > 0. 

If we define VQt  as {(pt'Y
t'
g
t)) (with ptgt= yt), then 4 has to be 

large enough to contain for each t at least one value of n in the set 

{n  E Rn  ; ni=  qti- X ai/pti-  rti3O (i=1,...,n) for some a > 0) . 

Note that by choosing h large enough we can always guarantee that n 

will be in Q according to (3.3). Hence, conditions B1 and B2 can be 

satisfied simultaneously. As said before, if we allow for measurement 

or optimization errors. condition B2 need not be imposed. 
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B3. We may want to define Qmin  as the set {q; q 3 q}, with q some given 

vector. so  that the Y's have to satisfy )r < q , or equivalently 

n < q - Yt'O  for all t. If one wants to impose B1 and B3 
simultaneously, this condition has to be imposed jointly with (3.3). 

It may be illuminating to discuss the role of the three conditions in the 

estimation of the Linear Expenditure System a little bit further. Suppose 

we do not allow for measurement errors. Then B1 and B3 imply restrictions 
on the range of the random variables n which depend on parameters implicit 

in yt.0. This in itself may give rise to non-standard estimation problems. 

For the rest, however, the imposition of B1 and B3 (and the fact that B2 

can always be satisfied) makes sure that whatever our estimates will be, 

the resulting model is always consistent with neoclassical theory. Also, 

since B2 is satisfied the likelihood is well-defined for all data points. 

a 

Example 2: Quadratic Direct Utility Function (QDU) 

The direct utility function is given by 

U(q) = y'q - 1/2  q'B q 	 (3.4) 

where Y = 41,•••,yn)' and B = S11*:J3In is positive definite. 

In* 'Snn 

The utility function has a satiation point at q = B_1y, with corresponding 

utility level u = 1/2 y'B
-1

y. The demand functions are given by 

q  = B-1Y - (p'B-1p)-1{,y'B-1p - y} B-1p 

and the indirect utility function is thus given by 

v(p,y) = 1/2 {ar'B
-1y - (p,B-1p)-1[r'B-1 p - A 2)• 



-26- 

The indirect utility function is increasing in y as long as the satiation 

point is not in the budget set, i.e. as long as y < y'B-1p. Homogeneity of 

degree zero is satisfied automatically. 

The expenditure function is given by 

eB.Y(P.u) = r'B-1P - (P'B-1p)1/2[Y'B-1Y - 2u]112. 

The Hessiar of the expenditure function is 

(32e8r/apaP')(P.u)=(P'B-1P)
1/2

Lr'B-1r-2u]1/2E(P'B-1P)-1(B-1P)(B 1p)'-B-1]. 

As one would expect. e(p,u) is only defined for u < 1/2 Y1B-1Y  (i.e. for u 

less than or equal to the satiation level) and p 9 0. It is easy to show 

that, since B is positive definite, the matrix 

(P'B-1P)-1(B-1P)(B-1p),-B-1 

is negative semi-definite and of rank n-1. Hence, the cost function is 

concave for u < 1/2 Y'B-1Y• 

In what follows, we assume that there is one commodity, say the n-th, 

for which the price is always positive, i.e. p
n> 0. 

This suggests the following choice for VB,r: 

VB,r {(P.y): y < Y'B-1P. Pn> 0). 

Let us consider the following stochastic specification (see, e.g., 

Ransom, 1987b) : 

Y  = rt.0+ lit  , 

where Yt,O 	(rtl,0' " '•rtn,0)' is fixed, and nt (ntl•" ''ntn)' is a 
vector of random variables with ntn- 0' 
The elaboration of B1 - B3 is as follows. 

Bl. (Yt,O+ 
n). 

 B-lp  - y > O 	for all t, n E 4, and (P.y) E Vmin' 

If we define Vmin  as for LES, this condition turns into 
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min q'B-1p > y - min 	min yt
,O
B-1p 	 (3.5) 

0<p<p 	 t 	0<p<p 

which is then again the definition of Q. It is quite similar to the 

corresponding condition (3.3) for LES. 

B2. Again, let us define VQt  as ((Pt'yt'gt)}'  Solving n from the demand 

functions yields 

n = Pti ~ 	-Y 	+1 {)3 -Pti~ } q 
i  Ptn tn,0 ti3O j=1 ij Ptn  nj tj 

and Q should be big enough to contain the n's obtained in this way for 

all t, and for all values of rt,O 
 and p in the admissible parameter 

space. 

B3. Inversion of the demand system for given parameter values (including 

fir) yields shadow prices and corresponding virtual income as a function 

of q: 

p = a (y - B q) and y = P'q 

where X can be chosen arbitrarily. The solution (p,y) is a point in 

VB x  iff a > 0 and y  - (B q)n 
 > 0. Thus, imposition of regularity in 

a given region Qmin  in q-space yields yn-  (Bq)n 
 > 0 for all q E 

Qmin' This can be achieved by restricting the values of fixed 

parameters only, since we have assumed that y  is non-random. 

Truncation of the distribution of n is unnecessary. If, for instance, 

Qmin is some rectangle, 2n  simultaneous linear inequality restrictions 

on the coefficients in B and xtn,O  result for each individual t. The 

conditions to be imposed in estimation are then obtained as the 

intersection of the inequalities for each individual. 

To get some more feeling for these conditions, we look at a simple 

numerical example for two commodities. Let n = 2, B = 	1 
 

1 
1 
0 1 	

and assume 

that 
)-t,0 = YO 

 • fixed and independent of t. 
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B1. Let Vmin  be a 'rectangle in (p,y)-space', i.e. 

Vmin = {(p,Y)+ 0 < vt  < pi/y < vu  and vt  < p2/y < vu). 

Since it is assumed that p2  always exceeds 0 it is convenient to work 

with the normalization p2  = 1. Vmin  can then be written as 

Vmin = {(p1  Y); vty < pi  < vuy and vu
- i< y < v_i} 

A feasible Y = (rl,Y2)' has to satisfy 

ripi* Y2- y > 0 for all (pl,y) E Vmin' 

Thus, Y  is feasible iff 

Y2> vii- Yl,  Y2> V
U
_  1- Yivt/vu  and 

Y2> vii  - Yivu/vt. 

Figure 3.4 presents the feasible area (FA) in (Yi,Y2)-space. In this 

example (i.e. for this choice of B) the feasible area is non-empty for 

every vu> V 0. 

Figure 3.4 The feasible area in ]r-space 
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For each feasible Y  it is possible to derive the regular area in 

(pity)-space: 

VY  = ( (pity) ; Yipi  + Y2  - y > 0 } . 

The intersection of these V
Y
's is the region in (pl,y)-space, where 

the indirect utility function behaves well for all Y  E FA: 

V = n V 
YEFA Y 

In Figure 3.5 V and Vmin 
 are presented. Note that automatically V D 

Vmin' but the figures show that V is much larger than Vmin'  (One could 

have chosen V instead of Vmin  to begin with; this yields the same 

region FA in Y  - space) 

v,t/vu 	 vu/Vt 	 P1 

Figure 3.5 The minimal and the actual regular region in (pl,y)-space 

B2. For fixed Y2= Y2.0  and given pl, y, (p2= 1), q   and q2  with y = p'q, 

we must find a feasible solution for Y1  from the demand system 

ql  = Y1 - G-pl)-i(Ylpl+ Y2- y} Pi  

q2  = Y2  - (1+P1)-l(Ylpl+ Y2  Y)  P2  
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This is a system of two linearly dependent equations in y1  with a 

unique solution: 

y1= q1  + P142- q2) . 

The solution is feasible iff 

(p1+ 142 > v't1- q1+ p1g2  , and 

(p1+ vu/vL)y2  > vt1- q1+ p1g2  , and 

(pl+ v't/vu)y2  > v- 	q1+ p1g2  

If sample prices p1  always exceed -vt/vu  then it is possible to 

guarantee the existence of a feasible solution for all (g1.g2.y) in 

the sample by restrictng y2  to be large enough. 

83. For given y, the regular region in q-space is given by 

Qy  = {(g1.g2) E R2  ; q2  < y2}. 

Thus, regularity on some region 
Qmin C  {(gl'g2) E R2  ; q2  < q2} is 

guaranteed if y2  is restricted to values larger than q2. Note that y1  

is not restricted. If once again FA is defined as the feasible area in 

(p,y)-space, i.e. the area where concavity is satisfied for all y1  and 

for all r2>g2,  then it is easy to see that this feasible area is 

empty! 

Example 3: Almost Ideal Demand System (AIDS) 

Let 	v = (log pi9  .... log pn)'. a = (a1. ... 7an)', R = ()31, ... IPn
P. t a 

symmetric nxn-matrix with typical element yii. The expenditure function is 

ea,,3,,(p.u) = exp {a(p) + u b(p)j, 	 (3.5) 

where a(p) = a0  + a'v + 1/2 v,rv, and 
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b(p) = exp (13'v) . 

The expenditure function is homogeneous in p if a't=1, Ft=0 and p't=0, 

where t is an n-dimensional vector with unit elements. 

The uncompensated demands are given by 

s = ex + ry + p (log y - a(p)} 	 (3.6) 

where s = (si, .... Sn)' . s
i  being the i-th budget share. 

The concavity condition for the expenditure function is 

C < 0 	 (3.7) 

where C = r + p p' {log y - a(p)} - A + s s' .with A = diag(s). Sufficient 

conditions for C to be negative semi-definite are 

(a) r = 0 ; (b) log y < a(p) 	(c) 0 < si< 1 (i=l,...,n). 	(3.8) 

We introduce random preferences as follows: 

oct  - at,0  + pit  

with iltt = 0, n  random. 

Bl. Suppose Vmin  is defined by Vmin= ((p'y) ; 0 < v < V. 0 < y < y } 

Condition (b) requires the following restriction on fixed parameters 

and on the range of the random variables: 

max 	( -n' V)  < a - log y + min min_ (a' v + 1/2 v'rv) 
0<v<v 	

0 	 t 0<v<v t.0 

We also have to impose condition (c). Rewrite (3.6) as follows: 

s = (1-)3v' )7i  + at'0+ i'v + S{log y - a - (Xf  v - 1/2 v'rv) 	(3.9) 

From this expression it is clear that (c) imposes a number of 

additional linear restrictions on the range of the n's. Thus, as with. 
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LES and QDU, we find that the T,'s are confined to a poiyhydron, 

although it is a bit more difficult to characterize than previously. 

B2. Let VQt
-{(pt'yt'gt)I with ptgt=yt,  pt>O and yt>0. n 

 can be solved from 

the linear system 

st= [I-pvt]n + at,o+ rvt+ p(log yt
- ao at,Ovt-  2 vtrvt) 

(3.10) 

71,t=0 

where st=(stl' " 'stn)',  vt=(vtl' .. 'vtn)1, sti=ptigti/yt' v  ti= 
log  pti 

(i=l...,n). The solution must satisfy condition (3.7). If 0<st<t and 

r<0. a sufficient condition for this can be derived from (3.6): 

-711 vt  < a0- log yt+ a,~Ovt+ 2  vtrvt 	 (3.11) 

Substituting the solution for n  obtained from (3.10) in (3.11) yields 

an intricate condition on (pt,yt,gt). The fixed parameters must be 

chosen so that this condition is satisfied for all t. 

B3. The characterization of the area in quantity space where the system 

can be well-behaved appears to be extremely difficult. In terms of 

budget shares, such a characterization is substantially more 

straightforward. For some purposes this may suffice. 
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4. Rationing if the regime is exogenous 

In this section, we consider the problem of an individual who 

maximizes utility, facing not only the budget constraint, but also a given 

set of equality constraints. This can be seen as an introduction to the 

more realistic case of endogenous regimes: the individual faces a set of 

inequalities; in the point of highest utility some will be binding and 

others will not. In this section we assume that it is known in advance, 

that the constraints on goods 1 through k are binding and the other 

constraints are not. The number k and the order of the goods may vary 

across individuals, i.e. different individuals may be rationed with 

respect to different goods. 

The individual solves the problem 

Max 
q I 

 Ug(gl,gll) 	s.t. 	y = pIgI + pIIgII.  

Here we have written q = (gI'gII)'' p  = (pI,pII)' 
 and the constraints are 

given by qI = qI . 
Starting from the indirect utility function vg  and corresponding 

demand system FU  as in Section 3, the solution of this maximization 

problem is found using the notion of shadow (or virtual) prices (see. 

e.g., Neary and Roberts, 1980): 

Find pIE Rk  , y E R and gIIE Rn-k  such that 

((PI.PII)y) E Vg  

Fg(fPI~pII).Y} _ (gIog11) 	 (4.1) 

y = y + (pi- PI)'gI 

The optimal quantities, taking into account the constraints qI= qI, are 

then given by qII' 

a 

a 
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For individual t with income yt, confronted with prices pt  and 

rationed quantities qIt, we want problem (4.1) to yield a unique and 

feasible solution. This suggests the following three conditions. 

C1. (Regularity in a minimal subset of (p.y)-space) 

For all admissible y and all q  E 4: V 	D V gt(y.n) 	min' 

This condition is exactly identical to condition B1 in the previous 

section. 

C2. ('External coherency') 

Let VQ, be a given subset of ((p,y,q) E R n  x R x R n ; p'q=y }. 

Then for all admissible W  and all (p,y,q) E VQt, there exists at least 

one n  E Q such that there are pI  E R  and y E R with 

((PI.pII).y) E Vgt(V.n) 

Fg t(V,10 ((PI.PII).y) = q 

Y = y - (PI_PI)'gI  

This condition states that certain quantity vectors qII  can be optimal for 

given prices, income and rationed quantities qI. If no measurement errors 

are present. VQt  must at least contain the observed vector 

(Pt'yt'(g  It' gIlt)) for the individual t. This condition is similar to 

condition B2 in the previous section. It guarantees, once again, that each 

data point has a non-zero likelihood contribution. C2 is weaker than B2 

since quantities 
qit  do not have to be rationalized. 

C3. ('Solvability') 

Let VQI  be a given subset of ((p,y.gl) E Rnx R x Rk}. 

Then for all admissible y and all n E Q and all (p,y.gI) E VQt, there 

exist pI  E R  . y E R and qII  E Rn-k  such that 
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( (PI.PII) .Y) E Vgt(~'.~t) 

Fgt(Y.n)((PI.PII),Y) = (gltgII) 

Y = Y + (PI  PI)gI  

Condition C3 states that for each admissible vector of parameters, (4.1) 

must have a solution that is well-behaved. It is imposed to avoid the 

problem encountered in Example 2.3. If there are no measurement errors on 

prices, income or rationed quantities, then the set VQI  must at least 

contain the observed vector (pt,yt,glt). 
 There is no similarity between 

the conditions C3 and B3. The reader must be well aware of the difference 

between C3 and C2: C3 states that for each n E 4 the rationed utility 

maximization problem has some regular solution. C2 states that the model 

must be able to explain a given observation, i.e. to each observed optimum 

there must correspond some n  E 4. 

The conditions have to be imposed for all individuals simultaneously. 

Condition C1 is not necessary for internal coherency of the model with 

rationing because it involves restrictions on actual prices, whereas for 

the rationed commodities only shadow-prices matter. The condition is 

important however when the model is used for simulations in which the 

rationing is relaxed. Condition C3 is strongly related to the internal 

coherency problem: It states that to each possible realization of n  there 

corresponds at least one vector qII  of endogenous variables. Together with 

the concavity of the expenditure function and convexity of V8  this implies 

internal coherency of the model. 

Example 1: LES 

Solving 

k 	 n 	 _ 
max U0(gV gII ) _ 	(qi-ri)°Ci IT (qi-~rd i 	s. t. 	Y = plgI + pIIgII,  
qII 	 i=1 	i=k+1 
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yields 
n 

qi  = 2ri+ ai(y-pIgI pIIyII)  / (pi I 	a3} 	(i=k+1,..•,n), 	(4.2) 
J=k+1 

where yII = (2rk+l, ... ' rn)' . 

Alternatively, (4.2) can be obtained by first solving the 

shadow prices (p19...,pk)' from the first k unconditional demand 

equations, with p  replaced by pI  and y replaced by y, yielding 

n 
P i  = ai(y-pigl-p2y2) / {(gi-T.)  

J=k+l 
and 	 (4.3) 
_ 	k _ 
Y - Y +

J
I

1 
 (p 	pi)'gi  

and next substituting the solution into the notional demand equations for 

goods k+l through n, again with p  replaced by pI  and y replaced by y. 

The solution is feasible iff gI>yI  and 
q2>yIII  or, equivalently, pI>0, 

PIi>0, and y p
Iyl pIIyII> 0.  

Note that equation (4.1) has exactly the same functional form as the 

notional demand functions (3.2), the only difference being that ai  is 

replaced by ai/ {ak+1+..•; «n) and y is replaced by y-p'ql, and that (4.1) 

does not depend on (al,.,.,ak) nor on (yl,...,rk). If all individuals are 

rationed with respect to the same goods, one might simply impose the 

conditions B1 - B3 described in the previous section, with y replaced by 

y-pIgl  and 	replaced by yII=  (yk+1''• - • yn)'  

Conditions C2 and C3 can be elaborated as follows: 

C2. Let VQt  = {(pt'yt'gt)}, with p t > 0 and yt= ptgt.  
Solving r from (4.2) yields 

yit=qit-X«i/pit (i-k+l,..,n) for some arbitrary a>0. 	(4.4) 

The solution is feasible if 
y i 

< 
q  

Q has to be large enough to contain at least one value of q  such that 

yt=  yt,0+ n satisfies (4.4) and is feasible. 
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Note that this condition is similar to the corresponding 

condition B2 for LES in Section 3. It is weaker because the quantities 
gl,...,gk do not have to be rationalized. 

C3. Let VQt = {(Pt'yt'git))' Existence of a feasible solution for given y 

(yI,yII) means 

qIt> yI  and  y - PItgIt- PIIyII > 0.  
Substitution of y = yt,0+ R yields k+1 inequality restrictions on n 
that restrict the set 4. 

a 

Example 2• QDU 

We assume that no rationing applies to the quantity of the n-th commodity, 

i.e. the commodity which was treated differently from the other 

commodities in Section 3. 
Solving 

max U qII (q .q ) _ (y'.y' ) 
[q, 	- 1/2  (q'.q' ) B11

j 
812][gI 

9 I II 	I II qII 	I II B12 B22 q 
 

s.t. y = PIgI + PIIgII ' 

yields 

	

gII-B22(yII-B12gI )-(PIIB22p1I)-1€(y1I-B12gI)'B22PII y PIg1 22P1I 	(4.5) 

with obvious partitioning of y and B. 

The solution is feasible iff (gI'gII) 
 is in the regular area of q-space, 

i.e. iff 

yIIB22PII y + qI {pI-B12B22PII) > 0 

Note that (4.5) has exactly the same functional form as the notional 

demand functions, the only difference being that y is replaced by y-PIgII' 

y by (rii-B12gI ). B by B22  and  p by pII• 
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The elaboration of conditions C2 and C3 is similar to the previous 

example: 

C2. 
Let VQt = {(Pt,yt'gt)J, with pnt> 0 and yt ptgt,  
Solving r  from (4.5) yields 

YII- B12git+ B22gIIt-  XtpIIt' 	 (4.6) 
where 

Xt { ytn,0+ {B12glt+  B22q,Itln)/Ptn• 	 (4.7) 

The solution is feasible iff at> 0. 

Q has to be large enough to contain at least one value of n  such that 

rt rt,0+ n is feasible and satisfies (4.6), with X given by (4.7). 

C3. Let VQt = {(pt'yt'git)).  

Existence of a feasible solution for given Y = (yi,Yll) means 

yIIB22pIIt yt+  glt{pIt-B12B22plit} > 0. 

Substitution of ar = y
t'0+ 71 yields an inequality restriction on n  that 

restricts the set Q. 

Example 3: AIDS 

The shares for this specification are given by (3.9). The equation 

Fg(W.1t)((Pi.PII).y) = q 

can be written as follows: 

+ X 	+ Vv-  + g{log y - a0- at~cv - 2  v'rv), 	 (4.8) 
t10 

where 	 vk)', vi  =log pi  
sI-(s1, " ,sk)', si  =pi  gi/y (i=l,..,k). It is impossible to derive an 

analytical expression for shadow prices pI  from (4.8). Numerical methods 
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have to be used. As a consequence, the elaboration of conditions C2 and C3 

seems extremely difficult. 

C2. Let VQt=((pt.yt,gt)I 
 as in Example 3.3. The condition states that 

(4.8) (with (p,y,q) replaced by (pt'yt'gt)) 
 must yield at least one 

feasible solution for (4,pl). Since (4.8) does not permit an 

analytic solution for pit this condition can only be checked 

numerically, but not imposed in any obvious way. Note again that it is 

weaker than B2 because the quantities q  do not have to be 

rationalized. 

C3. Because of the intricate way in which pI  enters (4.8). virtually 

nothing can be said about this condition analytically. In specific 

examples, for given values of the fixed parameters, numerical methods 

might prove useful, but imposition a priori seems to be impossible. 
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r1. Rationing if the regime is endogenous 

In this section we consider the problem of an individual who 

maximizes utility subject to a set of linear inequality constraints. 

Common examples are the case of non-negativity constraints (see, e.g., 

Wales and Woodland, 1983, Lee and Pitt, 1986, Ransom, 1987, Van Soest and 
Kooreman, 1987) and the kinked budget set in labor supply models (Hausman 
(1981, 1985), Moffitt, 1986, Hlomquist, 1983). In contrast to the 

discussion in the previous section, we now assume it is not known in 

advance which constraints are binding and which are not. The 'regime'. 

i.e. the way constraints are split up between binding and non-binding 

ones, is therefore endogenous. 

The utility maximization problem in its primal form can be written as 

Max 	UR(q) s. t. R q < r , 	 (5.1) 
q 

where R is a kxn-matrix and r E Rk. 

Here k is the number of restrictions, including the budget constraint. 

Specific choices of R and r yield the examples referred to above: 

Example a: non-negativity constraints: q > 0 , 

budget constraint: p'q < Y. 

So k=n+1, R=(p,-I)' and r=(y,0,...,0)'. 

a 

Example b: kinked budget constraint: c < w 
J  
.h + y. (J=1,...,m) 

J 
time constraints: h > 0 and h < T. 

(notation as in Section 2.1; note that q = (c,h)' ) 

So k=m+2 R' 
= I-W1.. . ..1  -01 

0 
 , 	1 	ym

,O,T)' 
1 	m 

0 

If the utility function is strictly quasi-concave on the convex set 
n 

(qER ; Rq < r}, the solution of the maximization problem can be found 

using the Kuhn-Tucker theorem. The Kuhn-Tucker conditions for the 

maximization problem are as follows: 
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If q is optimal, then there exists a vector ~ E Rk  such that 

X > 0 , 

R q < r , 

(5.2) 
~'(Rq- r) =0 , and 

pU9/3q)(q) = R'~ . 

This can be rewritten employing the corresponding (homogeneous of degree 

zero) demand system Fa(p,y). This demand system has the properties 

pu8r/aq)(Fa(p,y)) = yp for some u > 0, and 

p'Fg(p,y) = y• 

Making use of these properties and substituting a = a/µ, (5.2) can be 

written as 

X 
s 
 0 , 

R q < r , and 	 (5.3) 

q = Fa(R'X,r',\) . 

(As the demand system is homogeneous of degree zero and X * 0 (non-

satiation), some normalization on a may be added). R'X and r'X can be 

interpreted as a vector of shadow prices and shadow income respectively. 

To illustrate the general mature of i5.3?, we elaborate (5.3) for the 

two examples given above. 

Example a (continued) 

(5.3) yields 	A > 0, p'q < y, -q < 0, and 

q = F8r({Xip-(a2,...,Xn+1)').X1y). 
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Monotonicity of the utility function in at least one of the goods implies 

that the budget constraint is binding, so al> 0 . We can choose the 

normalization Y 1 and this yields, with 5~ = (X2••••'Xn+1)1' 

a > 0, p' q = y, q > 0, and 

q = Fa(p-~, y)• 

This is the well-known result that shadow-prices (p-3~) cannot exceed real 

prices (p). 

n 

Example b (continued) 

(5.3) yields X > 0 	c < wjh + yj  (j=1,...,m), -h < 0 , h < T and 

m 	 m 	m 
(h, c)' = Fg((- I wiXj- Xm+l+  Xm+2' I X

j)', I ajyj  + TXm+2) 
j=1 	 j=1 	j=1 

Monotonicity in c implies that X
1
+...+X

m 
 is positive and allows the 

normalization X
1
+...+a

m
= 1. Thus we have 

X > 0, al+...+X
m= 1, c < wj

h + yj  (j=1,...,m), 0 < h < T and 

m 	 m 
(h,c)' = F0((- I w.X.- Xm+1+ am+2, 1)', X ajyj  + TX m+2) 

J=1 	 j=1 

If all tax-brackets consist of more than a single point, then at most two 

restrictions can be binding at the same time. This means that there are 

only 2m+1 regimes: m regimes with one binding constraint and m+1 regimes 

with two binding constraints (m-1 kink points and two corners). 

In the case of one binding constraint, say the j-th {jE(1,...,m}), we 

have 

(h.c)' = Far((-wj,l)'.yj) 	(Xj=1) 

and in case of a kink point, say between brackets j and j+1 

we have 



-43- 

(h.c)' = Fg((-wiXj-wj+l[1-aj).1)'.yiXj+yj+1[1-xj]) = FB((-w.l)'.y ) 

This is a familiar result: The shadow wage w lies somewhere between the 

wage rates w  and wj+1  and shadow income y satisfies 

y+wh=yj+wjh=yj+l+wj+lh, where h is the number of hours at the kink point. 

The two corners yield similar results. 

E 

Let us now consider conditions one may want to impose, in order to 

guarantee that (5.3) yields well-defined solutions. First of all, B1 may 

be imposed once again, although it should be realized that in the present 

context not only actual prices but also shadow prices matter. 

Correspondingly to B2 we can impose a condition stating that it must 

at least be possible to rationalize a given set of restrictions and 

quantities per individual: 

D2. ('External Coherency') Let RQt  be a given set of restrictions 

(including the budget constraint) and quantities that satisfy these 

restrictions. For all t, W  and (R,r,q) E RQt  there exists some n E Q 

such that there is a vector h E R  with X > 0 and q = 

Fgt(w.n)(R'a,r'h). 

Operationalization of this condition for a given demand system may be 

difficult. It is essentially the same condition as B2 (see Figure 3.2) and 

C2. 

The most important condition, of course, is a condition which 

guarantees that problem (5.3) has a well-defined solution. It is well-

known that this is the case if the objective function maximized is 

strictly quasi-concave and the constraints define a convex set. Convexity 

of the choice set is already clear from the general set-up in (5.1). 

Quasi-concavity of the utility function on the budget set is easily 

guaranteed by imposing condition B3 and taking Qmin 
 convex and large 

enough to contain (the upper edge of) any budget set over which utility is 

to be maximized. We will refer to this as condition D3. Thus, D3 is the 

same as B3 (see Figure 3.3) for a sepeeifie choice of Qmin' 
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Example 1: LES 

We confine ourselves to the discussion of condition D3. Bearing in mind 

that the condition must hold for each individual t, we omit the subscripts 

t. In Section 3.3 it was shown that regularity at a given point q in 
quantity-space means q > ar. Condition D3 therefore implies 

r < q for each q with R q < r . 

This implies, for given systematic part 
y0  of fir, truncation of the 

distribution of n. In case of non-negativity constraints as well as in 

case of a kinked budget constraint, this leads to imposition of 

negativity of the dr
i  's. 

0 

Example 2: DQU 

As in the previous example, we confine ourselves to the discussion of 

condition D3 and omit subscripts t. From Section 3.3 we know that 

regularity at a given point q in quantity space is equivalent to 

yn- (B q)
n 
 > 0. 	 (5,4) 

Thus, condition D3 implies that (5.4) must hold for all q in the budget 
set Qmin=  {q E Rn; Rq r). This is achieved by restricting the fixed 

parameter 
rn' 

rn 
> max {(B q)

n
; R q < r). 	 (5.5) 

q 

The maximum of the right hand side of (5.5) can be found by linear 
programming. (The maximum exists if Qmin  is compact). 

In the special case of non-negativity constraints, assuming that all 

prices are strictly positive, (5.5) yields 

yn > y max (13 ./p
j
) . 

1<j<n 	
nj 

In case of the kinked budget constraint  (5.5) yields 
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yn > max (A21hj+ R22cj). 
0<j<m 

where (hi  ,cj) (j=1,....n) are the corners (h0.c0) _ (O.y1) and (hm,cm) _ 
(T.wm

T+y
m) and the kink points (h j, ) _ ({y 	-y )/{w.-w 	).w h +y.) J j 	j+1  j 	J j+1 	j j J 

(j=l,...m-1). 

E 

Example 3: AIDS 

In the previous sections it has been shown that regularity conditions in 

some region 
Qmin  in q-space for this demand system are very intricate 

because shadow prices cannot be derived in closed form. Thus, in general, 

no analytical results can be derived. 

0 

Example 4: Translog 

In general. it is not possible to derive analytical expressions for shadow 

prices for the Translog specification, so problems arise which are similar 

to those encountered with AIDS. In the special case of non-negativity 

constraints however, there is a way to avoid these problems. In this case 

shadow prices corresponding to the optimal quantity vector are either real 

prices (if qi>0 then pi=pi) or can be obtained from a system of linear 

equations (see e.g. Lee and Pitt, 1986). This result implies that it is 

possible to guarantee coherency of the model without solving the problem 

of deriving shadow prices at each point in some region in q-space. This 

issue is discussed in Van Soest and Kooreman (1987), where sufficient 

conditions for internal coherency are given which imply restrictions on 

fixed parameters only (and no truncation of the distribution of n). These 

conditions are weaker than D3. 

a 
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6. conclusions 

The examples in Section 2 underline the necessity of the imposition 

of coherency conditions in practice. Not only do we need parameter 

restrictions to make sure that the model is coherent, we have also seen 

that even if the true data generating process is coherent, failure to 

impose appropriate conditions may yield inconsistent ML-estimates of the 

parameters. These estimates would then make us believe that the model is 

misspecified. This also illustrates the fact that it is impossible to test 

the coherency conditions. The requirement of coherency is after all a 

logical one and not an empirical one. 

If we would have tractable. flexible and globally concave functional 

specifications for our demand systems the treatment of coherency 

conditions would be straightforward. Since tractable, flexible systems 

only have local concavity properties (the only globally concave flexible 

system suggested by Diewert and Males (1987) does not permit explicit 
expressions for the demand functions), the formulation and implementation 

of parameter restrictions that guarantee regularity in some sense becomes 

quite intricate. 

There are two basic reasons for this. First of all the analysis in 

Section 5 makes clear that we can guarantee well-behaved demand systems if 

we can guarantee that the direct utility function is quasi-concave on the 

budget set of an individual. Generally we do not want to impose this, 

because in practice most of the budget set is irrelevant for the 

individual anyway. Thus we are satisfied if the utility function is quasi-

concave in a part of the budget set where we most likely observe the 

individual to be (so we can for instance generally ignore all interior 

points of the budget set). By making the area where regularity conditions 

are imposed as small as possible we maintain as much flexibility of the 

functional form as we can. At the same time this complicates the analysis 

because we have to think more carefully about the area where regularity 

should hold. This for instance explains why conditions under exogenous 

rationing may be different from the conditions under endogenous regimes. 

The second essential complication arises because the budget set and 

the parameters may differ across individuals. We have seen that certain 

conditions, like "external coherency", suggest that the parameter space 
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should not be too small, whereas other conditions suggest that it should 

not be too large. These conditions may easily be conflicting. 

Somewhat related to the previous points, the stochastic specification 

tends to be difficult. In the examples considered the random variables 

were usually constrained to a polyhedron. If, for instance, we would 

specify a normal distribution for the random preferences, this would lead 

to complicated truncations. 

Another implication of the analysis appears to be that for models 

with endogenous regimes or corner solutions, one needs in general the 

direct utility function in closed form. This is rather clear from the 

analysis in Section 5, but also under exogenous rationing, conditions like 

C2 or C3 require knowledge of shadow prices in a rationing point. Although 

in principle one could compute shadow prices numerically whenever given in 

implicit form, it is next to impossible to impose conditions like C2 or C3 

when no closed form expressions for shadow prices are available. And, of 

course, knowing shadow prices corresponding to given quantities amounts to 

knowing the direct utility function. As a result, many of the popular 

flexible forms like AIDS or Indirect Translog cannot be used in general. 

In this paper we have illustrated the imposition of the various conditions 

for some direct utility functions. There is one flexible form proposed by 

Hausman and Ruud (1984), which has not been dealt with here. In a separate 

paper (Kapteyn et al, 1988), we have used this system in a non-linear and 

non-convex budget application and we have imposed concavity restrictions 

along the lines set out in Section 4. 

Altogether, the treatment of endogenous regimes or corner solutions 

appears to require rather tedious procedures for the imposition of 

regularity conditions and it severely limits the number of functional 

forms that can be considered. Despite these difficulties, it should be 

clear that without the imposition of regularity conditions one will often 

end up with a nonsensical model. Thus the choice appears between 

complexity and incoherency. 
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