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1. Introduction' 

Recent theoretical analysis of the process of technological diffusion has generated two main 

classes of models in the literature. The first class, discrete choice models, incorporates probit 

and game theoretic models (see for example David, 1969 and Reinganum, 1981), and the 

second class includes information based (epidemic or logistic) models (see, for example, 

Mansfield, 1968). The literature has been surveyed by Stoneman (1983 and 1987). Empirical 

work on diffusion has been largely concentrated on the epidemic models, and there has only 

been a limited amount of empirical work on probit models (see, for example, Davies, 1979). 

To the best of our knowledge the game theoretic approach has not been used empirically, 

although elements of that approach are reflected in the work of Hannan and McDowell(1987). 

The work reported in this paper is part of a larger research project2  exploring the empirical 

validity of different diffusion models. 

Deaton and Muellbauer (1980) state, 'it is likely to be difficult in practice to disentangle 

diffusion processes associated with discrete choice problems from those associated with the 

spread of information'. In line with this statement (which is particularly relevant, when as 

here, panel data on individual adopters is not available) our work has proceeded in two 

directions. In that reported here we begin with information based models which are largely 

devoid of any active role for economic forces and modify them to provide such a role. In 

other work proceeding, we begin with discrete choice models which stress economic factors 

but ignore information problems, and adapt them to incorporate such information factors. 

Thus the work reported in here is firmly based in the epidemic tradition. 

To be precise, in this paper we make two modifications to the standard logistic model. First 

we allow for the speed of diffusion to be a function of economic variables. Secondly, we 

' We are grateful for comments from Hashem Pesaran, Anne Gibbons and participants in industrial organization and 

technology conferences at the universities of Bristol and Warwick. Of course, all errors that remain are the responsibility of 

the authors. 

2  The project, funded by the ESRC, has the title 'The theory, empirics, and policy of technological diffusion', and is part of the 

ESRCIDTI research initiative on new technologies and the firm. 
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modify the standard assumptions made with regard to the learning process in such models. In 

particular we argue that the standard epidemic model is unsatisfactory in that it always gives 

dominance to endogenous elements in the learning process. We then set up a more general 

epidemic model (which• nests the standard logistic models in the literature) that does not 

assume such dominance a priori, and can thus be used to explore the relative strengths of the 

exogenous and endogenous forces. 

The paper proceeds with a discussion of the standard epidemic models followed by the 

specification of a new model. We explore the mathematical properties of this model and also 

discuss its stochastic specification. Finally, an application of the model to the growth of 

colour television ownership in the UK is made, and the results are compared with those of 

other models suggested in the literature. 

2. The Logistic Type Growth Curves 

In recent years different logistic type3  growth curves have found a wide range of applications 

. in. characterizing the diffusion of new products and technologies (for some recent reviews of 

the literature see, Stoneman 1983, Mead 1984, and Mahajan and Wind 1986). The empirical 

results of fitting the logistic type models to the data on product diffusion, however, have not 

been entirely satisfactory. The following problems have been observed in the empirical case 

studies. First, the fit of the model varies from one case to another. While a particular curve 

fits the data for certain new products adequately, it performs poorly with respect to others. 

Further, it is often noted that different growth curves with different properties and divergent 

forecasts fit a particular set of data equally well. Second, the parameter estimates often show 

wrong sign or magnitude compared to what theory would suggest. Third, forecasting 

performance varies widely across different products, and sometimes the calculation of the 

forecast error is too complicated and not reported. As has been pointed out in a series of 

3  By logistic type curves we refer to the family of exponential growth curves with saturation, such as the Logistic, Gompertz, 

Log-Logistic, etc., which are alternatively referred to by Gregg et.al. (1964) as the modified exponentials. 
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recent papers some of these problems arise from the stochastic specification of the models and 

the estimation methods used (see e.g., Mead 1985, 1988, Oliver and Yang 1988). These 

issues will be taken up in later sections. In this section we are instead mainly concerned with 

the functional form of the logistic type models and their theoretical underpinnings. 

In part of the literature the logistic curve is introduced as a summary device without any 

attempt at a theoretical justification. Griliches (1957) and Mansfield (1968), for example, use 

the logistic curve as a device for parsimonious representation of the data, where the 

coefficients of the fitted curve are later used in cross-section analysis for testing the effect of 

economic variables. This 'curve fitting' approach has, paradoxically, become popular in the 

marketing literature where the main interest is in forecasting. Different 'modified' or 

'generalized' logistic curves have been devised in order to achieve better fits to empirical data 

through the adoption of more flexible functional forms, and in particular to derive a skewed 

logistic function more in conformity with empirical growth curves (see, e.g., Chow, 1967, 

Hutchesson, 1967, Tanner 1978, Easingwood etal 1981, McGowan, 1986). 

In much of the literature, however, the rationale for the use of the logistic is sought on 

behavioural grounds. 	The behavioural justifications for the use of the logistic in 

characterizing the diffusion process is often made by analogy to the spread of epidemics as 

discussed in biological sciences. It is thus appropriate to begin with a brief discussion of a 

simple epidemic model before moving to the economic applications of the model. This would 

help to underline the assumptions which are necessary to justify the use of the logistic for 

characterizing the diffusion process (see also Bain, 1964, Davies, 1979). 

Assume a community with a number of persons susceptible to a new infection, N, a number of 

already infected people S, and a constant rate of infection P (i.e., P = probability of 

contracting the infection after a contact is made). Under the assumption of a homogeneously 

mixing population, it is plausible to assume that the probability for a susceptible to meet an 

infected person and contract the disease in a small time interval dt is P(S/N). In a population 
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of (N-S) susceptibles the average number of infections in a small time interval dt would 

-therefore be: 

S 
dS = (3 --- (N-S) dt 
	

(1) 
N 

Integrating this equation gives the simple deterministic logistic curve for the spread of the 

epidemic as a single valued function of time. Bartlett (1955) and Bailey (1950) provide 

stochastic versions of the model with properties which for medium sized populations are 

particularly at variance with the deterministic case. However, since in economic applications 

we mainly deal with large populations, it would be more appropriate here to work with the 

deterministic version of the model. This, in addition to avoiding some of the intractable 

complexities of the stochastic case, also helps to illustrate the relation of the new model 

proposed to the logistic type models which in the economics literature are largely formulated 

in deterministic terms. 

The following assumptions are made in the above derivation of the simple logistic growth 

curve (see, Bailey 1957); i)- infection spreads through contact between the members of the 

community, and it is not sufficiently serious for cases to be withdrawn from circulation by 

isolation or death, ii)- each infected individual has the same chance of coming into contact 

with a susceptible member of the community independently of the age of his infection or his 

location, and iii)- no case becomes clear of infection during the course of the epidemic. These 

assumptions are additional to the assumption made above that P is the same for different 

individuals, i.e., individuals are equally susceptible to the infection once a contact is made. 

The analogy often made between the spread of epidemics and the diffusion of a new 

technology or product is either based on the learning processes involved in the use of new 

technology and its transmission through human contact, with the 'infection' being information, 

or based on pressures of social emulation and competition. Bain (1962) derives a simple 

logistic curve for the growth of monochrome television ownership in the UK on the basis of 

such behavioural reasoning. In doing so he in effect retains all of the assumptions of the 
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simple epidemic model enumerated above. Bass (1969), however, partially modifies the 

assumption that the diffusion process takes place as an endogenous learning process within a 

homogeneous population. Following Rogers (1962), Bass distinguishes between two 

homogeneous groups; the innovators, who are not subject to social emulation or endogenous 

learning, and the imitators, for whom the diffusion process mainly takes the epidemic form 

discussed above. This gives rise to the positively skewed logistic curve which has become 

influential in the marketing literature. Different interpretations of the Bass model have 

appeared in this literature. For example Dodson and Muller (1978) attribute the exogenous 

part of the Bass model to promotional advertising, and the endogenous part to 'word of mouth' 

(see also Lekvall and Wahlbin, 1973). Tanny and Derzko (1988) rightly argue that the model 

originally formulated by Bass does not abandon the assumption of a homogeneous population 

as is commonly maintained in the literature that followed it, but rather, it distinguishes 

between the endogenous and exogenous influences at work in the process of adoption in a 

homogeneous population. They in turn set up a logistic model which explicitly distinguishes 

between the innovators and imitators in the population. It is interesting to note that in 

empirical studies, either based on the Bass model or on its new reformulation by Tanny and 

Derzko, the exogenous factor turns out to play an insignificant role in the diffusion process. 

As we shall argue below, this may result from the a priori assumption of a dominant 

endogenous growth factor in these models. In other words, given the underlying mathematical 

structure of these models, in the interaction between the endogenous and exogenous factors it 

is the endogenous element which would have the dominant influence. None of the above 

variants of the Bass model, therefore, essentially alter the underlying assumptions of the 

simple epidemic model and its dynamic behaviour. 

3. A New Model 

To illustrate the basis of the model that we construct, consider the standard logistic model as 

separating the acquisition decision into two parts. The first is that information spreading or 

the pressures of social emulation generate a 'desire to acquire', and second is that some 
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proportion of this is converted to actual acquisition decisions through R, the probability of 

acquisition (contracting the infection) once the 'desire to acquire' (contact) has been 

established. In the new model proposed here two basic changes to the standard model are 

made. 

First we allow for 0 to be a function of economic variables rather than being taken as a fixed 

parameter. This in itself is not a major revision. Mansfield (1968) provides a theoretical 

model justifying such a variation, and a whole body of empirical work (starting for example 

with Griliches, 1957) proceeds on the assumption that P is dependent on economic variables. 

In Mansfield's work, where new process technologies are being considered, 0 is taken to be a 

function of for example, profitability, firm size and liquidity. As colour televisions are 

household durables we consider P to be a function of disposable income (YD), the price of 

colour televisions (P) and credit conditions (CRED). Where our model differs from 

Mansfield's and much of the other empirical work on diffusion is that we allow P to vary over 

time as a result of variations in income, the price of colour televisions and credit conditions. 

In Mansfield's work, which is based on cross section data, P is constant over time but differs 

across industries or technologies. As our data covers a single aggregate time series, only 

intertemporal variations can be accommodated. 

The second modification to the standard epidemic model that we introduce is to respecify the 

nature of the learning or emulation process. The respecification allows for the standard 

logistic as a special case. The reason for doing this is that as we noted above, a major 

weakness of the standard epidemic, logistic or Bass type models is that they, a priori, assume 

that endogenous factors throughout the diffusion process remain dominant in the learning or 

emulation process. It is more plausible, however, to set up a more general model which could 

test this proposition (even though it may after all turn out to be correct under certain 

circumstances). This objective is met by the new model through dropping some of the 

restrictive assumptions of the simple epidemic model. 



One assumption which has an important bearing on the behaviour of the simple epidemic 

model, and does not seem to be plausible in the case of the diffusion of new products, is that 

of a homogeneously mixing population. It is more reasonable to assume that each individual 

has contact with only a limited number of individuals in thesociety, and therefore his direct 

influence in terms of social emulation and/or learning gradually wears off as his immediate 

contacts adopt the new product. In addition, with the existence of exogenous sources of 

information and learning, one would also expect the effect of endogenous learning through 

personal contact to gradually wear off as the news about the existence and the qualities of the 

new product become common knowledge. 

To pursue this idea we distinguish at each point of time between three subsets of the total 

population (or total maximum adopters) N in the following way: the number of owners of the 

new product at time t who continue to be instrumental in social emulation or learning (X); the 

number of owners at time t who no longer contribute to the diffusion of the new product (Y); 

and the number of non-adopters who are 'susceptible' at time t (Z), such that N=X+Y+Z. As 

before we define S=X+Y as the total number of owners at time t. The non-homogeneous 

. mixing is catered for by assuming that only X and not S influences learning and emulation. In 

addition we allow for exogenous factors to influence learning and emulation by incorporating 

a factor q in the learning or emulation process. Specifically we have that: 

dS 
--- = (3(q+X/N)Z = P(Nq+S-Y)(N-S)/N 

	
(2) 

dt 

To complete the model we specify that the number of 'influential owners' X will 'depreciate' 

over time according to (3): 

dY 
--- = (XX = a(S-Y) 
	

(3) 
dt 
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where a is the coefficient of decay of the 'active' adopters. Given the initial values (S, 

Y)=(S0, 0) at time t=0, we can solve the above equations in the following way. Substituting 

for (S-Y) from equation 3 into-equation 2 we get: 

dS/dt=O[Nq+(1/a)(dY/dt)](N-S)/N. 	 (4) 

Solving this equation for Y we get: 

N-So 
Y = N((x/p)(Log( -------) - Pqt) 

N-S 

Substituting for Y in equation 2 gives the following solution: 

dS 	 N-So 
--- = P[q + S/N - ((x/0)(Log( -------) - Pgt)](N-S) 	 (5) 
dt 	 N-S 

For the values of q=0 and a=0 this equation reduces to the simple logistic, and for q>0 and 

a=0 it gives the Bass model. The new model thus nests these two other models. This model 

meets the aim of allowing for a more free interaction between endogenous and exogenous 

growth factors, without imposing any a priori assumptions about the dominance of one factor 

over another. The coefficient a/(3 in this model could be interpreted as an index of the 

strength of the endogenous growth factors. It could be said that with the value of ((x/R)>_1, the 

endogenous growth factors are weak and exogenous factors play a dominant role in diffusion, 

and the reverse with ((x/p)<1. The value of this index, however, has to be estimated 

empirically. The existing epidemic models in the literature, by assuming ((X/(3)=0, give an a 

priori dominance to the endogenous growth element. 

To observe the role of the coefficient ((x/0) in the model more clearly, it would be helpful at 

this point to explore the mathematical properties of the new model. For this purpose, we treat 

P as a constant parameter. Like the simple logistic and the Bass models, the new model has 

a stable equilibrium at S=N. This can be easily checked if we solve for S from equation 4 to 

get: 



S = N - [exp(-(D/a)Y/N)] [exp(-Pqt)] 

Clearly, as t-4—, S tends towards its stable equilibrium value of N, the saturation level. The 

new model, nevertheless has totally different underlying properties both from the simple 

epidemic and -the Bass models. To see this more clearly we shall set q=0 and rewrite 

equations 2 and 3 as: 

dS 
--- = PXZ/N = P(S-Y)(N-S)/N 	 (6) 
dt 

dY 
--- = ax = a(S-Y) 	 (7) 
dt 

This set of equations, which characterize the endogenous side of the more general model, 

has entirely different dynamic properties from the simple logistic model. In addition to 

the solution S=N, this system has an infinite number of other solutions in the interval 

{0, N} when S=Y. None of these solutions, however, constitutes a stable node. A 

comparison between the phase diagrams of the system of differential equations 6 and 

7 with those of the more general model (i.e., equations 2 and 3) would help to clarify some 

important aspects of the dynamic behaviour of the model. For this purpose we divide 

equations 6 by 7, and 2 by 3 respectively to derive the following set of equations in terms 

of S and Y: 

dS 
--- = (RA)(N-S)/N 	 (8) 
dY 

for the restricted model, and: 

dS 	Nq+S-Y 
--- = (P/(x)( --------- )(N-S)/N 
dY 	S-Y 

for the general model. In both cases (dS/dY) >_ 0 for values of S <_ N. The phase diagrams 

of the restricted model (with q=0) and the general model are shown in figures 1 and 2 

respectively. As we are interested in values of S and Y which obey the restriction 0 < Y<_ S 
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< N, the diagrams are depicted only for values in the upper right hand quadrant above the 45° 

line. 

Figure 1 
	

Fi ur 2 

Adustment Paths with q=0 	 Adiustment Paths with q>0 

As was pointed out, the trajectories in both phase diagrams have positive slopes. Equations 8 

and 8' also indicate that in both cases the overall slope depends on the relative values of P and 

a, but declines as S approaches the saturation level N. In the purely endogenous diffusion 

case (figure 1), the terminal point of the trajectories - which could be anywhere in the {0, 

N} interval on the 45° line - depends on the initial values as well as the coefficient (a/P). 

None of these points, however, constitute a stable solution. The model depicted in figure 1, 

therefore, characterizes a degenerate case, where the diffusion process in the absence of 

exogenous factors may come to an end well below the potential saturation level N. This could 

well characterize many instances of brand competition where endogenous diffusion factors are 

weak (i.e., P/a is small) and exogenous factors - e.g., effective advertising campaign, price 

competitiveness etc. - are absent. 

In the case of the general model, depicted by the phase diagram 2, the system starting from 

any initial conditions would end up at the stable solution Y=S=N. As can be seen from 
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equation 8', at values of Y=S the slope of the trajectories is —, and as S tends towards N the 

slope approaches 0. The general model proposed here, therefore, characterizes the process of 

diffusion as one of interaction between the endogenous and exogenous factors without setting 

any a priori restrictions on which one would be the dominant factor. This is the major 

distinction between this model and the logistic type models so far proposed in the literature. 

The assignment of a priori dominance to the endogenous factors in those models totally 

obliterates the significance of exogenous factors. This could be an important reason for past 

econometric studies based on such models generating insignificant coefficient estimates or the 

wrong signs for exogenous economic variables. 

A Discrete Analogue of the Model 

For the purposes of estimation it is more convenient to work with a discrete time version of 

the above model. To derive the discrete time version we write equations 2 and 3 in the 

following way: 

ASt  = R((Xt-1/N)+q)Zt-1 = R(Nq+St-1 - Yt-1)(N-St-1)/N 	 (9) 

AYt  = aXt-1 = a(St-1 - Yt-1) 	 (10)  

Equation 10 can be expanded in the following form: 

Yt  = Yt-1(1-a) + aSt-1 = oJI (1-CC)ISt-i-1 i=0 

substituting in 9 yields (11): 

ASt  = R[Nq + St-1 - a o (1-a) St-i-1)](N-St-1)/N 	 (11)  

This is a general distributed lag model which reproduces the simple logistic model with a=0 

and q=0, the Bass model with a=0 and q>0, and the degenerate diffusion case discussed above 

with q=0 and a>_(3. It is thus an encompassing model which allows for the testing of those 
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restrictions which are in the existing literature usually imposed on diffusion models on a priori 

grounds. 

4. Stochastic Specification 

In fitting the logistic type growth curves to the data, a variety of stochastic specifications have 

been put forward in the literature. The most common approach has been to superimpose an 

additive disturbance term on a growth curve which is a deterministic function of time (see 

e.g., Mar Molinero, 1980, Oliver, 1981, and Mead, 1984 for further references). The general 

stochastic model takes the following form: 

St  = F(co ;t) + ut  

where co is typically a three or four parameter vector, depending on the specific form of the 

growth curve assumed, and ut  is assumed to be a white noise disturbance term. 

Different empirical studies have shown that alternative parameterizations of this type of 

global trend model often fit the data equally well, but produce widely diverging forecasts. 

This may be evidence of spurious regression, which is not uncommon in such type of 

models (see e.g., Granger and Newbold, 1977). Unfortunately very few of the empirical 

studies report the value of the Durbin Watson test statistic, or other test statistics which 

could substantiate the adequacy of the stochastic assumptions of their models. In one 

case, Mar Molinero (1980), where the DW test statistic is reported, there is strong evidence 

of first order autocorrelation in the error terms which supports the hypothesis of spurious 

regression. Such type of global trend models have also been criticized on various other 

grounds in the literature (see, e.g., Harvey, 1984, Mead, 1985, and Oliver and Yang, 1988). 

The second common approach is to introduce the random element in the new adoptions in 

each period (OSt), rather than in the stock (St) as in the above models. The change in stock is 

characterized as a deterministic function of the previous period level of stocks, upon which an 

additive disturbance term is superimposed (see, e.g., Bain, 1962, Williams, 1972, and Bass, 
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1969). The general form of the stochastic model which is estimated in this type of approach 

could be written as: 

OSt = F(w ;St-1)  + ut  

where cu is a three to four parameter vector and ut  is a whitenoise error term. One problem 

with this type of specification is that it fails on account of the possibility that the variance in 

the error term near the saturation level of the diffusion process will be very different from the 

variance during the high growth period in the early and middle parts. To deal with this 

problem Mead (1988) introduces a heteroskedastic error term, ut—N(O,Vt), where Vt=Sn(N-

S)'Ca2. He then conducts a numerical search for the values of n and i which best fit the 

variance structure of the model. 

A second criticism levelled against the above type of models relates to the assumed constancy 

of the parameters of the growth curve over the entire diffusion process. Mead (1985, 1988) 

estimates variable coefficient models, where parameters such as the saturation level and the 

growth coefficient are assumed to follow a random walk. He uses Kalman filters adapted for 

non-linear equations to estimate the model. It should be noted, however, that varying 

parameters may be due to mis-specification of the model or omission of important explanatory 

variables. 

In the model we use here for estimation the random element is attributed to the flow or change 

in stocks rather than the level of stocks. The criticisms of this raised in the literature, 

however, have to be explicitly addressed. In particular, we must test for the structural stability 

of the model. This should of course be done after including in the model the economic 

variables which are likely to have important effects on the diffusion process. A common 

shortcoming of the recent literature is that such relevant economic variables, e.g., prices, 

incomes, credit conditions, etc., are often excluded. Once included, the coefficient estimates 

of such variables often show signs which are contrary to what theory would suggest (see, e.g., 

Bain 1964, Bonus, 1968). This suggests that theory consistency should be another important 
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criterion of model selection. Further, the error specification of the model should conform with 

the mathematical structure of the model. This is particularly important in non-linear models 

which are subject to saturation. Thus we provide the relevant asymptotic test statistics to 

check the consistency of the error assumptions of the model. Finally, we compare the 

performance of the model with that of some of the existing models in the literature, in terms of 

data consistency, structural stability and predictive performance. 

The following versions of equations 9 and 10 represent the basis for our estimation: 

OSt -at[q+St-1 - Yt-1((x)](1-St-1) 	 (12) 

Yt-1(a) = (X X1 (1 -a)1 St-i-1 
'=o 

where the ownership level S is shown as a ratio of saturation level N which is taken as fixed in 

this formulation. For simplicity only the R parameter is considered to be a variable function of 

economic variables, while both q and the saturation level parameters are fixed. One could 

further extend the influence of the economic factors by allowing for example that q, 

characterizing the exogenous component of the growth curve, to be a function of economic 

variables. In the marketing literature it is sometimes made a function of advertising 

expenditure. Similarly N (the saturation level) is often characterized as a function of relevant 

economic variables such as prices, incomes, etc. (see, e.g., Bain, 1962, and Williams, 1972). 

We have not allowed for such influences, partly because of the limitations of the data but 

primarily because we believed that a more parsimonious model would allow for a better 

appraisal of the comparative properties of the model. We, however, test the sensitivity of the 

model to the variations in the saturation level. 

For television ownership, the case study below, following Bain (1964), we have assumed the 

saturation level to be equal to the total number of households in each period, which seems 

plausible given that in the early 1980s more than 80 per cent of households owned colour 

televisions. We shall nevertheless consider the sensitivity of the model to the assumed 
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saturation level by allowing it to equal a 0 fraction of the number of households and then 

varying the value of 0 in following version of equation 12, by increments between 0.8 and 1.0: 

OSt = Rt[Oq+St-1 - Yt-1((X)l(O-St-1)/O 	 (13) 

where the ownership level St  is shown as a proportion of total number of households and 0 is 

the ratio of saturation level to the number of households. 

To take care of the possibility that the variance of OSt  changes as the saturation level is 

approached, we propose to estimate the following transformation of the model: 

(OAS t/(0-S t-1)) —Rt(Oq+St-1 - Yt-1((x)) + ut 	(14) 

where ut  is assumed to be an iid(0,62) error term. In the type of models we have been 

discussing in previous section, we would have OS>O as long as S remains below the saturation 

level. In this case we may force the error term to be positive by assuming a multiplicative 

exponential error term of the form exp(ut), where ut  is an iid(0,62) error term as before. In 

this case the above equation may be estimated in log terms. The choice between the two 

functional forms has to be decided by the data. 

5. Estimation and Inference 

The model was applied to the data for colour television ownership in the UK over the 1968-86 

period. Quarterly figures for colour television ownership were collected on the basis of 

monthly license4  figures published in the Monthly Digest of Statistics. The charts in Figures 

3 and 4 show the one Qtr. and four Qtr. lag difference in ownership for the 1968-86 period. 

As can be seen the one Qtr. differences are extremely volatile. This is partly due to seasonal 

variations, but more significantly due to the leads and lags arising from delayed response in 

license fee payments, postal delays etc. Considering that the flow figures have been 

4  We would like to thank Anne Gibbons for supplying us with her data on the relevant variables. 
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calculated as quarterly differences in stocks, such 'measurement errors' could easily 

overshadow the additions to the stock, particularly near the saturation level. To overcome 

this, we have estimated the model in four Qtr. lag difference, using a four Qtr. moving average 

transformation of the quarterly stock data. Denoting the original data series by Kt, we applied 

the following linear filter, St=(1/4)(1+L+L2+L3)Kt  which gives OSt=04Kt. The model was 

estimated in terms of OSt  and St. The economic variables included in the model as 

determinants of 0 were, the retail price of colour television (P) (deflated by the general retail 

price index), real personal disposable income (YD), and a proxy for credit conditions(CRED). 

The quarterly price variable was lagged four periods to safeguard against possible 

simultaneity bias arising from the interaction between demand and price. The income variable 

was also lagged one period. The hire purchase deposit was taken as a proxy for the credit 

conditions variable (the other relevant variable, i.e., the maximum repayment period, is highly 

correlated with the hire purchase deposit and hence is not included)5. The credit variable is 

meant to reflect the effects of liquidity constraint on consumer demand. 

The model was estimated both in the form shown in equation 14, with 8=1, and in log 

transform form. As the latter showed slightly better results we report here only the results 

from the log-transformed model. Incorporating the relevant economic variables in the P 

coefficient (assuming constant elasticities): 

Ot  =, ao Pt -4  YDt  1  CREDt 

and taking logs from both sides of equation 14 gives equation 15 which is final form used for 

estimation: 

5  The data are based on the following sources. Quarterly data on real personal disposable income and the general retail price 

index are from the Monthly Digest of Statistics, 1967-86, CSO. Wholesale price index of colour televisions is based on, Price 

Index Numbers for Current Cost Accounting, 1968-85, CSO. Purchase tax or VAT plus retailers margins were added to this 
to derive the retail price index for colour televisions (sources; Retailing, CSO, and British Radio and Electronics 
Manufacturers Association). The data for hire purchase deposits and minimum repayment period are provided by the British 

Radio and Electronics Manufacturers Association. The data on the number of households are based on the Census of 

Population, 1961, 1966, 1971, 1981 (at 1st April). Quarterly data are estimated by linear extrapolation. The original data is 
available on request from the authors. 
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LSt  = a0+al Pt-4+a2 YDt-1+a3 CREDt+Log(q+Wt-1((x)) + ut 	(15) 

where for brevity Log(ASV(1-St_1)) is denoted by LSt  and (St-1-Yt-1(a)) by Wt-1((x). On 

theoretical grounds we expect the following coefficient signs: a l<_0, a2>_0, a3<_0, and q>_0. 

The above equation was estimated by Nonlinear Least Squares (NLS), which, adding the 

assumption of normality of the error term replicates the results from Maximum Likelihood 

estimation (see, e.g., Gallant, 1987). Though the data series start from 1968Q1, the equation 

was estimated for a sample of 67 quarterly observations, from 1970Q1 to 1986Q3. The 

starting point of 1970Q1 was chosen because colour transmission up to the fourth quarter of 

1969 were confined to BBC 2, and in any case the license figures for those early years may 

not accurately reflect colour tv ownership. A grid search was conducted for the value of a 

which minimized the standard error of regression (or assuming normality of errors maximized 

the likelihood function), and a=1.2 was chosen as the optimum value. The estimated equation 

for the value of a=1.2 was: 

LSt  = 4.17 - 0.801 Pt-4  + 0.981 YDt-1  - 0.359 CREDt  
(5.10) (-8.16) 	(1.86) 	(-2.18) 

+Log(0.0011 +wt-1(1.2)) 

	

(4.18) 	 (16) 

T=67, 	R2=0.937, 	6'=0.1540, 	LL=32.8, 

F,AR1=1.58, F,AR4=1.45, F,Hetr=.089, Z1=0.933 

	

[4.0] 	[2.35] 	 [4.0] 	[5.99] 

The asymptotic t ratios of the coefficient estimates are given in brackets. As can be seen, all 

of the coefficients have the correct sign and they are all statistically significant at the 5% 

significance level. In addition, a number of other test statistics are provided for testing the 

overall goodness of fit and the adequacy of the underlying error assumptions of the model. R2  

is the multiple correlation coefficient adjusted for the degrees of freedom, G' is the asymptotic 

standard error of regression, and LL is the maximized value of log likelihood function. F,AR1 

and F,AR4 are the asymptotic F test statistics for lst order and joint 1st-4th order serial 



correlation of residuals. These test statistics, together with all other tests which are based on 

some kind of parameter restriction in linear models (i.e., the Lagrange Multiplier, Likelihood 

Ratio, and Wald type tests) are all asymptotically valid for the non-linear models as well (see, 

e.g., Judge et.al. 1980, ch.17, Gallant 1987). 	F,Hetr is the asymptotic F test for 

heteroskedasticity based on the hypothesis of correlation between the second power of fitted 

values and the second power of the residuals. Z1 is the Chi-Sq test for normality of the 

disturbances based on skewness and kurtosis of the NLS residuals. The 5% significance 

critical values of these test statistics are given in square brackets. As can be seen none of the 

prior assumptions regarding the stochastic behaviour of the model are rejected by these tests. 

One of the interesting results of the above estimate is the relatively high value of a, 1.2. This 

implies that the epidemic or endogenous growth factor was not very important in the diffusion 

process. This is a perfectly plausible result in the case of colour television ownership, for by 

1968 the majority of the households already owned monochrome tv sets and were familiar 

with the qualities of the new product in terms of tv programs etc. Furthermore, colour 

television transmission in the UK had a relatively late arrival - by 1968 colour tv ownership 

was already widespread in the US. It seems natural therefore that the endogenous learning 

processes through the epidemic mechanisms would play only a small role in the diffusion of 

colour television. 

We next proceeded to test the appropriateness of the assumption that the ultimate saturation 

level was the total number of households. For this purpose we replaced the dependent 

variable by the new variable Log(60St/(0-S t-1)) and after transferring Log(0/(B-St-1)) to the 

right hand side of the equation, estimated the parameter 0 together with other parameters by 

NLS. The estimated value of 0 was 0.9 which was significantly different from 1.0. To test 

the sensitivity of this result to the assumption of a=1.2 we conducted a new grid search for the 

value of a. The outcome was that the values of a=1.2 and 0=0.9 were optimum. The 

maximized log-likelihood measures for selected values of a and 0 are shown in Table 1. 

Since the maximum LL values were relatively close, and as we are here mainly concerned 
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with the general properties of the model rather than exact elasticity estimates, it was decided 

to keep-the value of 0=1.0 for the rest of the analysis. A more thorough estimation procedure, 

of course, may require modelling of the saturation level in terms of economic variables. 

Table 1 
Maximized Log-Likelihood Values 

06 	1.1 	 1.2 	 1.3 
0 

---------------------------------------------------------------- 

	

1.00 	 32.73 	 32.85 	 32.35 

	

0.90 	 33.44 	 33.66 	 33.39 

	

0.85 	 30.92 	 31.29 	 31.30 
---------------------------------------------------------------- 

Structural Stability and Predictive Performance 

Equation 15 was re-estimated over the 1970-80, 1970-82, 1970-83, and 1970-84 sub-periods 

by NLS in order to test the structural stability and predictive power of the model. The 

coefficient estimates together with their asymptotic standard errors are shown in Table 2. As 

the Table shows the coefficient estimates remain fairly stable over the different sample 

periods. The Chow test for structural stability (CHOW 1 in Table 2) does not reject the 

..hypothesis of structural stability for any of the sample periods (the test was not possible for 

periods after 1983, as the matrix of regressors in the linearized 'pseudomodel' used in 

estimation became singular for the period 1983-86 and its successive sub-periods. Had it been 

possible, however, we consider that there is little doubt that the above result would be 

confirmed for these subperiods as well). 
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Table 2 
Coefficient Estimates for Different Sample Periods 

Coefficient 	 Sample Periods 
1 

Estimates ------------------------------ ----------------------- 

70Q1-86Q3 70Q1-84Ql 70Q1-83Ql 70Q1-82Ql 70Q1-8OQl 
----------------------------------------------------------------- 
ao 	 4.17 	4.17 	4.22 	4.79 	5.51 

(5.1) 	(5.5) 	(5.3) 	(6.6) 	(8.4) 

al -0.801 -0.819 -0.827 -0.918 -1.03 
(-8.1) (-9.2) (-8.7) (-10.2) (-11.8) 

a2 0.981 1.12 1.09 0.941 0.782 
(1.9) (2.2) (2.1) (2.1) (1.9) 

a3 -0.359 -0.463 -0.474 -0.574 -0.647 
(-2.2) (-3.2) (-3.0) (-3.7) (-4.7) 

q 0.0011 0.0014 0.0014 0.0015 0.0018 
(4.2) (4.3) (4.2) (4.7) (4.9) 

CHOW1 --- n.a. n.a. 1.27 2.22 
[2.37] [2.37] 

CHOW2 --- 0.724 0.858 1.84 4.91 

----------------------------------------------------------------- 
[1.53] [1.53] [1.59] [1.59] 

The Table also shows the results of Chow's predictive failure tests (CHOW2) for different 

sample periods. The results are fairly satisfactory for sub-periods up to 1970-82 when the test 

just misses the 5% critical value, but for the 1970-80 subperiod the test clearly fails. It could 

be said that Chow's predictive failure test, or any test of predictive failure for that matter, is a 

joint test of variability of parameters and the variance of the disturbance terms. It is quite 

possible therefore that the assumption of variance stability does not hold, and that the F test 

reported in equation 15 has not been adequate to detect this. This seems plausible, given that 

there are various a priori reasons to support it. First, the assumption of a constant q, which 

was made here for simplicity may not be correct. The parameter q is meant to capture the 

effect of exogenous factors, such as advertising expenditure, which are likely to have 

systematic variation over time, and therefore their omission could lead to non-stationary error 

variances. The second, and perhaps more important, source of variance instability is the 

possible measurement errors to which we have already referred in the previous section. As we 

have pointed out such measurement errors are likely to become increasingly significant as we 
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approach the saturation level and thus lead to non-stationary error variances. It can be shown 

that if this phenomenon exists, the fourth order moving average filter which we used in the 

previous section is not adequate to remove the effects on error variances. To further test the 

assumption of variance stationarity we thus made a second test of heteroskedasticity, a fourth 

order ARCH test, which with an asymptotic CH-SQ(4) value of 14.88 clearly rejected the 

hypothesis of homoskedastic errors. A more elaborate version of the model with varying q 

parameter, or a more accurate data series, may go a long way to alleviate this problem. 

However, since we are here less interested in measuring accurate elasticities than to 

demonstrate relative strength of the present model compared to alternative models, we shall 

leave this issue as it is with the risk of a possible loss of efficiency arising from 

heteroskedastic errors. A more crucial issue is the comparison of the model with other models 

used in the literature, which will be attempted in the next section. 

6. Comparison with Alternative Models 

This section compares the results of the present model with those of other models put forward 

in the literature, all of which have a dominant endogenous growth component. The logistic 

and the Bass models are two obvious candidates for comparison because they arise from 

imposing restrictions on the present model. We have also included the Gompertz curve in the 

comparison, as it is a left side skewed growth curve and is expected to have a better fit to the 

television ownership data than the logistic. A fourth model considered is the model suggested 

by Harvey (1984), which is a more general model incorporating the logistic and Gompertz as 

special cases. 

The NLS estimate of Bass model, which is derived from our proposed model when a is set 
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equal to 0, is the following: 

LSt  =-12.6 + 1.965 Pt_1  + 0.438 YDt_1  - 0.832 CREDt 	- 
(-9.8) 	(13.11) 	(0.46) 	(-2.98) 

+Log(0.0052 +Wt-1(0.0)) 	 (17) 
(1.58) 

T=67, 	R2=0.817, 	a'=0.2625, 	LL=-2.88, 

F,AR1=50.46, F,AR4=36.74, F,Hetr=1.67, Z1=1.67 
[4.0] 	[2.35] 	 [4.0] 	[5.99] 

The estimation period was the same as in equation 16, and similar test statistics as in the 

former equation are presented above. As can be seen the only coefficient which both has the 

correct sign and is statistically significant is that of the credit variable. The price coefficient, 

though significant has the wrong sign, and the coefficient on income is not significant. As 

expected, the coefficient of q, the exogenous growth factor, is not significantly different from 

zero. The estimated equation also showed strong signs of 1st and joint 1st-4th order 

autocorrelation. 

By setting q=0 in equation 17 we get the simple logistic function. Though this was not 

expected to dramatically change the estimates of the Bass model, we preferred to re-estimate 

the above equation with q=0, as it would lead to a linear equation (in logs) which allows for 

correction for autoregressive errors in a more straightforward manner than in the non-linear 

case. The simple logistic function in that case takes the following form: 

Lt= a0+ al Pt-4+a2 YDt-1+a3 CREDt  + ut  

where Lt=Log(OSt/(St_ l(1-St_1))), and the economic variables are in log terms as before. The 

OLS estimate of the equation was: 
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Lt  =-11.9 + 1.948 Pt-4  - 0.458 YDt-1  - 0.772 CREDt  
(-9.4) (12.75) 	(-0.537) 	(-2.71) 

{ tit= 0.98 (it-1  -0.42 tat-2  + et  } 
(8.36) 	(-3.52) 

T=67, 	R2=0.911, 	6'= 0.2679, 	LL=-4.77, 	DW=0.611 

F,AR1=54.8, F,AR2=48.7, F,Hetr=8.78, Z1=0.408 
[4.0] 	[3.15] 	[4.0] 	[5.99] 

To deal with the second order autocorrelation in residuals the equation was also estimated by 

Cochrane-Orcutt AR(2) methods with the following results: 

Lt  =-11.1 + 1.77 Pt-4  - 0.406 YDt-1  - 0.309 CREDt  

	

(-10.1) (10.99) 	(-0.59) 	(-0.94) 

T=67, 	R2=0.961, 	6'= 0.1770, 	LL=23.5, 	DW=1.94 

As expected the OLS estimates are very similar to equation 17. Though the C-O estimation 

reduces the standard error of regression to a large extent, there is no sensible change in 

parameter signs, and the credit coefficient is no longer significant. We further checked 

whether the relaxation of the assumption that the saturation level was equal to the maximum 

level of household numbers, i.e., 0=1, helped to improve the performance of the simple 

logistic equation. This was done by changing the dependent variable to Log(OASV(O-St-1)) 

and a free estimation of 0 and other parameters by NLS, after transferring Log(O/(O-St-1)) to 

the right hand side of the equation. The results were not significantly different from the above 

case and the hypothesis of 0=1.0 was not rejected at the 5% significance level. 

The general form of the Gompertz growth curve in discrete terms could be written as: 

OSt= RSt-1 (Log(N/St-1)) 

where N is the saturation level, P is the speed of adjustment, and S is in level terms. To get a 

stochastic form similar to the simple logistic case, we took logs from both sides of the 

equation, and included the economic variables in the P coefficient to get: 
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Gt= a0+ al Pt-4+a2 YDt-1-+a3 CREDt  + ut  

where Gt=Log(OSt/(St_1(Log(1/St_1)))), with S measured as a proportion of saturation level, 

and the right hand side variables being the economic variables in log terms as before. The 

OLS estimates of this equation were: 

Gt  =-11.2 + 1.388 Pt-4  + 1.834 YDt-1  - 0.333 CREDt  
(-9.6) (9.79) 	(2.32) 	(-1.26) 

{ It= 0.94 Ot-1  - 0.35 ut-2  +et  } 
(7.85) 	(-2.87) 

T=67, 	R2=0.791, 	6'=0.2487, 	LL=0.232, 	DW=0.592 

F,AR1=59.2, F,AR2=37.2, F,xetr=9.25, Z1=2.29, 
[4.0} 	[3.15] 	[4.01 	[5.99] 

The overall results are very similar to the simple logistic case, with the difference that the 

income coefficient is now significant. The residuals also showed strong second order 

autocorrelation. The Cochrane-Orcutt AR(2) estimation method results were: 

Gt-= -8.2 + 0.986 Pt-4  + 0.284 YDt-1  - 0.070 CREDt  
(-8.1) (6.40) 	(0.468) 	(-0.235) 

T=67, 	R2=0.916, 	6'=0.1580, 	LL=31.1, 	DW=2.00 

This gives a much more improved fit to the model, but parameter estimates still remain 

problematic. 

The general model suggested by Harvey (1984) is the following: 

Log(OSt)= b0+bl Log(St_1)+b2  T + ut  

Where T is a time trend variable. This model reduces to the simple logistic with b1=2, and to 

Gompertz with bl=0 and S measured in log terms. Since there is no straightforward manner 

in which the economic variables could be incorporated into this equation (e.g., b the speed of 

adjustment enters into b2  and bl  in a complicated manner), we decided to estimate this 
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equation in the original form proposed by Harvey. The OLS estimate of the model, again 

using S as a ratio of the number of households, were: 

Log(DSt)= -1.12 +0.819 Log(St_1)-0.062 T 
(-5.7) 	(15.4) 	 (-18.5) 

{ Ot= 0.848 flt-1 + et  } 
(13.1) 

T=67, 	R2=0.838, 	a'= 0.2849, 	LL=-9.4, 	DW=0.345 

As the residuals showed strong sign of first order autocorrelation we re-estimated the equation 

by C-O AR(1) method which resulted in: 

Log(DSt)= -1.24 +0.837 Log(St_1)-0.058 T 

	

(-2.2) (6.32) 	 (-6.11) 

T=67, 	R2=0.947, 	a'=0.1631, 	LL=27.8, 	DW=1.383 

This gives a much better fit to the data than the OLS estimate, but the overall fit as measured 

for example by the maximized value of the log-likelihood function is still not better than the 

Gompertz curve. 

As to the comparison between these models and our proposed model, the latter clearly 

outperforms as far as theory consistency is concerned. In none of the above models could we 

get parameter signs consistent with theory, particularly with regard to the price variable. 

Though we could not corroborate this with regard to Harvey's model, it would not be 

surprising to find the same phenomenon if economic variables are somehow included in that 

model as well (given that it belongs to the same family of exponential growth curves with a 

dominant endogenous growth component). 

In terms of the general fit also it appears that the proposed model outperforms the existing 

models. This could be seen through a comparison of the values of maximized log-likelihood 

functions of the different models reported in Table 3. Since the dependent variables in the 

different models are not the same, it is necessary to rescale the maximized LL values for such 

a comparison to be possible. However, as it happens the Jacobean of the transformation in 
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each case turns out to be exactly the same. This is due to the fact that the dependent variables 

are all in log forms and the denominators are all composed of lagged dependent variables. As 

a result, the Jacobean only depends on the numerators which turn out to be the same in all 

models. As the Table shows, the proposed model outperforms the alternative models no 

matter by what method the latter are estimated. 

Table 3 
Maximized Log-Likelihood Values of Alternative Models 

Estimation Maximized 
Model Method LL Value 

Proposed Model 
----------------------------------------------------------------

NLS 32.85 

Logistic OLS -4.77 
C-O AR(2) 23.52 

Gompertz OLS 0.232 
C-O AR(2) 31.11 

Harvey 	 OLS 	 -9.42 
C-O AR(1) 	 27.84 

------------------------------------------- 

7. Concluding Remarks 

In this paper the diffusion of a new consumer durable has been explored empirically in the 

epidemic tradition. A new model was set up with the aim of allowing for a more free 

interaction between exogenous and endogenous forces in the learning process, and 

incorporating economic factors as determinants of the speed of diffusion. 

The coefficient WO in this model could be interpreted as an index of the strength of the 

endogenous growth factors. It could be said that with the value of (a/(3)>_1, the endogenous 

growth factors are weak and exogenous factors play a dominant role in diffusion, and the 

reverse with (a/p)<1. The value of this index, however, has to be estimated empirically. The 
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existing epidemic models in the literature, by assuming ((x/p)--O, give an a priori dominance to 

the endogenous growth element. 

The model was tested with the empirical data on the diffusion of colour tv ownership in the 

UK. Despite the simplifying assumptions made about the constancy of saturation level, etc. 

and the data problems arising from possible measurement errors in ownership figures, the 

results were encouraging, and certainly superior to other types of epidemic models. A 

relatively high value of 1.2 for a in the case of colour tv ownership indicated weak 

endogenous forces, contrary to the a priori assumptions of other models. 

There are various ways in which the present model can be improved, particularly in its 

empirical applications. For example, our assumption of a simple linear decay factor, could, 

subject to mathematical tractability, be improved. One should also note that the work reported 

upon here takes no account of supply factors in the diffusion process (see, Ireland and 

Stoneman, 1986). Perhaps of greatest importance, however, is to explore more fully the role 

of economic factors in the diffusion process by taking into account the heterogeneity of 

adopters. These have been considered in this paper to the extent that the aggregate time series 

data on colour tv ownership allowed, but it is in other work proceeding on discrete choice 

models that adopter heterogeneity will figure more prominently. 

Department of Economics 
University of Warwick 
Coventry CV4 7AL 

January 1990 
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